
GPU-based Island Model for Evolutionary Algorithms

Thé Van Luong
INRIA Dolphin Project

Opac LIFL CNRS
40 avenue Halley

Villeneuve d’Ascq, France
The-Van.Luong@inria.fr

Nouredine Melab
INRIA Dolphin Project

Opac LIFL CNRS
40 avenue Halley

Villeneuve d’Ascq, France
Nouredine.Melab@lifl.fr

El-Ghazali Talbi
INRIA Dolphin Project

Opac LIFL CNRS
40 avenue Halley

Villeneuve d’Ascq, France
El-Ghazali.Talbi@lifl.fr

ABSTRACT
The island model for evolutionary algorithms allows to delay
the global convergence of the evolution process and encour-
age diversity. However, solving large size and time-intensive
combinatorial optimization problems with the island model
requires a large amount of computational resources. GPU
computing is recently revealed as a powerful way to harness
these resources. In this paper, we focus on the parallel island
model on GPU. We address its re-design, implementation,
and associated issues related to the GPU execution context.
The preliminary results demonstrate the effectiveness of the
proposed approaches and their capabilities to fully exploit
the GPU architecture.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Numerical Analy-
sis—Optimization

General Terms
Algorithms, Design

Keywords
Island model, parallel, GPU

1. INTRODUCTION
In the last decades, evolutionary algorithms (EAs) have

been successfully applied to solve optimization problems.
Different models have been proposed in the literature for the
design and implementation of EAs [11]. The island model
(IM) allows to provide more effective, diversified and robust
solutions by delaying the global convergence. Nevertheless,
as the mechanism may be CPU time-consuming, it is not
often fully exploited in practice. Indeed, for a significant
number of islands, experiments with the IM for EAs are
often stopped before the convergence is reached. That is
the reason why, in designing IM for EAs, there is often a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

compromise between the number of islands to use and the
computational complexity to explore it. As a consequence,
only the use of parallelism allows to deal with such highly
computationally expensive process.

Nowadays, GPU computing is recognized as a powerful
way to achieve high-performance on long-running scientific
applications [10]. With the arrival of the general-purpose
computation on graphics processings units (GPGPU), EAs
on GPU have generated a growing interest. Many works on
GPU have been proposed: genetic algorithm [12], genetic
programming [2] and evolutionary programming [13].

Designing IMs for EAs for solving real-world optimiza-
tion problems are good challenges for GPU computing. Re-
garding previous works on IMs on GPU, in [3,5], CPU and
GPU simultaneously evaluate one separate local population
with basic two-directional exchange mechanisms. This ap-
proach is used to reduce the overall run time beyond what
is achieved by tackling the evaluation stage alone. However,
due to many data transfers between the CPU and the GPU
and a non-optimal task distribution, the performance of such
approach might be limited. On the other hand, during the
GPU competition of GECCO 2009, one submission entry [9]
presents some technical details of an island model entirely
hard-coded on GPU with a ring-like topology. Nevertheless,
the evolutionary operators implemented on GPU are only
specific to a particular class of problems, and the validity of
the experiments works only on an assumption of a small size
of problems.

To the best of our knowledge, GPU-based IMs have never
been deeply studied and no general models can be outlined
from previous works. Indeed, the design of GPU-based EAs
often involves the cost of a sometimes painful apprenticeship
of parallelization techniques and GPU computing technolo-
gies. In order to free from such burden those who are un-
familiar with those advanced features, general models must
be provided for replicability.

In this paper, we contribute with the entire re-design of
the IM on GPU by specifying its different parameters taking
into account the particular features related to both the EA
process and the GPU computing. More exactly, we propose
three different general schemes for building efficient IMs for
EAs on GPU. The first scheme combines the IM with the
parallel evaluation of the population on GPU which is the
simplest way to broach an EA on GPU and has been con-
ducted in many related works of EAs on GPU. In the second
scheme, the evolutionary process of each island is fully dis-
tributed on GPU. The third scheme is an extension of the
second one using fast on-chip shared memory.

In comparison with the first scheme, the advantage of the
full distribution of the evolutionary process on GPU is to
reduce the CPU/GPU memory copy latency. However, its
achievement is particularly challenging since many relative
issues must be faced such as the threads synchronization, the
optimization of data transfer between the different memo-
ries, the capacity constraints of these memories, etc. There-
fore, in the fully distributed schemes, we propose to re-visit
the existing parameters of the IM (number of islands, mi-
gration topology and frequency, number of migrants, emi-
gration/immigration policy) according to the GPU charac-
teristics.

