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Abstract. Multiobjective local search algorithms are efficient methods
to solve complex problems in science and industry. Even if these heuris-
tics allow to significantly reduce the computational time of the solution
search space exploration, this latter cost remains exorbitant when very
large problem instances are to be solved. As a result, the use of GPU
computing has been recently revealed as an efficient way to accelerate
the search process. This paper presents a new methodology to design and
implement efficiently GPU-based multiobjective local search algorithms.
The experimental results show that the approach is promising especially
for large problem instances.

1 Introduction

Real-world optimization problems are often complex and NP-hard, their mod-
eling is continuously evolving in terms of constraints and objectives, and their
resolution is time-consuming. Although near-optimal algorithms such as meta-
heuristics allow to reduce the temporal complexity of their resolution, they are
unsatisfactory to tackle large problems.

Nowadays, GPU computing is recognized as a powerful way to achieve high-
performance on long-running scientific applications [1]. Designing multiobjective
local search (MLS) algorithms for solving real-world optimization problems are
good challenges for GPU computing. However, only few research works related
to evolutionary algorithms on GPU for monoobjective optimization exist [2–5].
Regarding existing works on LS algorithms on GPU, to the best of our knowl-
edge, only coarse-grained implementations are provided in the context of the
multi-start tabu search for monoobjective optimization [6, 7].

Indeed, a finer-grained model such that the parallel exploration of the neigh-
borhood on GPU is not immediate and several challenges persist and are partic-
ular related to the characteristics and underlined issues of the GPU architecture
and the MLS algorithms. The major issues are the efficient distribution of data
processing between CPU and GPU, the thread synchronization, the optimiza-
tion of data transfer between the different memories, the capacity constraints of
these memories, etc.

The main objective of this paper is to deal with such issues for the re-design
of parallel MLS algorithms to allow solving of large scale optimization prob-
lems on GPU architectures. In this paper, we contribute with the first results of



multiobjective local search algorithms on GPU. More exactly, we propose some
new GPU-based approaches for building the parallel exploration of the neigh-
borhood on GPU in a multiobjective context. These approaches are based on a
decomposition of the GPU hierarchy allowing a clear separation between generic
and problem-dependent LS features. Several challenges are dealt with: (1) the
distribution of the search process among the CPU and the GPU minimizing the
data transfer between them; (2) finding the efficient mapping of the hierarchical
LS parallel models on the hierarchical GPU; (3) using efficiently the coalescing
and texture memory in the context of MLS algorithms.

To validate the approaches presented in this paper, the flowshop scheduling
problem (FSP) [8] have been considered and implemented on GPU.

The remainder of the paper is organized as follows: Section 2 highlights the
principles of MLS methods and their parallel models. In Section 3, for a better
understanding of the difficulties of using the GPU architecture, its characteristics
are described according to a decomposition of the GPU hierarchy. Section 4
presents generic concepts for designing parallel MLS methods on GPU. In Section
5, on the one hand, efficient mappings between state-of-the-art LS structures and
GPU threads model are performed. On the other hand, a depth look on the GPU
memory management adapted to MLS heuristics is depicted. Section 6 reports
the performance results obtained for the implemented problem mentioned above.
Finally, a discussion and some conclusions of this work are drawn in Section 7.

2 Parallel Multiobjective Local Search Algorithms

2.1 Multiobjective Local Search algorithms

The existing LS methods that intend to find an approximation of the Pareto
optimal set of a multiobjective optimization problem fall into two categories:
scalar approaches and Pareto approaches.

Approaches belonging to the first class contains the approaches that trans-
form a multiobjective problem into a monoobjective one or a set of such prob-
lems. Many proposed algorithms in the literature are scalar approaches. Among
these methods one can find the aggregation methods, the weighted metrics, the
ε-constraint methods . . . A review of these methods is given in [9].

The second class consists in defining the acceptance of the LS according to
a dominance relationship such as the Pareto dominance. The idea of Pareto
approaches is to maintain an archive of non-dominated solutions, to explore the
neighborhood of the solutions contained in the archive and to update the archive
with the visited solutions. A complete description of the different algorithms can
be found in [10].

