
Local Search Algorithms on Graphics Processing

Units. A Case Study: the Permutation

Perceptron Problem

Th Van Luong, Nouredine Melab, and El-Ghazali Talbi

INRIA Dolphin Project / Opac LIFL CNRS
40 avenue Halley, 59650 Villeneuve d’Ascq Cedex FRANCE.

The-Van.Luong@inria.fr, [Nouredine.Melab, El-Ghazali.Talbi]@lifl.fr

Abstract. Optimization problems are more and more complex and their
resource requirements are ever increasing. Although metaheuristics allow
to significantly reduce the computational complexity of the search pro-
cess, the latter remains time-consuming for many problems in diverse
domains of application. As a result, the use of GPU has been recently
revealed as an efficient way to speed up the search. In this paper, we
provide a new methodology to design and implement efficiently local
search methods on GPU. The work has been experimented on the per-
muted perceptron problem and the experimental results show that the
approach is very efficient especially for large problem instances.

Key words: GPU-based metaheuristics, local search algorithms on GPU.

1 Introduction

Nowadays, optimization problems become increasingly large and complex, forc-
ing the use of parallel computing for their efficient and effective resolution. In-
deed, although near-optimal algorithms such as local search (LS) methods allow
to reduce the temporal complexity of their resolution, they are unsatisfactory
to tackle large problems. Therefore, parallel computing has recently undergone
a significant evolution with the emergence of new high performance computing
environments including accelerators such as GPUs.

Recently, the use of graphics processors has been extended to general applica-
tion domains such as computational science [1]. Indeed, GPUs are very efficient
at manipulating computer graphics, and their parallel structure makes them
more efficient than general-purpose CPUs for a range of complex algorithms.
This is why it would be very interesting to exploit this huge capacity of comput-
ing to implement parallel metaheuristics. However, there only exists few research
works related to evolutionary algorithms on GPU [2–4]. Indeed, the design and
implementation of parallel optimization methods raise several issues related to
the characteristics of these methods and those of the new hardware execution
environments at the same time.



Several scientific challenges mainly related to the hierarchical memory man-
agement on GPU have to be considered: the efficient distribution of data pro-
cessing between CPU and GPU, the optimization of data transfer between the
different memories, the capacity constraints of these memories, etc. The main
objective of this paper is to deal with such issues for the re-design of parallel
LS models to allow solving of large scale optimization problems on GPU archi-
tectures. We propose a new general methodology for building efficient parallel
LS methods on GPU. This methodology is based on a three-level decomposition
of the GPU hierarchy allowing a clear separation between generic and problem-
dependent LS features.

To be validated the work has been experimented on the permuted perceptron
problem (PPP) introduced by Pointcheval [5]. The problem is a cryptographic
identification scheme based on NP-complete problems, which seems to be well
suited for resource constrained devices such as smart cards. The proposed work
has been experimented using three GPU configurations with different perfor-
mance capabilities in terms of threads that can be created simultaneously.

The remainder of the paper is organized as follows: In Section 2, the char-
acteristics of the GPU architecture are described according to the three-level
decomposition. Section 3 presents generic concepts for designing parallel LS
methods on GPU (high-level). In Section 4, efficient mappings between state-of-
the-art LS structures and NVIDIA CUDA model are performed (intermediate-
level). A depth look on memory management in CUDA adapted to LS heuristics
is depicted in Section 5 (low-level). Section 6 reports the performance results ob-
tained for the PPP mentioned above. Finally, a discussion and some conclusions
of this work are drawn in Section 7.

2 Graphics Processing Units and Three-level

Decomposition

Driven by the demand for high-definition 3D graphics, GPUs have evolved into a
highly parallel, multithreaded and manycore environment. Since more transistors
are devoted to data processing rather than data caching and flow control, GPU
is specialized for compute-intensive and highly parallel computation. A complete
review of GPU architecture can be found in [6].

The adaptation of LS algorithms on GPU requires to take into account at the
same time the characteristics and underlined issues of the GPU architecture and
the LS parallel models. In this section, we propose a three-level decomposition
of the GPU adapted to the popular parallel iteration-level model [7] (generation
and evaluation of the neighborhood in parallel) allowing a clear separation of the
GPU memory hierarchical management concepts (Fig. 1). The different aspects
of the three-level decomposition model will be discussed throughout the next
sections.