The remainder of the paper is organized as follows: Sec-
tion 2 highlights the parallel IM for EAs and the GPU ar-
chitecture. In Section 3, the three proposed schemes for
the design of the IM on GPU are presented. The issues re-
lated to the full distribution of the evolutionary process on
GPU are discussed in Section 4. To validate the approaches
presented in this paper, Section 5 reports the performance
results obtained for a continuous optimization problem. Fi-
nally, a discussion and some conclusions of this work are
drawn in Section 6.

2. PARALLEL ISLAND MODEL AND GPU
COMPUTING

2.1 Parallel Island Model
For non-trivial problems, executing the reproductive cycle

of a simple EA on long individuals and/or large populations
requires high computational resources. Consequently, a vari-
ety of algorithmic issues are being studied to design efficient
EAs. These issues usually consist of defining new operators,
hybrid algorithms, parallel models, and so on. Parallelism
arises naturally when dealing with populations, since each of
the individuals belonging to it is an independent unit. Due
to this, the performance of population-based algorithms is
specially improved when running in parallel.

Basically, three major parallel models for EAs can be dis-
tinguished: the parallel evaluation of the population, the
distributed evaluation of a single solution and the island
(a)synchronous cooperative model. A review of the parallel
paradigms is proposed in [1,11] for EAs.

In this paper, we focus on the Island (a)synchronous coop-
erative model (see Fig. 1). In this latter, different EAs are
simultaneously deployed to cooperate for computing better
and robust solutions. They exchange in a(n) (a)synchronous
way genetic stuff to diversify the search. The objective is to
allow the delay of the global convergence, especially when
the EAs are heterogeneous regarding the variation opera-
tors. The migration of individuals follows a policy defined
by few parameters:

• Exchange topology: The topology specifies for each
island its neighbors with respect to the migration pro-
cess. In other words, it indicates for each island the
other islands to which it may send its emigrants, and
the ones from which it may receive immigrants). Dif-
ferent well-known topologies are proposed such as ring,
mesh, torus, hypercube, etc.

• Number of emigrants: This parameter is often de-
fined either as a percentage of the population size or
as a fixed number of individuals.

Figure 1: The cooperative island model of evolution-
ary algorithms.

• Emigrants selection policy: The selection policy
indicates in a deterministic or stochastic way how to
select emigrant individuals from the source island. Dif-
ferent selection policies are defined in the literature:
roulette wheel, ranking, stochastic or deterministic tour-
naments, uniform sampling, etc.

• Replacement/integration policy: Symmetrically,
the replacement policy defines how to integrate the
immigrant individuals in the population. Different re-
placement strategies may be used including EP-like
stochastic replacement, tournaments, elitist and pure
random replacements.

• Migration decision criterion: Migration can be de-
cided either periodically or according to a given crite-
rion. Periodic decision making consists in performing
the migration by each EA at a fixed or user defined
frequency.

2.2 GPU Computing
With the recent advances in parallel computing particu-

larly based on GPU computing, the IM has to be re-visited
from the design and implementation points of view. Driven
by the demand for high-definition 3D graphics on personal
computers, GPUs have evolved into a highly parallel, mul-
tithreaded and many-core environment. Indeed, this ar-
chitecture provides tremendous computational horsepower
and very high memory bandwidth compared to traditional
CPUs. Since more transistors are devoted to data processing
rather than data caching and flow control, GPU is special-
ized for compute-intensive and highly parallel computation.
A complete review of GPU architecture can be found in [10].

In GPGPU, the CPU is considered as a host and the GPU
is used as a device coprocessor. This way, each GPU has its
own memory and processing elements that are separate from
the host computer. Data must be transferred between the
memory space of the host and the memory of GPU during
the execution of programs. In EAs, the types of data which
are manipulated are the population representation.

Memory transfer from CPU to GPU device memory is a
synchronous operation which is time consuming. In the case
of EAs, memory copying operations from CPU to GPU are
essentially the duplication operations of the population of so-
lutions. Bus bandwidth and latency between CPU and GPU
can significantly decrease the performance of the search, so
data transfers must be minimized.