2.2 Parallel Models of Local Search Algorithms

For non-trivial problems, executing the iterative process of a MLS on large neigh-
borhoods requires a large amount of computational resources. In general, evalu-
ating a fitness function for each solution is frequently the most costly operation



of the MLS. Consequently, a variety of algorithmic issues are being studied to
design efficient MLS heuristics. Parallelism arises naturally when dealing with a
neighborhood, since each of the solutions belonging to it is an independent unit.
Parallel design and implementation of metaheuristics have been studied as well
on different architectures [11, 12].

Basically, three major parallel models for LS heuristics can be distinguished:
solution-level, iteration-level and algorithmic-level.

• Solution-level Parallel Model. A focus is made on the parallel evaluation of
a single solution. That model is particularly interesting when the evaluation
function can be itself parallelized as it is CPU time-consuming and/or IO
intensive. In that case, the function can be viewed as an aggregation of a
given number of partial functions.

• Iteration-level Parallel Model. This model is a low-level Master-Workermodel
that does not alter the behavior of the heuristic. Exploration and evaluation
of the neighborhood are made in parallel. At the beginning of each iteration,
the master duplicates the current solution between parallel nodes. Each of
them manages some candidates and the results are returned back to the
master.

• Algorithmic-level Parallel Model. Several LS algorithms are simultaneously
launched for computing better and robust solutions. They may be heteroge-
neous or homogeneous, independent or cooperative, start from the same or
different solution(s), configured with the same or different parameters.

The solution-level model is problem-dependent and does not present many
generic concepts. In this paper, we focus only on the fine-grained problem-
independent model: the iteration-level. Indeed, unlike the algorithmic-level, the
iteration-level can be seen as an acceleration model which does not change the
semantics of the algorithm.

3 GPU Computing for Metaheuristics

Driven by the demand for high-definition 3D graphics on personal computers,
GPUs have evolved into a highly parallel, multithreaded and many-core environ-
ment. Indeed, this architecture provides tremendous computational horsepower
and very high memory bandwidth compared to traditional CPUs. Since more
transistors are devoted to data processing rather than data caching and flow con-
trol, GPU is specialized for compute-intensive and highly parallel computation.
A complete review of GPU architectures can be found in [1].

The adaptation of MLS algorithms on GPU requires to take into account at
the same time the characteristics and underlined issues of the GPU architecture
and the LS parallel models. Mapping existing parallel models to the GPU in
an efficient way involves a clear understanding of GPU characteristics. In this
section, we propose a decomposition of the GPU adapted to the parallel iteration-
level model allowing to identify the different challenges that must be dealt with.



3.1 General GPU Model

In general-purpose computing on graphics processing units, the CPU is consid-
ered as a host and the GPU is used as a device coprocessor. This way, each GPU
has its own memory and processing elements that are separate from the host
computer. Data must be transferred between the memory space of the host and
the memory of GPU during the execution of programs.

Each processor device on GPU supports the single program multiple data
(SPMD) model, i.e. multiple autonomous processors simultaneously execute the
same program on different data. For achieving this, the concept of kernel is
defined. The kernel is a function callable from the host and executed on the
specified device simultaneously by several processors in parallel.

Regarding the iteration-level parallel model, since the evaluation of neighbor-
ing candidates is often the most time-consuming part of MLSs, it must be done in
parallel on GPU. Therefore, according the the Master-Worker paradigm, a ker-
nel is associated with the evaluation of the neighborhood and the CPU controls
the whole sequential part of the LS process.

However, memory transfer from the CPU to the device memory is a syn-
chronous operation which is time consuming. Indeed, bus bandwidth and latency
between the CPU and the GPU can significantly decrease the performance of
the search. As a result, one of the challenges is to optimize the data transfer
from CPU to GPU.

3.2 Parallelism Control: GPU threads model

The kernel handling is dependent of the general-purpose language. For instance,
CUDA or OpenCL are parallel computing environments which provide an ap-
plication programming interface for GPU architectures [13] [14]. Indeed, these
toolkits introduce a model of threads which provides an easy abstraction for
SIMD architecture. The concept of a GPU thread does not have exactly the
same meaning as a CPU thread. Compared to CPU threads, GPU threads are
lightweight. That means that changing the context between two threads is not
a costly operation.