In the high-level layer, task distribution is clearly defined: the CPU manages
the whole sequential LS process and the GPU is dedicated to the parallel eval-
uation of solutions at the other levels. The intermediate-level layer focuses on



Fig. 1. Three-level decomposition

the generation and partitioning of the LS neighborhood on GPU. Afterwards,
GPU memory management of the evaluation function computation is done at
low-level.

2.1 High-level Layer: General GPU Model

This level describes common GPU concepts which are language-independent. In
general-purpose computing on graphics processing units, the CPU is considered
as a host and the GPU is used as a device coprocessor. This way, each GPU
has its own memory and processing elements that are separate from the host
computer. Data must be transferred between the memory space of the host and
the memory of GPU during the execution of programs. In LS algorithms, the
types of data which are manipulated are the data inputs of the tackled problem
and the solution representation.

Each processor device on GPU supports the single program multiple data
(SPMD) model, i.e. multiple autonomous processors simultaneously execute the
same program on different data. For achieving this, the concept of kernel is
defined. The kernel is a function callable from the host and executed on the
specified device simultaneously by several processors in parallel. Regarding the
iteration-level parallel model, generation and evaluation of neighboring candi-
dates are done in parallel. Therefore, a kernel on GPU can be associated with
these two steps.



Memory transfer from the CPU to the device memory is a synchronous op-
eration which is time consuming. In the case of LS methods, memory copying
operations from CPU to GPU are essentially the solution duplication operations
which generate the neighborhood. Afterwards, the kernel representing the gener-
ation and evaluation of the neighborhood is processed at both intermediate-level
and low-level. Regarding transfers from GPU to CPU, the results of the eval-
uation function (fitnesses) of each candidate solution of the neighborhood are
stored in an array structure.

2.2 Intermediate-level Layer: CUDA Threading Model

The intermediate-level layer focuses on the neighborhood generation on GPU.
This kernel handling is dependent of the general-purpose language. CUDA was
chosen because the toolkit introduces a model of threads which provides an
easy abstraction for SIMD architecture [8]. A thread on GPU can be seen as
an element of the data to be processed and changing the context between two
threads is not a costly operation. Therefore, GPU threads management is clearly
identified as the main task of the generation step of LS neighborhood.

Regarding their spatial organization, threads are organized within so called
thread blocks. A kernel is executed by multiple equally threaded blocks. Blocks
can be organized into a one-dimensional or two-dimensional grid of thread blocks,
and threads inside a block are grouped in a similar way. All the threads belonging
to the same thread block will be assigned as a group to a single multiprocessor.
Thus, a unique id can be deduced for each thread to perform computation on
different data. Regarding LS algorithms, a move which represents a particular
neighbor candidate solution can also be associated with a unique id. However,
according to the solution representation of the problem, finding a corresponding
id for each move is not straightforward.

2.3 Low-level Layer: Kernel Memory Management

The low-level layer focuses on the specific part of the evaluation function. As
stated before, each GPU thread executes the same kernel i.e. each candidate
solution of the neighborhood executes the same evaluation function. From a
hardware point of view, since multiprocessors are used according to the SPMD
model, threads share the same code and have access to different memory areas.

Communication between the CPU host and its device is done through the
global memory. For LS algorithms, more exactly for the evaluation function, the
global memory stores the data input of problems and their solution representa-
tion. Since this memory is not cached and its access is slow, one needs to minimize
accesses to global memory (read/write operations). Graphics cards provide also
read-only texture memory to accelerate operations such as 2D mapping. In the
case of LS algorithms, binding texture on global memory can provide an alterna-
tive optimization. Registers among streaming processors are partitioned among
the threads running on it, they constitute fast access memory. In the evaluation
function kernel code, each declared variable is automatically put into registers.



Local memory is a memory abstraction and is not an actual hardware compo-
nent. Complex structures such as declared array will reside in local memory.

The memory management in the low-level layer is problem-specific. A clear
understanding of the characteristics described above is required to provide an
efficient implementation of the evaluation function. According to the SPMD
model, the same code is executed by all the neighbors in parallel and the resulting
fitnesses must be stored into the fitnesses structure (global memory) previously
mentioned.

3 Design of Parallel Local Search Algorithms on GPU

In this section, the focus is on the re-design of the iteration-level parallel model.
This model fits well with the high-level layer since parallel LS concepts are
generic. Designing parallel LS model is a great challenge as nowadays there is
no generic GPU-based LS algorithms to the best of our knowledge.