Each processor device on GPU supports the single pro-
gram multiple data (SPMD) model, i.e. multiple processors
simultaneously execute the same program on different data.
For achieving this, the concept of kernel is defined. The ker-
nel is a function callable from the host and executed on the
specified device by several processors in parallel.

This kernel handling is dependent of the general-purpose
language. For instance, CUDA or OpenCL are parallel com-
puting environments which provide an application program-
ming interface. These toolkits introduce a model of threads
which provides an easy abstraction for single-instruction and
multiple-data (SIMD) architecture. A thread on GPU can
be seen as an element of the data to be processed. Com-
pared to CPU threads, GPU threads are lightweight. That
means that changing the context between two threads is not
a costly operation.

Regarding their spatial organization, threads are orga-
nized within so called thread blocks. A kernel is executed by
multiple equally threaded blocks. Blocks can be organized
into a one-dimensional or two-dimensional grid of thread
blocks, and threads inside a block are grouped in a similar
way. All the threads belonging to the same thread block
will be assigned as a group to a single multiprocessor, while
different thread blocks can be assigned to different multipro-
cessors. As a consequence, regarding EAs, a natural map-
ping is to associate one GPU thread with an individual of
the population.

3. SCHEMES FOR THE ISLAND MODEL
ON GPU ARCHITECTURES

In this section, the focus is on the re-design of the IM
presented in Section 2.1. To accomplish this, we propose
three different schemes allowing a clear separation of the
GPU memory hierarchical management concepts.

3.1 Scheme of the Parallel Evaluation of the
Population on GPU

A first natural scheme for the design and the implemen-
tation of the IM is based on a combination with the paral-
lel evaluation of the population model on GPU. Indeed, in
general, evaluating a fitness function for every individual is
frequently the most costly operation of the EA. Therefore,
in this scheme, task distribution is clearly defined: the CPU
manages the whole sequential EA process for each island and
the GPU is dedicated only to the parallel evaluation of so-
lutions. Fig. 2 shows the principle of the parallel evaluation
of one island on GPU.

First, the CPU sends a certain number of individuals to be
evaluated to the GPU via the global memory and then these
solutions are processed on GPU. Regarding the kernel thread
organization, as quoted above, a GPU is organized follow-
ing the SPMD model, meaning that multiple autonomous
processors simultaneously execute the same program at in-
dependent points. Therefore, each GPU thread associated
with one individual executes the same evaluation function
kernel. Finally, results of the evaluation function are re-
turned back to the host via the global memory.

This way, the GPU is used as a coprocessor in a syn-
chronous manner. The time-consuming part i.e. the evalua-
tion kernel is calculated by the GPU and the rest is handled
by the CPU. However, depending on the size of the pop-
ulation, the main drawback of this scheme is that copying

Figure 2: Scheme of the parallel evaluation of the
population on GPU.

operations from CPU to GPU (i.e. population and fitnesses
structures) can become frequent and thus can lead to a sig-
nificant performance decrease.

The main goal of this scheme is to accelerate the search
process and it does not alter the semantics of the algorithm.
As a result, the migration policy between the islands remains
unchanged in comparison with a traditional pure design on
CPU. However, since the GPU is used as a cooperative co-
processor to evaluate all individuals in parallel, this scheme
is intrinsically dedicated to the synchronous IM.

3.2 Schemes of the Fully Distributed Island
Model on GPU

3.2.1 Fully Distributed Island Model on GPU
A second natural scheme is to parallelize the whole IM on

GPU. This way, the main advantage of this approach is to
minimize the data transfers between the host memory and
the GPU. Fig. 3 gives an illustration of one particular island
on GPU.

In this scheme, a natural representation is to associate one
island with one threads block. One individual is represented
by one thread and each standard genetic operator e.g. se-
lection, crossover or mutation is separated by block barriers
to ensure the synchronization between the threads.

Regarding the migration policy, communications are per-
formed via the global memory which stores the global pop-
ulation. This way, each local island can communicate with
any others according to the given topology.