Regarding their spatial organization, threads are organized within so called
thread blocks. A kernel is executed by multiple equally threaded blocks. Blocks
can be organized into a one-dimensional or two-dimensional grid of thread blocks,
and threads inside a block are grouped in a similar way. All the threads belonging
to the same thread block will be assigned as a group to a single multiprocessor.
Thereby, a unique id can be deduced for each thread to perform computation
on different data.

Regarding MLS algorithms, a move which represents a particular neighbor
candidate solution can also be associated with a unique id. However, according
to the solution representation of the problem, finding a corresponding id for each
move is not straightforward. As a consequence, another challenging issue is to
find an efficient mapping between GPU threads and LS moves.



3.3 Memory Management: Kernel Management

From a hardware point of view, graphics cards consist of streaming multipro-
cessors, each with processing units, registers and on-chip memory. Since multi-
processors are used according to the SPMD model, threads share the same code
and have access to different memory areas.

Communication between the CPU host and its device is done through the
global memory. Since this memory is not cached and its access is slow, one needs
to minimize accesses to global memory (read/write operations) and reuse data
within the local multiprocessor memories. Graphics cards provide also read-only
texture memory to accelerate operations such as 2D or 3D mapping. Constant
memory is read only from kernels and is hardware optimized for the case where
all threads read the same location. Shared memory is a fast memory located on
the multiprocessors and shared by threads of each thread block. This memory
area provides a way for threads to communicate within the same block. Registers
among streaming processors are private to an individual thread, they constitute
fast access memory.

The memory management on GPU is problem-specific. A clear understanding
of the characteristics described above is required to provide an efficient imple-
mentation of the evaluation function. In other words, a last challenge consists in
finding the association of the different LS structures with the different available
memories to obtain the best performances.

4 Design of Local Search Algorithms on GPU

In this section, the focus is on the re-design of the iteration-level parallel model.
Designing parallel LS model is a great challenge as nowadays there is no generic
GPU-based MLS algorithms to the best of our knowledge.

4.1 A General Model for LS Algorithms

According to the SPMD model, multiple autonomous processors simultaneously
execute the same program at independent points. Therefore, the mapping be-
tween the LS iteration-level parallel model and the GPU model becomes quiet
natural. First, the CPU sends the number of expected running threads to the
GPU, then candidate neighbors are evaluated on GPU, and finally newly eval-
uated solutions are returned back to the host. This model can be seen as a
cooperative model where the GPU is used as a coprocessor in a synchronous
manner. The resource-consuming part i.e. the generation and evaluation kernel,
is calculated by the GPU and the rest is handled by the CPU.

4.2 Generation of the Neighborhood

As quoted above, CPU/GPU communication might be a major bottleneck in the
performance of GPU applications. One of the major challenges is to optimize



the data transfer between the CPU and the GPU. In other words, one of the
issues which remains is to say where the neighborhood must be generated. For
doing that, basically there are two different approaches:

• Generation of the neighborhood on CPU and its evaluation on GPU. At
each iteration of the LS process, the neighborhood is generated on the CPU
side and its associated structure storing the solutions is copied on GPU.
This approach is the most straightforward since the mapping between a
thread and a neighbor is direct. It has been widely used in the context of
evolutionary algorithms on GPU [2–5].

• Generation of the neighborhood and its evaluation on GPU. In the second
approach, the neighborhood is generated on GPU. This generation is per-
formed in a dynamic manner which implies that no explicit structure needs
to be allocated. For doing that, a neighbor is considered as a slight variation
of the candidate solution which generates the neighborhood. Thereby, only
the representation of this candidate solution must be copied from the CPU
to the GPU. The advantage of such approach is to drastically reduce the data
transfers since the whole neighborhood does not have to be copied. However,
as previously said, finding a mapping between a thread and a neighbor might
be challenging.

Even if the first approach is the most natural one, applying it on MLS on
GPU will naturally result in a lot of data transfers for large neighborhoods,
leading to a great loss of performance. That is the reason why, in the rest of the
paper we will consider the second approach. An analysis of the data transfers for
the two different approaches might be done but it is not the scope of this paper.