3.1 A General Model for LS Algorithms

According to the SPMD model, multiple autonomous processors simultaneously
execute the same program at independent points. Therefore, the mapping at
the high-level layer between the LS iteration-level parallel model and the GPU
model becomes quiet natural.

First, the CPU sends the number of expected running threads to the GPU,
then candidate neighbors are generated and evaluated on GPU (at intermediate-
level and low-level), and finally newly evaluated solutions are returned back to
the host. This model can be seen as a cooperative model where the GPU is
used as a coprocessor in a synchronous manner. The resource-consuming part
i.e. the generation and evaluation kernel, is calculated by the GPU and the rest
is handled by the CPU.

3.2 The Proposed GPU-based Algorithm

Adapting traditional LS methods to GPU is not a straightforward task because
hierarchical memory management on GPU has to be handled. We propose (see
algorithm 1) a methodology to adapt LS methods on GPU in a generic way.

First of all, at initialization stage, memory allocations on GPU are made: data
inputs and candidate solution of the problem must be allocated (lines 4 and 5).
Since GPUs require massive computations with predictable memory accesses,
a structure has to be allocated for storing all the neighborhood fitnesses at
different addresses (line 6). Additional solution structures which are problem-
dependent can also be allocated (line 7). Second, all the allocated structures
have to be copied on the GPU (lines 8 to 10). Since problem data inputs are a
read-only structure, their associated memory is copied only once during all the
execution. Third, comes the parallel iteration-level, in which each neighboring
solution is generated (intermediate-level), evaluated (low-level) and copied into



Algorithm 1 Local Search Template on GPU

1: Choose an initial solution
2: Evaluate the solution
3: Specific LS initializations
4: Allocate problem data inputs on GPU device memory
5: Allocate a solution on GPU device memory
6: Allocate a neighborhood fitnesses structure on GPU device memory
7: Allocate additional solution structures on GPU device memory
8: Copy problem data inputs on GPU device memory
9: Copy the solution on GPU device memory
10: Copy additional solution structures on GPU device memory
11: repeat

12: for each generated neighbor in parallel on GPU do

13: Incremental evaluation of the candidate solution
14: Insert the resulting fitness into the neighborhood fitnesses structure
15: end for

16: Copy neighborhood fitnesses structure on CPU host memory
17: Specific LS solution selection strategy on the neighborhood fitnesses structure
18: Specific LS post-treatment
19: Copy the chosen solution on GPU device memory
20: Copy additional solution structures on GPU device memory
21: until a stopping criterion satisfied

the neighborhood fitnesses structure (from lines 12 to 15). Fourth, since the
order in which candidate neighbors are evaluated is undefined, the neighborhood
fitnesses structure has to be copied to the host CPU (line 16). Then a specific LS
solution selection strategy is applied to this structure (line 17) on CPU. Finally,
after a new candidate has been selected, this latter and its additional structures
are copied to the GPU (lines 19 and 20). The process is repeated until a stopping
criterion is satisfied.

4 Efficient Mappings of Local Search Structures on GPU

The neighborhood structures play a crucial role in the performance of LS meth-
ods and are problem-dependent. In this section, a focus is made on the neigh-
borhood generation in the intermediate-level layer.

The challenging issue of this level is to find efficient mappings between a
thread id and a particular neighbor. Indeed, on the one hand, the thread id is
represented by a single index. On the other hand, the move representation of a
neighbor varies according to the neighborhood. In the following, we provide a
methodology to deal with different structures of the literature.

4.1 Binary Representation

In binary representation, a solution is coded as a vector of bits. The neighborhood
representation for binary problems is based on the Hamming distance where a



given solution is obtained by flipping one bit of the solution (for a Hamming
distance of one).

A mapping between LS neighborhood encoding and GPU threads is quiet
trivial. Indeed, on the one hand, for a binary vector of size n, the size of the
neighborhood is exactly n. On the other hand, threads are provided with a
unique id. That way, the kernel associated to the generation and evaluation
steps is launched with n threads (each neighbor is associated to a single thread),
and the size of the neighborhood fitnesses structure allocated on GPU is n. As
a result, a IN → IN mapping is straightforward.

4.2 Discrete Vector Representation

Discrete vector representation is an extension of binary encoding using a given
alphabet Σ. In this representation, each variable takes its value over the al-
phabet Σ. Assume that the cardinality of the alphabet Σ is k, the size of the
neighborhood is (k − 1)× n for a discrete vector of size n.