One of the limitations to move the entire algorithm on
GPU is the fact that a heterogeneous strategy cannot be
easily applied in comparison with the previous scheme. In-
deed, since multiprocessors on GPU are used according to
the SPMD model, the same parameter configurations and
the same different search components (e.g. mutation or
crossover) between the islands must be used. Another draw-
back of this scheme concerns the maximal number of indi-
viduals per island since this latter is limited to the max-
imal number of threads per block (up to 512 or 1024 ac-
cording to the GPU architecture). A natural idea to solve
this limitation would be to associate one island with many

Figure 3: Scheme of the fully distributed island
model on GPU.

threads blocks. However, it cannot be easily achieved in
practice since (1) threads work in an asynchronous manner;
(2) threads synchronizations are local to a same block. In-
deed, one can imagine a scenario in which a selection is made
on two individuals of a different block where one of the two
threads has not yet updated its associated fitness value (i.e.
one of the two individuals has not yet been evaluated).

3.2.2 Fully Distributed Island Model on GPU Using
Shared Memory

Regarding the kernel memory management, from a hard-
ware point of view, graphics cards consist of multiprocessors,
each with processing units, registers and on-chip memory.
Accessing global memory incurs an additional 400 to 600
clock cycles of memory latency. As a consequence, since this
memory is not cached and its access is slow, one needs to
minimize accesses to global memory (read/write operations)
and reuse data within the local multiprocessor memories.

To accomplish this, the shared memory is a fast on-chip
memory located on the multiprocessors and shared by threads
of each thread block. This memory can be considered as a
user-managed cache which can provide great speedups by
conserving bandwidth to main memory [7]. Furthermore,
since the shared memory is local to each threads block, it
provides a way for threads to communicate within the same
block.

Therefore, a last natural scheme is to associate each is-
land to a threads block on GPU with the use of the fast
shared memory. An illustration for one particular island of
this scheme is shown in Fig. 4. This scheme is similar to
the previous one except the fact that local island popula-
tions and their associated fitnesses are stored in the on-chip
shared memory. This way, each individual (thread) on each
island (block) performs the process evolution (initialization,
evaluation, etc.) via the shared memory.

Regarding migration between islands, since migration re-
quires an inter-island communication, copying operations
from each local population (shared memory) to the global
population (global memory) have to be considered.

Figure 4: Scheme of the fully distributed island
model on GPU using shared memory.

Even if this scheme can improve the efficiency of the IM,
it presents a major limitation: since each multiprocessor
has a limited capacity of shared memory (16KB), only small
problem instances can be dealt with. Indeed, the amount
of allocated shared memory per block depends on both the
local population size and the problem instance size. There-
fore, a trade-off must be considered between the number of
threads per block and the size of the handled problem.

4. ISSUES RELATED TO THE FULLY DIS-
TRIBUTED SCHEMES

We have presented three different schemes of the IM on
GPU. The first scheme introduces the parallel evaluation of
the global population and does not present any difficult is-
sue. However, the two other schemes which involve the full
parallelization of the IM on GPU presents many challenging
problems related to the GPU execution model. In this sec-
tion, we propose to re-visit the parameters of IMs on GPU.

• Exchange topology: Threads block can be identi-
fied using a one-dimensional or two-dimensional index.
Therefore, two natural island topologies can be defined
on GPU: ring (one-dimensional threads block) and 2D
toroidal grid (two-dimensional threads block). Finding
an efficient mapping between the GPU threads spa-
tial organization and sophisticate island topologies is
a challenging issue not addressed in this paper.

• Number of emigrants: This parameter does not
present any important issue except the fact that if the
number of emigrants is too important, accesses to the
global memory will be more frequent leading to a small
performance decrease.

• Emigrants selection policy: The selection policy
is similar to the traditional selection in EAs. Basi-
cally, most of selection operators (e.g. tournament or
roulette wheel) operate on unsorted data structures.
Therefore, their implementation on GPU is similar to

Figure 5: Principle of the bitonic sort.

a CPU one. However, some selection operators such
as rank-based selections operate on sorted data struc-
tures. As a consequence, a significant issue occurs since
sorting on the GPU is not as straightforward as on the
CPU because the GPU is effectively a highly parallel
SIMD architecture.

To deal with this issue, one efficient sort on GPU is
the bitonic sort (see Fig. 5). Basically, this sort is
based on (1) the concept of the bitonic sequence i.e.
the composition of two subsequences, one monotoni-
cally non-decreasing and the other monotonically non-
increasing; (2) merging procedures to create a new
bitonic sequence. Despite its complexity of O(log22n),
this sort has a high degree of parallelism. Thereby, it
has been stated as one of the fastest sort on GPU for
a relatively small number of elements [4]. As a con-
sequence, this sort is particularly well-adapted for the
IM since the size of each island is also relatively small.