4.3 The Proposed GPU-based Algorithm

Adapting traditional MLS methods to GPU is not a straightforward task because
the hierarchical memory management on GPU has to be handled. We propose
(see algorithm 1) a methodology to adapt MLS methods on GPU in a generic
way. The given template is applicable to most of scalar and Pareto approaches.

First of all, memory allocations on GPU are made: data inputs and candidate
solution of the problem must be allocated (lines 4 and 5). Since GPUs require
massive computations with predictable memory accesses, a structure has to be
allocated for storing the results of the evaluation of each neighbor (neighbor-
hood fitnesses structure) at different addresses (line 6). In the case of Pareto
approaches, this structure can represent different objective vectors. Additional
solution structures which are problem-dependent can also be allocated to facili-
tate the computation of the evaluation function (line 7). Second, problem data
inputs, initial candidate solution and additional structures associated with this
solution have to be copied on the GPU (lines 8 to 10). It is important to notice
that problem data inputs (e.g. a matrix in TSP) are a read-only structure and
never change during all the execution of LS algorithms. Therefore, their asso-
ciated memory are copied only once during all the execution. Third, comes the



Algorithm 1 Multiobjective Local Search Template on GPU

1: Choose an initial solution
2: Evaluate the solution
3: Specific MLS initializations
4: Allocate problem data inputs on GPU device memory
5: Allocate a solution on GPU device memory
6: Allocate a neighborhood fitnesses structure on GPU device memory
7: Allocate additional solution structures on GPU device memory
8: Copy problem data inputs on GPU device memory
9: Copy the solution on GPU device memory
10: Copy additional solution structures on GPU device memory
11: repeat

12: for each neighbor in parallel on the GPU kernel do
13: Complete or delta evaluation of the candidate solution
14: Insert the resulting fitness into the neighborhood fitnesses structure
15: end for

16: Copy the neighborhood fitnesses structure on CPU host memory
17: Specific MLS solution selection strategy on the neighborhood fitnesses structure
18: Specific MLS post-treatment
19: Copy the chosen solution on GPU device memory
20: Copy additional solution structures on GPU device memory
21: until a stopping criterion satisfied

parallel iteration-level, in which each neighboring solution is generated, evalu-
ated and copied into the neighborhood fitnesses structure (from lines 12 to 15).
Fourth, since the order in which candidate neighbors are evaluated is undefined,
the neighborhood fitnesses structure has to be copied to the host CPU (line 16).
Then a specific LS solution selection strategy is applied to this structure (lines
17 and 18). For instance, the archiving of non-dominated solutions might be
done in the case of Pareto approaches. Finally, after a new candidate has been
selected, this latter and its additional structures are copied to the GPU (lines
19 and 20). The process is repeated until a stopping criterion is satisfied.

5 Neighborhood Generation and Memory Management

5.1 Efficient Mappings of Neighborhood Structures on GPU

Since the generation of the neighborhood is done on GPU to reduce multiple data
transfers, the issue is to say which solution must be handled by which thread. The
answer is dependent of the solution representation. Indeed, the neighborhood
structure strongly depends on the target optimization problem representation.
In the following, we provide a methodology to deal with different structures of
the literature.



Binary Representation: A solution is coded as a vector of bits. The neigh-
borhood representation for binary problems is based on the Hamming distance
where a given solution is obtained by flipping one bit of the solution.

A mapping between LS neighborhood encoding and GPU threads is quiet
trivial. Indeed, on the one hand, for a binary vector of size n, the size of the
neighborhood is exactly n. On the other hand, threads are provided with a
unique id. As a result, a IN → IN mapping is straightforward.

Discrete Vector Representation: This is an extension of binary encoding
using a given alphabet Σ. In this representation, each variable takes its value
over the alphabet Σ. Assume that the cardinality of the alphabet Σ is k, the
size of the neighborhood is (k − 1)× n for a discrete vector of size n.

Let id be the identity of the thread corresponding to a given solution of the
neighborhood. Compared to the initial candidate solution, id/(k− 1) represents
the position which differs from the initial solution and id%(k−1) is the available
value from the ordered alphabet Σ (both using zero-index based numbering). As
a consequence, a IN → IN mapping is possible.