Let id be the identity of the thread corresponding to a given candidate so-
lution of the neighborhood. Compared to the initial solution which allowed to
generate the neighborhood, id/(k− 1) represents the position which differs from
the initial solution and id%(k− 1) is the available value from the ordered alpha-
bet Σ (both using zero-index based numbering).

As a consequence, a IN → IN mapping is possible. (k−1)×n threads execute
the generation and evaluation kernel, and a neighborhood fitnesses structure of
size (k − 1)× n has to be provided.

4.3 Permutation Representation

Building a neighborhood by pairwise exchange operations is a standard way for
permutation problems. For a permutation of size n, the size of the neighborhood

is n×(n−1)
2 .

Unlike the previous representations, for permutation encoding a mapping
between a neighbor and a GPU thread is not straightforward. Indeed, on the one
hand, a neighbor is composed by two element indexes (a swap in a permutation).
On the other hand, threads are identified by a unique id. As a result, a IN →
IN × IN mapping has to be considered to transform one index into two ones. In
a similar way, a IN× IN → IN mapping is required to transform two indexes into
one.

Proposition 1. Two-to-one index transformation

Given i and j the indexes of two elements to be exchanged in the permutation

representation, the corresponding index f(i, j) in the neighborhood representation

is equal to i× (n− 1) + (j − 1)− i×(i+1)
2 , where n is the permutation size.

Proposition 2. One-to-two index transformation

Given f(i, j) the index of the element in the neighborhood representation, the

corresponding index i is equal to n − 2 − b
√

8×(m−f(i,j)−1)+1−1

2 c and j is equal



to f(i, j)− i× (n− 1) + i×(i+1)
2 + 1 in the permutation representation, where n

is the permutation size and m the neighborhood size.

The proofs of these two index transformations can be found in [9]. The gen-

eration and evaluation kernel is executed by n×(n−1)
2 threads, and the size of

the neighborhood fitnesses structure is n×(n−1)
2 . Notice that for binary problem

encodings, the mapping of a neighborhood based on a Hamming distance of two
can be done in a similar manner.

5 Memory Management of Local Search Algorithms on

GPU

Task repartition between CPU and GPU and efficient thread mappings in par-
allel LS heuristics have been proposed on both high-level and intermediate-level
layers. In this section, the focus is on the memory management in the low-level
layer. Understanding the GPU memory organization and issues is useful to pro-
vide an efficient implementation of parallel LS heuristics.

5.1 Memory Coalescing Issues

In CUDA, each block of threads is split into SIMD groups of threads called warps.
At any clock cycle, each processor of the multiprocessor selects a half-warp (16
threads) that is ready to execute the same instruction on different data. Global
memory is conceptually organized into a sequence of 128-byte segments. The
number of memory transactions performed for a half-warp will be the number
of segments having the same addresses than those used by that half-warp. Fig.
2 illustrates an example of the low-level layer for a simple vector addition.

Fig. 2. An example of kernel execution for vector addition



For more efficiency, global memory accesses must be coalesced, which means
that a memory request performed by consecutive threads in a half-warp is asso-
ciated with precisely one segment. The requirement is that threads of the same
warp must read global memory in an ordered pattern. If per-thread memory ac-
cesses for a single half-warp constitute a contiguous range of addresses, accesses
will be coalesced into a single memory transaction. In the example of vector ad-
dition, memory accesses to the vectors a and b are fully coalesced, since threads
with consecutive thread indices access contiguous words.

Otherwise, accessing scattered locations results in memory divergence and
requires the processor to perform one memory transaction per thread. The per-
formance penalty for non-coalesced memory accesses varies according to the size
of the data structure. Regarding LS evaluation kernels, coalescing is difficult
when global memory access has a data-dependent unstructured pattern. As a
result, non-coalesced memory accesses imply many memory transactions and it
can lead to a significant performance decrease for LS methods.

Notice that in the latest cards (200-series), due to the relaxation of the coa-
lescing rules, applications developed in CUDA get better global memory perfor-
mance.

5.2 Texture Memory

Optimizing the performance of CUDA applications often involves optimizing
data accesses which includes the appropriate use of the various CUDA memory
spaces. The use of texture memory is a solution for reducing memory transactions
due to non-coalesced accesses. Texture memory provides a surprising aggregation
of capabilities including the ability to cache global memory. Indeed, each texture
unit has some internal memory that buffers data from global memory. Therefore,
texture memory can be seen as a relaxed mechanism for the thread processors
to access global memory because the coalescing requirements do not apply to
texture memory accesses. The use of texture memory is well adapted for LS
algorithms for the following reasons:

• Data accesses are frequent in the computation of LS evaluation methods.
Then, using texture memory can provide a high performance improvement
by reducing the number of memory transactions.