• Replacement/integration policy: Symmetrically,
the previous emigrants selection strategies on GPU
can be similarly applied for the replacement/integra-
tion policy. However, in practice, pure elitist replace-
ments can be also considered in which the worst local
individuals are replaced. Since read/write operations
on memory are performed in an asynchronous manner,
finding the appropriate minimal/maximal fitnesses of
each island is not easy. Indeed, traditional parallel
techniques such as semaphores which imply the global
synchronization (via atomic operations) of thousand
of threads can drastically lead to a performance de-
crease. To deal with this issue, adaptation of parallel
reduction techniques [7] for each thread block must be
considered. This way, by using local synchronizations
between threads in a same block, one can find the min-
imum/maximum of a given array since threads operate
at different memory addresses (see Fig. 6).

• Migration decision criterion: Whatever the migra-
tion decision criterion (whether periodically or accord-
ing to a particular criterion), since the order of the exe-
cution of threads is undefined, the evolution process of
each island can be in different state (e.g. different gen-
eration). As a result, the migration on GPU between
the different islands is intrinsically done in an asyn-
chronous manner. Performing a synchronous IM on
GPU represents a significant issue. Indeed, perform-

Figure 6: Reduction for finding the minimum value.

Figure 7: Implicit synchronization of threads to per-
form the synchronous island model.

ing a global synchronization on threads (e.g. by imple-
menting semaphores) would lead to a great loss of per-
formance. To deal with this, implicit synchronizations
between the CPU and the GPU must be considered
by associating one kernel execution with one genera-
tion of the evolutionary process. This way, when the
execution of one generation in all islands on GPU is fin-
ished, the hand is returned back to the CPU ensuring
an implicit global synchronization (see Fig. 7). How-
ever, performing such synchronous mechanisms leads
to some unavoidable slight decrease of the performance
due to the implicit synchronization and the kernel calls
overhead.

Whether for a synchronous or an asynchronous model, re-
garding the scheme using shared memory, emigrants must
be copied into the global memory to ensure their visibility
between the different islands. Fig. 8 summarizes the main
concepts presented above through an example of an IM on
GPU using the shared memory.

Regarding the generic components of the traditional evo-
lutionary process, the previous techniques can be applied to
the selection and the replacement in a similar way. Regard-
ing the components which are dependent of the problem (i.e.
initialization, evaluation function and variation operators),
they do not present specific issues related to the GPU kernel
execution. From an implementation point of view, the only
focus is the management of random numbers. To do this,
efficient techniques are provided in many books such as [8]

Figure 8: Migration between islands on GPU using a ring topology.

to implement random generators on GPU (e.g. Gaussian or
Mersenne Twister generators).

5. EXPERIMENTATION
To validate the different presented approaches of this pa-

per, the Weierstrass-Mandelbrot functions have been consid-
ered on GPU. These functions belong to the class of contin-
uous optimization problems. According to [6], Weierstrass-
Mandelbrot functions are defined as follows:

Wb,h(x) =
∞∑

i=1

b
−ih

sin(bix) with b > 1 and 0 < h < 1 (1)

The parameter h has an impact on the irregularity (“noisy”
local perturbation of limited amplitude) and these functions
possess many local optima. Since the calculation of an in-
finite sum of sines is unpractical, a number of iterations is
used to compute an approximation of the function (instead
of ∞). The higher this value is, the more the evaluation of
an individual takes time. Another parameter that can be
tuned for these functions is the dimension of the problem.

For this problem, different versions of the IM have been
implemented on GPU using CUDA. The used configuration
for the experiments is an Intel Xeon 8 cores 2.4 Ghz with a
NVIDIA GTX 280 card (30 multiprocessors). For each ex-
periment, different implementations are given: a standalone
mono-core IM on CPU (CPU), the synchronous IM using the
parallel evaluation of the population on GPU (CPU+GPU),
the asynchronous fully distributed IM on GPU (GPU), the
synchronous version (SGPU) and their associated version
using shared memory (GPUShared and SGPUShared).