Permutation Representation: Building a neighborhood by pairwise exchange
operations is a standard way for permutation problems. Unlike the previous rep-
resentations, a mapping between a neighbor and a GPU thread is not straight-
forward. Indeed, on the one hand, a neighbor is composed by two element in-
dexes. On the other hand, threads are identified by a unique id. As a result, a
IN → IN×IN mapping has to be considered to transform one index into two ones.
In a similar way, a IN × IN → IN mapping is required to transform two indexes
into one.

Proposition 1. Two-to-one index transformation

Given i and j the indexes of two elements to be exchanged in the permutation

representation, the corresponding index f(i, j) in the neighborhood representation

is equal to i× (n− 1) + (j − 1)− i×(i+1)
2 , where n is the permutation size.

Proposition 2. One-to-two index transformation

Given f(i, j) the index of the element in the neighborhood representation, the

corresponding index i is equal to n − 2 − b
√

8×(m−f(i,j)−1)+1−1

2 c and j is equal

to f(i, j)− i× (n− 1) + i×(i+1)
2 + 1 in the permutation representation, where n

is the permutation size and m the neighborhood size.

The proofs of these two index transformations can be found in [15]. Notice
that for different neighborhood operators such as 2-opt or the insertion operator,
a slight variation of these mappings is easily applicable.

5.2 Memory Management of Local Search Algorithms on GPU

In this section, the focus is on the memory management. Understanding the GPU
memory organization and issues is useful to provide an efficient implementation
of parallel MLS heuristics.



Memory Coalescing Issues: In GPGPU paradigm, each block of threads is
split into SIMD groups of threads called warps. At any clock cycle, each processor
of the multiprocessor selects a half-warp (16 threads) that is ready to execute the
same instruction on different data. Global memory is conceptually organized into
a sequence of 128-byte segments. The number of memory transactions performed
for a half-warp will be the number of segments having the same addresses than
those used by that half-warp.

For more efficiency, global memory accesses must be coalesced, which means
that a memory request performed by consecutive threads in a half-warp is asso-
ciated with precisely one segment. The requirement is that threads of the same
warp must read global memory in an ordered pattern. If per-thread memory
accesses for a single half-warp constitute a contiguous range of addresses, ac-
cesses will be coalesced into a single memory transaction. Otherwise, accessing
scattered locations results in memory divergence and requires the processor to
perform one memory transaction per thread. The performance penalty for non-
coalesced memory accesses varies according to the size of the data structure.

Regarding LS evaluation kernels, coalescing is problem-dependent and diffi-
cult when global memory accesses have a data-dependent unstructured pattern
(especially for permutation representation). As a result, non-coalesced memory
accesses imply many memory transactions and it can lead to a significant per-
formance decrease for LS methods.

Texture Memory: Optimizing the performance of GPU applications often
involves optimizing data accesses which includes the appropriate use of the var-
ious GPU memory spaces. The use of texture memory is a solution for reducing
memory transactions due to non-coalesced accesses. Texture memory provides a
surprising aggregation of capabilities including the ability to cache global mem-
ory. Therefore, texture memory can be seen as a relaxed mechanism for the
thread processors to access global memory because the coalescing requirements
do not apply to texture memory accesses.

The use of texture memory is well adapted for LS algorithms since cached
texture data is laid out to give best performance for 1D/2D access patterns. The
best performance will be achieved when the threads of a warp read locations
that are close together from a spatial locality perspective. Since optimization
problem inputs are generally 2D matrices or 1D solution vectors, LS structures
can be bound to texture memory. The use of textures in place of global memory
accesses is a completely mechanical transformation. Details of texture coordinate
clamping and filtering is given in [13].

Kernel management: Table 1 summarizes the kernel memory management
in accordance with the different LS structures. The inputs of the problem (e.g.
matrix in TSP) and the solution which generates the neighborhood are associ-
ated with the texture memory. The fitnesses structure which stores the obtained
results for each neighbor is declared as global memory. Indeed, since only one
writing operation per thread is performed at each iteration, this structure is



Table 1. Summary of the different memories used in the evaluation function.