• Texture memory is a read-only memory i.e. no writing operations can be
performed on it. This memory is adapted to LS algorithms since the problem
data and the solution representation are also read-only values.

• Minimizing the number of times that data goes through cache can increase
the efficiency of algorithms. In most of optimization problems, problem in-
puts do not often require a large amount of allocated space memory. As
a consequence, these structures can take advantage of the 8KB cache per
multiprocessor of texture units.

• Cached texture data is laid out to give best performance for 1D/2D access
patterns. The best performance will be achieved when the threads of a warp
read locations that are close together from a spatial locality perspective.



Since optimization problem inputs are generally 2D matrices or 1D solution
vectors, LS structures can be bound to texture memory.

6 Application to the Permuted Perceptron Problem

An ε-vector is a vector with all entries being either +1 or -1. Similarly an ε-
matrix is a matrix in which all entries are either +1 or -1. The PPP is defined
as follows according to [5]:

Definition 1. Given an ε-matrix A of size m × n and a multiset S of non-

negative integers of size m, find an ε-vector V of size n such that {{(AV )j/j =
{1, . . . ,m}}} = S.

As the iteration-level parallel model does not change the semantics of the
sequential algorithm, the effectiveness in terms of quality of solutions is not
addressed here. Only execution times and acceleration factors are reported. The
objective is to evaluate the impact of a GPU-based implementation in terms of
efficiency.

A generic tabu search has been implemented on GPU using a binary encod-
ing. The adaptation to GPU of the tabu search is straightforward according to
the proposed GPU algorithm in the high-level layer (see Algorithm 1 in Section
3.2). First, the specific LS pre-treatment on line 3 is the tabu list initialization.
Second, the replacement strategy (line 17) is performed by the best admissi-
ble neighbor according to its availability in the tabu list. Finally, the specific
post-treatment (line 18) represents the tabu list update.

Experiments have been implemented on top of three different configurations.
The three GPU cards have a different number of multiprocessors (respectively 4,
16 and 30), which determines the number of active threads being executed. The
number of global iterations of the tabu search is 10000 and 10 runs were per-
formed for each instance. Time measurement is reported in seconds, and for both
GPU implementation and GPU version using texture memory (GPUtex), accel-
eration factors compared to a standalone CPU are designated using subindexes.
Standard deviation (not represented here) is close to zero.

Experimental results for a Hamming neighborhood of distance one are de-
picted in Table 1 (m-n instances). From m = 601 and n = 617, the standard
GPU version starts to provide better results (from ×1.1 to ×2.2). Regarding the
GPU version using texture memory, from m = 301 and n = 317, it starts to be
faster than CPU version for both configurations (from ×1.4 to ×1.6). The speed-
up grows with the problem size increase (up to ×8 for m = 1301, n = 1317).
The acceleration factor for this implementation is significant but not impressive.
This can be explained by the fact that since the neighborhood is relatively small
(n threads), the number of threads per block is not enough to fully cover the
memory access latency.

To validate this point, a neighborhood based on a Hamming distance of
two on top of GPU has been implemented. Incremental evaluation is performed

by a larger number of threads (n×(n−1)
2 threads). The obtained results from



Table 1. Time measurements for the 1-Hamming distance neighborhood

Instance

Core 2X 2Ghz Core 4X 2.4Ghz Xeon 8X 3Ghz

8600M GT 8800 GTX GTX 280

4 multi-proc 16 multi-proc 30 multi-proc

GPU GPUTex GPU GPUTex GPU GPUTex

101-117 8.9×0.4 6.6×0.5 4.8×0.5 4.3×0.6 4.9×0.4 4.2×0.5

301-317 34×0.7 18×1.4 16×1.1 13×1.5 12×1.4 11×1.6

601-617 169×1.1 98×1.9 96×1.4 77×1.7 47×2.2 43×2.4

801-817 248×1.5 122×3.1 125×2.1 100×2.7 55×3.6 50×4.0

1001-1017 348×1.7 146×4.1 145×3.0 107×4.0 63×5.3 58×5.8

1301-1317 573×2.1 288×4.1 228×3.4 180×4.3 93×7.4 85×8.0

experiments are reported in Table 2. Due to misaligned accesses to global mem-
ories (ε-matrix and ε-vector) of this new neighborhood, non-coalescing memory
reduces the performance of the GPU implementation on G80 series. Binding
texture on global memory allows to overcome the problem. Indeed, for the first
instance (m = 101, n = 117), acceleration factors of the texture version are
already important (from ×4 to ×19). As long as the instance size increases, the
acceleration factor grows accordingly (from ×4 to ×8.1 for the first configura-
tion). Since a large number of multiprocessors are available on both 8800 and
GTX 280, efficient speed-ups can be obtained (from ×13 to ×42.6). As a con-
sequence, parallelization on top of GPU provides an efficient way for handling
large neighborhoods.