Regarding the evaluation function of the problem (i.e. the
Weierstrass function (1)), the domain definition has been set
to −1 ≤ xk ≤ 1, h has been fixed to 0.25 and the number of
iterations to compute the approximation to 100 (instead of
∞). The complexity of the evaluation function is quadratic.
The operators used in the evolutionary process for the im-
plementations are the following: the crossover is a standard
two-point crossover (crossover rate fixed to 80%) which gen-
erates two offspring, the mutation consists in changing ran-
domly one gene with a real value taken in [−1; 1] (with a
mutation rate of 30%), the selection is a deterministic tour-
nament (tournament size fixed to the block size divided by
four), the replacement is a (µ+λ) replacement and the num-
ber of generations has been fixed to 100. Regarding the
migration policy, a ring topology has been chosen, a deter-

ministic tournament has been performed for both emigrants
selection and migration replacement (tournament size fixed
to the block size divided by four), the migration rate is equal
to the number of local individuals divided by four and the
migration frequency is set to 10 generations.

5.1 Measures in Terms of Efficiency
The objective of the following experiments is to evaluate

the impact of the GPU-based implementations in terms of
efficiency. Only execution times (in seconds) and accelera-
tion factors (compared to a mono-core CPU without GPU)
are reported. The average time has been measured in sec-
onds for 50 runs and the associated standard deviation is
not represented since its value is small for every measured
values.

The first experiment consists in varying the dimension of
the Weierstrass function. Results are reported in Table 1(a).
As long as the size of the dimension increases, each GPU
version gives some outstanding accelerations compared to a
CPU version (up to × 1757 for the GPUShared version).
The use of the shared memory provides a way to acceler-
ate efficiently the search process even if the GPU version
is already impressive. However, due to its limited capacity,
bigger instances such as a dimension of 11 cannot be handled
in any shared memory versions.

Regarding the fully distributed synchronous versions, since
implicit synchronizations are performed, a certain decrease
of the speed-up (from ×63 to ×293 for the SGPU version)
can be observed in comparison with their associated asyn-
chronous versions. Nevertheless, the acceleration factors are
still impressive. For the scheme of the parallel evaluation
of the population (CPU+GPU version), the speed-ups are
less important even if they remain significant (from ×25 to
×170). This may be explained by the important number of
data transfers between the CPU and the GPU.

A conclusion of the first experiment indicates that chang-
ing the dimension of the problem leads to better speed-ups
for each GPU version. It seems obvious that the increase
of the number of iterations to compute an approximation
of the Weierstrass function would lead to similar results.
A second experiment consists in varying the number of is-
lands in order to measure the efficiency and the scalability
of our approaches. Results of this experiment are reported
in Table 1(b). Regarding each fully distributed version, for
a small number of islands (i.e. one or two islands), the ac-
celeration factor is significant but not impressive (from ×7

Table 1: Table (a) consists in varying the instance size of the problem: the number of individuals per island
is fixed to 128 and the global population to 8192 (64 islands). Table (b) consists in varying the number of
islands: the dimension of the problem is fixed to 2 and the number of individuals per island to 128.

(a) CPU CPU+GPU GPU GPUShared SGPU SGPUShared

dimension time time speed-up time speed-up time speed-up time speed-up time speed-up
1 23 0.92 ×25 0.16 ×143 0.04 ×845 0.36 ×63 0.06 ×375

2 43 0.94 ×46 0.16 ×268 0.03 ×1150 0.36 ×119 0.08 ×511

3 64 0.95 ×67 0.17 ×375 0.05 ×1365 0.38 ×167 0.11 ×607

4 85 0.97 ×87 0.21 ×403 0.06 ×1442 0.47 ×179 0.13 ×641

5 105 1.00 ×105 0.22 ×479 0.07 ×1579 0.50 ×213 0.15 ×702

6 127 1.02 ×125 0.24 ×519 0.08 ×1639 0.55 ×231 0.17 ×728

7 148 1.04 ×142 0.28 ×529 0.09 ×1659 0.63 ×235 0.20 ×737

8 168 1.09 ×154 0.30 ×554 0.10 ×1684 0.68 ×246 0.23 ×748

9 190 1.19 ×159 0.31 ×610 0.11 ×1736 0.70 ×271 0.25 ×772

10 211 1.28 ×165 0.33 ×639 0.12 ×1757 0.74 ×284 0.27 ×781

11 231 1.36 ×170 0.35 ×666 – – 0.79 ×293 – –

(b) CPU CPU+GPU GPU GPUShared SGPU SGPUShared

islands time time speed-up time speed-up time speed-up time speed-up time speed-up
1 3 0.10 ×33 0.20 ×17 0.12 ×27 0.45 ×7 0.27 ×12