Type of memory LS structure

Texture memory data inputs, solution representation

Global memory fitnesses structure

Registers additional variables

Local memory additional structures

not part of intensive calculation. Declared variables for the computation of the
evaluation function of each neighbor are automatically associated with registers
by the compiler. Additional complex structures which are private to a neighbor
will reside in local memory. Regarding the shared memory, since it is local to
each threads block, its use is not addressed in the generic parallel iteration-level
model. However, according to the specific problem, the shared memory might
be used in the solution-level model where the evaluation function is divided into
partial functions.

6 Application to the Flowshop Scheduling Problem

6.1 Configuration

To validate the approaches presented in this paper, the FSP have been imple-
mented on GPU. This problem is one of the most well-known scheduling prob-
lems. The problem can be presented as a set of n jobs J1, J2, . . . , Jn to be
scheduled on m machines. Each job Ji is composed of m consecutive tasks ti1,
. . . , tim, where tij represents the jth task of the job Ji requiring the machine
Mj . To each task tij is associated a processing time pij , and to each job Ji a
release time ri and a due date di (deadline of the job) are given.

For the following experiments, three objectives are used in scheduling tasks
on different machines:

– Makespan (total completion time); max{Ci|i ∈ [1...n]}
– Total tardiness;

∑n

i=1 max(0, Ci − di)
– Number of jobs delayed with regard to their due date di

where sij represents the time at which the task tij is scheduled and Ci = sim +
pim represents the completion time of job Ji.

The problem has been implemented using a permutation representation and
the neighborhood is based on a standard insertion operator. The incremental
evaluation function has a time complexity of O(n) and a space complexity of
O(m × n). The considered instances are the Taillard instances extended by
Liefooghe in a multiobjective context [16].

As the iteration-level parallel model does not change the semantics of the
sequential algorithm, the effectiveness in terms of quality of solutions is not ad-
dressed here. Only average execution times and acceleration factors are reported



in comparison with a single-core CPU. The objective is to evaluate the impact
of a GPU-based implementation in terms of efficiency.

Experiments have been implemented on top of two different configurations.
The GPU desktop cards have a different number of cores (cadenced between 600
and 700 Mhz) which determines the number of active threads being executed.
The number of global iterations of the each LS is set to 10000 which corresponds
to a realistic scenario in accordance with the algorithm convergence. For each
algorithm, a single-core CPU implementation, a CPU-GPU, and a CPU-GPU
version using texture memory (GPUtex) are considered for each configuration.
To build the CPU test code, the g++ compiler has been used with the -O2
optimization flag and SSE instructions. The average time has been measured
in seconds for 50 runs. For an ease of reading, the standard deviation is not
represented in the following tables. Regarding the results, there is no difference
of the quality of the solutions provided by both CPU and GPU.

6.2 Aggregated Tabu search

For the first experiment, a tabu search based on an aggregation (or weighted)
method is used for the generation of Pareto solutions. Thereby, the FSP is trans-
formed into a monoobjective problem by combining the various objective func-
tions into a single one in a linear way. The results are shown in Table 2. The
associated standard deviation values are close to zero.

Table 2. Time measurements for the tabu search.

Instance

Xeon 3Ghz Core i7 3.2Ghz

GTX 285 GTX 480

240 cores 480 cores

CPU GPU GPUTex CPU GPU GPUTex

20-10 1.1 3.9×0.3 3.7×0.4 0.9 1.9×0.5 1.7×0.6

20-20 2.3 7.1×0.3 6.6×0.4 1.9 3.3×0.6 6×0.7

50-10 19.8 9.4×2.1 8.9×2.2 16.5 5.0×3.3 4.3×3.8

50-20 38.0 17.4×2.2 16.3×2.3 31.9 9.1×3.5 7.8×4.1

100-10 170.8 23.6×7.2 20.9×8.2 144.5 12.6×11.5 11.5×12.6

100-20 321.1 44.1×7.3 38.1×8.4 270.7 23.3×11.6 20.9×12.9

200-10 1417.4 159.4×8.9 144.3×9.8 1189.7 81.88×14.5 77.2×15.4

200-20 2644.1 284.4×9.3 263.9×10.0 2220.7 147.8×15.0 139.0×16.0

From the instance 50-10, GPU versions start to give positive accelerations for
both configurations (from ×2.1 to ×3.8). Indeed, the slow speed-ups for small
instances can be explained by the fact that since the neighborhood is relatively
small, the number of threads per block is not enough to fully cover the memory
access latency. As long as the instance size increases, the acceleration factor grows
accordingly. For example, from a larger instance such as 100-10, the provided
speed-ups are much better (from ×7.2 to ×12.6).