Table 2. Time measurements for the 2-Hamming distance neighborhood

Instance

Core 2X 2Ghz Core 4X 2.4Ghz Xeon 8X 3Ghz

8600M GT 8800 GTX GTX 280

4 multi-proc 16 multi-proc 30 multi-proc

GPU GPUTex GPU GPUTex GPU GPUTex

101-117 13×0.7 2.5×4.0 4.1×1.8 0.6×13.0 0.6×12.8 0.4×19.0

301-317 251×0.9 58×4.9 61×2.8 10×16.0 9.5×17.8 6.2×27.4

601-617 1881×1.7 512×6.3 355×7.1 88×28.5 67×30.5 51×40.2

801-817 4396×2.0 1245×6.9 815×8.5 210×32.9 152×35.4 128×42.2

1001-1017 8474×2.1 2502×7.0 1469×9.8 416×34.7 291×38.1 262×42.2

1301-1317 17910×2.2 4903×8.1 3050×10.9 912×36.4 647×38.7 587×42.6

7 Discussion and Conclusion

High-performance computing based on the use of GPUs is recently revealed to
be a good way to accelerate computational applications. However, the exploita-
tion of parallel models is not trivial and many issues related to GPU memory



hierarchical management of this architecture have to be considered. To the best
of our knowledge, GPU-based parallel LS approaches have never been deeply
investigated.

In this paper, efficient mapping of the iteration-level parallel model on the
GPU has been proposed according to a three-level decomposition of the GPU
hierarchy. In the high-level layer, the CPU manages the whole LS process and
let the GPU be used as a coprocessor dedicated to intensive calculations. Ef-
ficient mappings between neighborhood candidate solutions and GPU threads
were made in the intermediate-level layer. Memory management is handled at
the low-level layer. Code optimization based on texture memory is applied to
the evaluation function kernel. The re-design of the parallel LS iteration-level
model on GPU fits well for deterministic LS methods such as tabu search and
iterated local search. Indeed, for problem instances with a large neighborhood
set, the reported speed-ups provide promising results on the PPP (up to ×40
with texture memory) compared to traditional CPUs. A next perspective is to
apply our approach on other problems using different representations.

The approach presented in this paper might be easily extended to the vari-
able neighborhood search heuristic, in which the same parallel exploration is
applied for various neighborhoods. However, few other LS algorithms only par-
tially explore neighborhoods and take the first improving local neighbor that is
detected. Applied to LS algorithm such as simulated annealing, this model needs
to be re-thought.

References

1. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Skadron, K.: A performance
study of general-purpose applications on graphics processors using cuda. J. Parallel
Distributed Computing 68(10) (2008) 1370–1380

2. Chitty, D.M.: A data parallel approach to genetic programming using programmable
graphics hardware. In: GECCO. (2007) 1566–1573

3. Fok, K.L., Wong, T.T., Wong, M.L.: Evolutionary computing on consumer graphics
hardware. IEEE Intelligent Systems 22(2) (2007) 69–78

4. Banzhaf, W., Harding, S.: Accelerating evolutionary computation with graphics
processing units. In: GECCO (Companion). (2009) 3237–3286

5. Pointcheval, D.: A new identification scheme based on the perceptrons problem. In:
EUROCRYPT. (1995) 319–328

6. Ryoo, S., Rodrigues, C.I., Stone, S.S., Stratton, J.A., Ueng, S.Z., Baghsorkhi, S.S.,
mei W. Hwu, W.: Program optimization carving for gpu computing. J. Parallel
Distribributed Computing 68(10) (2008) 1389–1401

7. Talbi, E.G.: Metaheuristics: From design to implementation. Wiley (2009)
8. NVIDIA: CUDA Programming Guide Version 2.1. (2009)
9. Luong, T.V., Melab, N., Talbi, E.G.: Parallel Local Search on GPU. Research

Report RR-6915, INRIA (2009)