2 7 0.12 ×55 0.20 ×33 0.13 ×51 0.45 ×15 0.29 ×23

4 13 0.15 ×89 0.20 ×65 0.13 ×104 0.45 ×29 0.29 ×46

8 26 0.19 ×139 0.20 ×132 0.13 ×207 0.45 ×59 0.29 ×92

16 53 0.34 ×154 0.21 ×256 0.13 ×403 0.46 ×114 0.29 ×179

32 106 0.66 ×160 0.26 ×406 0.13 ×828 0.59 ×180 0.29 ×368

64 211 1.28 ×165 0.33 ×644 0.14 ×1560 0.74 ×286 0.30 ×693

128 422 2.68 ×158 0.45 ×939 0.26 ×1596 1.01 ×417 0.60 ×709

256 845 5.61 ×151 0.69 ×1222 0.50 ×1677 1.56 ×543 1.13 ×746

512 1692 11.81 ×143 1.24 ×1365 1.00 ×1691 2.79 ×607 2.25 ×752

1024 3382 25.72 ×132 – – 1.70 ×1990 – – 3.82 ×885

2048 6781 53.23 ×127 – – 3.27 ×2074 – – 7.36 ×922

4096 13585 143.71 ×95 – – – – – – – –

to ×51). This can be explained by the fact that since the
global population is relatively small (less than 1024 threads),
the number of threads per block is not enough to fully cover
the memory access latency. However, the speed-up grows
accordingly with the increase of the number of islands and
remains impressive (up to ×2074 for GPUShared).

Regarding the CPU+GPU version, speed-ups for one or
two islands are more important than for the fully distributed
versions. Indeed, since only the evaluation of the population
is distributed on GPU, fewer registers are allocated for each
thread. As a result, this version benefits from a better occu-
pancy of the multiprocessors for a small number of islands.
GPU keeps accelerating the process with the islands increase
until reaching a peak performance of×165 for 64 islands. Af-
ter, the acceleration factor decreases with the augmentation
of the number of islands. Indeed, for each parallel evaluation
of the population, the amount of data transfers is propor-
tional to the number of individuals (e.g. 524288 threads
for 4096 islands). Thus, from a certain number of islands,
the elapsed time for copying operations becomes significant
leading certainly to a decrease of the performance.

Regarding the scalability of the fully distributed versions,
from a certain number of islands, the GPU failed to exe-
cute the program because of the hardware register limita-
tion. For instance, for a number of 1024 islands (131072
threads), the SGPU implementation could not be executed.
In the GPUShared and the SGPUShared versions, since the
shared memory is used conducting to fewer registers, this
limit is reached for a larger number of 4096 islands. For the
CPU+GPU version, it provides a higher scalability since far

fewer registers are allocated (only the evaluation kernel is
executed on GPU).

5.2 Measures in Terms of Effectiveness
After measuring the efficiency of our approaches, the last

experiment consists in evaluating the quality of the obtained
solutions. To accomplish this in a fair manner, only GPU
synchronous versions must be considered since it ensures
that all of the synchronous models produce similar results.
The parameters of this experiment are the same used be-
fore. Fig. 9 reports the evolution of the average of best
fitness values during the first minute (50 executions). In
agreement with the previous obtained results, the quality
of the solutions differs accordingly to the employed scheme.
Indeed, for instance, the best results are obtained with the
fully distributed IM on GPU using shared memory. Precise
measurement of the first seconds is not reported on the fig-
ure, but the evolution of the fitness for each GPU version
decreases drastically during the first second. The evolution
of the fitness keeps decreasing with time but with a rather
slow convergence. It is possible that due to a high migration
rate (25%), the diversity in the populations is lost too fast
and therefore it becomes hard to find better results.