For each instance, in a general manner, the use of texture memory allows to
provide additional acceleration. However, constraints of memory alignment in
latest G200 and G400 series are relaxed in comparison with the previous cards
(e.g. G80 and G90 series). As a consequence, programs running on the used cards
get a better global memory performance and the benefits of using the texture
memory are less evident.

Finally, efficient speed-ups are obtained for the instance 200-20. They vary
between ×9.3 and ×16. As a consequence, parallelization on top of GPU provides
an efficient way for handling large neighborhoods.

6.3 Pareto Local Search algorithms

For the next experiments, the PLS-1 (Pareto local search proposed by Paquete
et al [10]) has been considered. At each iteration, PLS-1 selects a non-dominated
solution from the unbounded archive and explores its neighborhood in an ex-
haustive way. The termination condition is done when all the solutions contained
in the archive have been visited. For the experiments, a restart mechanism is
performed while the number of iterations has not reached 10000. The solutions
archiving on CPU is done in a general way where the solution to insert is com-
pared with each of those contained in the archive.

A first algorithm PLS� have been considered where only the dominating
neighbors are added to the archive. The results of the experiments are provided in
Table 3. Kolmogorov-Smirnov statistical tests can be made to check the normal
distribution of the different results.

Table 3. Time measurements for PLS�.

Instance

Xeon 3Ghz Core i7 3.2Ghz

# 6≺ solutions
GTX 285 GTX 480

240 cores 480 cores

CPU GPU GPUTex CPU GPU GPUTex

20-10 1.1 5.3×0.2 3.7×0.3 1.0 1.9×0.5 1.7×0.6 11
20-20 2.5 8.4×0.3 6.6×0.4 1.9 3.4×0.6 3.0×0.6 13
50-10 19.6 10.9×1.8 8.9×2.2 16.6 4.9×3.4 4.3×3.8 19
50-20 39.7 18.9×2.1 16.5×2.4 32.7 9.1×3.6 7.8×4.2 20
100-10 167.0 25.3×6.6 21.2×7.9 139.5 12.8×10.9 11.7×12.0 31
100-20 329.8 45.8×7.2 40.4×8.1 274.9 23.5×11.7 21.1×13.1 34
200-10 1391.5 161.8×8.6 145.1×9.6 1171.5 82.5×14.2 77.9×15.1 61
200-20 2707.8 307.7×8.8 285.9×9.4 2196.3 148.4×14.8 139.7×15.7 71

In comparison with Table 2, similar observations can be made regarding the
performance results where the maximal speed-up reaches the value ×15.7 for
the biggest instance. A look at the average number of non-dominated solutions
obtained by the algorithm shows that this number is rather low whatever the



instance size. Therefore, this may explained why the performance results of the
Pareto algorithm are similar to the aggregated tabu search. To emphasize this
point, a second algorithm PLS 6≺ has been considered. In this version, all the
non-dominated neighbors are added to the archive. Table 4 reports the different
measurements.

Table 4. Time measurements for PLS 6≺.

Instance

Xeon 3Ghz Core i7 3.2Ghz

# 6≺ solutions
GTX 285 GTX 480

240 cores 480 cores

CPU GPU GPUTex CPU GPU GPUTex

20-10 1.1 5.4×0.2 3.9×0.3 1.2 2.0×0.6 1.8×0.7 77
20-20 2.6 8.5×0.3 6.7×0.4 2.0 3.4×0.6 3.0×0.7 83
50-10 25.7 15.1×1.7 13.1×1.9 20.5 8.9×2.3 8.2×2.5 396
50-20 44.5 24.7×1.8 22.3×2.2 39.5 14.1×2.8 13.2×3.0 596
100-10 220.1 71.0×3.1 66.9×3.3 253.3 51.7×4.9 49.2×5.1 1350
100-20 386.8 96.7×4.0 91.3×4.2 312.5 62.5×5.0 59.0×5.3 1530
200-10 1631.2 362.5×4.5 346.3×4.7 1361.5 223.2×6.1 217.7×6.4 1597
200-20 2998.8 588.0×5.1 566.1×5.3 2672.6 398.9×6.7 378.0×7.1 2061

For the instance 100-10, in comparison with the previous table, one can
clearly start to see the impact of the number of non-dominated solutions in
terms of performance. Indeed, the acceleration factors vary between ×3.1 to
×5.1. The performance results are significantly reduced in comparison with the
analog instance for PLS�. Finally, the speed-up still grows with the size increase
until reaching the value ×7.1 for the last instance.