6. CONCLUSION AND DISCUSSION
Parallel metaheuristics such as the IM allow to improve

the effectiveness and robustness in optimization problems.
Their exploitation for solving real-world problems is pos-
sible only by using a great computational power. High-
performance computing based on GPU accelerators is re-
cently revealed as an efficient way to use the huge amount

Figure 9: Measures in terms of effectiveness of the
different island models. The dimension of the prob-
lem is fixed to 10, the global population is set to
8192 and the number of individuals per island to
128.

of resources at disposal. However, the exploitation of the
IM is not trivial and many issues related to the context ex-
ecution of this architecture have to be considered.

In this paper, we have particularly focused on the design
of three efficient IM schemes to the hierarchical GPU. The
designed and implemented approaches have been experimen-
tally validated on a continuous optimization problem. The
experiments indicate that GPU computing allows not only
to speed up the search process, but also to exploit parallelism
to improve the quality of the obtained solutions. In the first
scheme, the IM is combined with the parallel evaluation of
the population on GPU. From an implementation point of
view, this approach is the most generic since only the evalua-
tion kernel is considered but the performance of this scheme
is limited due to the data transfers between the CPU and
GPU. To deal with this issue, the two other schemes oper-
ate on the full distribution of the search process on GPU.
Applying such mechanism allows to improve drastically the
performance. However, these schemes could present some
limitations due to memory constraints with some problems
that could be more demanding in terms of resources.

Nevertheless, we strongly believe that the two last schemes
could be easily extended to large scale continuous optimiza-
tion problems. Indeed, it would be interesting to test our
approaches on the seven-function benchmark test suite for
the CEC-2008 special session and competition on large scale
global optimization.

Another perspective is to test the different schemes to
combinatorial optimization problems such as the quadratic
assignment problem. However, unlike the continuous func-
tions, data inputs of the combinatorial optimization problem
must be considered. Indeed, by working with such struc-
tures, non-aligned memory accesses imply many memory
transactions leading to a global loss of performance. As
a result, dealing with such optimization problems is not
straightforward since it involves optimizing data accesses
which includes the appropriate use of the various GPU mem-
ory spaces.

7. REFERENCES
[1] E. Alba and M. Tomassini. Parallelism and

evolutionary algorithms. IEEE Trans. Evolutionary
Computation, 6(5):443–462, 2002.

[2] W. Banzhaf, S. Harding, W. B. Langdon, and
G. Wilson. Accelerating genetic programming through
graphics processing units. In Genetic Programming
Theory and Practice VI, pages 1–19. Springer, 2009.

[3] O. Garnica, J. Risco-Martin, J. Hidalgo, and
J. Lanchares. Speeding-up resolution of deceptive
problems on a parallel gpu-cpu architecture. In
Parallel Architectures and Bioinspired Algorithms,
2008.

[4] A. Greß and G. Zachmann. Gpu-abisort: optimal
parallel sorting on stream architectures. In 20th
International Parallel and Distributed Processing
Symposium (IPDPS 2006), 2006.

[5] T. E. Lewis and G. D. Magoulas. Strategies to
minimise the total run time of cyclic graph based
genetic programming with GPUs. In GECCO ’09,
pages 1379–1386, Montreal, 8-12 July 2009. ACM.

[6] E. Lutton and J. L. Véhel. Holder functions and
deception of genetic algorithms. IEEE Trans.
Evolutionary Computation, 2(2):56–71, 1998.

[7] NVIDIA. CUDA Programming Guide Version 2.3,
2010.

[8] NVIDIA. GPU Gems 3. Chapter 37: Efficient
Random Number Generation and Application Using
CUDA, 2010.

[9] P. Pospichal and J. Jaros. Gpu-based acceleration of
the genetic algorithm. GECCO competition, 2009.

[10] S. Ryoo, C. I. Rodrigues, S. S. Stone, J. A. Stratton,
S.-Z. Ueng, S. S. Baghsorkhi, and W. W. Hwu.
Program optimization carving for gpu computing. J.
Parallel Distribributed Computing, 68(10):1389–1401,
2008.

[11] E.-G. Talbi. Metaheuristics: From design to
implementation. Wiley, 2009.

[12] S. Tsutsui and N. Fujimoto. Solving quadratic
assignment problems by genetic algorithms with gpu
computation: a case study. In GECCO ’09, pages
2523–2530, New York, NY, USA, 2009. ACM.

[13] T.-T. Wong and M. L. Wong. Parallel evolutionary
algorithms on consumer-level graphics processing unit.
In Parallel Evolutionary Computations, pages
133–155. Springer, 2006.