This global performance loss can be explained by the fact that the number of
non-dominated solutions is more important. Indeed, one can see that PLS 6≺ is
more time-consuming than its counterpart PLS�. Therefore, the time spent on
the archiving of solutions may be significant. Furthermore, this step is performed
exclusively on CPU.

Table 5 confirms this point by showing a profiling of the different steps of
the different algorithms. As one can see, for PLS 6≺, the time dedicated to the
solutions archiving on CPU is more important than its counterpart PLS�. As
a consequence, less time is dedicated to the parallel generation and evaluation
on GPU. The conclusion of these experiments indicates that since the solutions
archiving is significant in the PLS process, it may be significant to proceed this
archiving on GPU.

7 Discussion and Conclusion

High-performance computing based on the use of computational GPUs is re-
cently revealed to be a good way to get at hand such computational power.



Table 5. Profiling of the two Pareto algorithms.

Instance
PLS� PLS6≺

Evaluation Archiving LS process Evaluation Archiving LS process

20-10 99.2% 0.7% 0.1% 95.2% 4.7% 0.1%
20-20 99.4% 0.5% 0.1% 98.2% 1.7% 0.1%
50-10 99.5% 0.4% 0.1% 89.7% 10.2% 0.1%
50-20 99.7% 0.2% 0.1% 94.2% 5.7% 0.1%
100-10 99.8% 0.1% 0.1% 88.2% 11.8% 0.1%
100-20 99.85% 0.1% 0.05% 93.6% 6.35% 0.05%
200-10 99.9% 0.05% 0.05% 92.3% 7.65% 0.05%
200-20 99.9% 0.05% 0.05% 94.2% 5.75% 0.05%

However, the exploitation of parallel models is not trivial and many issues re-
lated to the GPU memory hierarchical management of this architecture have to
be considered. To the best of our knowledge, GPU-based parallel LS approaches
have never been widely investigated.

In this paper, efficient mapping of the iteration-level parallel model on the
hierarchical GPU has been proposed. In the cooperation layer, the CPU manages
the whole MLS process and let the GPU be used as a coprocessor dedicated to
intensive calculations. Then, efficient mappings between neighborhood candidate
solutions and GPU threads are necessary to generate the neighborhood on GPU
and thus reduce CPU/GPU transfers. Finally, memory management is applied
to the evaluation function kernel.

Apart from being generic, we proved the effectiveness of our methodology
by making extensive experiments. Applying such mechanism with an efficient
memory management allows to provide promising speed-ups (up to ×16). We
strongly believe that the overall performance could be better for other multi-
objective optimization problems requiring 1) more computational calculations
and 2) less resources in terms of memory (linear time complexity and quadratic
space complexity for each neighbor of the FSP).

The re-design of the parallel MLS iteration-level model on GPU fits well for
deterministic scalar and Pareto approaches. However, few other MLS algorithms
only partially explore neighborhoods and take the first improving local neigh-
bor that is detected. Applied to LS algorithm such as multiobjective simulated
annealing, this model needs to be re-thought.

Furthermore, in the case of Pareto approaches, the experimental results have
shown a global performance loss with the increase of non-dominated solutions.
For other multiobjective optimization problems whose objectives are uncorre-
lated, this number could be huge, leading to a serious performance decrease.
Even if some archiving techniques could be applied to bound the archive size,
this would not completely solve the issue at all. As a consequence, for being
complete, the next step of our method is to provide a SIMD parallel archiv-
ing on GPU. This way, it will allow to significantly enhance the performance of
the provided algorithms. However, performing such step is challenging since it



requires to ensure additional synchronizations, non-concurrent writings and to
manage some dynamic allocations on the GPU.
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