
Towards ParadisEO-MO-GPU: a Framework for

GPU-based Local Search Metaheuristics

N. Melab, T-V. Luong, K. Boufaras and E-G. Talbi

Dolphin Project
INRIA Lille Nord Europe - LIFL/CNRS UMR 8022 - Université de Lille1

40 avenue Halley, 59650 Villeneuve d’Ascq Cedex FRANCE
[Nouredine.Melab, The-Van.Luong, Karima.Boufaras,

El-Ghazali.Talbi]@inria.fr

Abstract. This paper is a major step towards a pioneering software
framework for the reusable design and implementation of parallel meta-
heuristics on Graphics Processing Units (GPU). The objective is to re-
visit the ParadisEO framework to allow its utilization on GPU accelera-
tors. The focus is on local search metaheuristics and the parallel explo-
ration of their neighborhood. The challenge is to make the GPU as trans-
parent as possible for the user. The first release of the new GPU-based
ParadisEO framework has been experimented on the Quadratic Assign-
ment Problem (QAP). The preliminary results are convincing, both in
terms of flexibility and easiness of reuse at implementation, and in terms
of efficiency at execution on GPU.

Keywords: Software Framework, Local SearchMeta-heuristics, Parallel Com-
puting, GPU Computing, Neighborhood Exploration.

1 Introduction

Nowadays, parallel metaheuristics have grown to be a highly useful paradigm
to solve large-scale CPU time-intensive and complex combinatorial problems.
Metaheuristics are either single-solution namely S-Metaheuristics (local search
metaheuristics) or population-based namely P-Metaheuristics (e.g. evolution-
ary algorithms). The focus in this paper is on S-Metaheuristics. Recently, GPU
accelerators have emerged as a new powerful support for massively parallel
computing. Last year, we came up with the pioneering work on GPU-based
S-Metaheuristics [1]. Such experience has shown that parallel combinatorial op-
timization on GPU is not straightforward, and requires a huge effort at design
as well as at implementation level.

Indeed, the design of GPU-aware S-Metaheuristics often involves the cost
of a sometimes painful apprenticeship of parallelization techniques and GPU
computing technologies. In order to free from such burden those who are un-
familiar with those advanced features, optimization frameworks must integrate
the up-to-date parallelization techniques and allow their transparent exploita-
tion and deployment on GPU accelerators. To the best of our knowledge, there



does not exist any software framework for GPU-based metaheuristics. In [2], we
have proposed a framework called ParadisEO dedicated to the reusable design
of parallel and distributed metaheuristics for only dedicated parallel hardware
platforms. Later, we have extended the framework in [3] to dynamic and het-
erogeneous large-scale environments using Condor-MW middleware and in [4] to
computational grids using Globus.

In this paper, we extend ParadisEO-MO (ParadisEO for S-Metaheuristics)
to deal with GPU accelerators. The challenges and contributions consist in (1)
rethinking the parallel models provided into the framework to manage efficiently
the hierarchical organization of the memories (different latencies and sizes) of the
GPU device as well as the interaction of this latter with the CPU ; (2) making the
GPU as transparent as possible for the user minimizing his or her involvement
in its management. In this paper, we propose solutions to this challenge as
an extension of the ParadisEO framework. The focus is on the iteration-level
parallel model of S-Metaheuristics which consists in exploring in parallel the
neighborhood of a problem solution. The first release of the new GPU-based
ParadisEO framework has been implemented using C++ and CUDA [5] and
then experimented on the QAP.

The remainder of the paper is organized as follows. Section 2 highlights the
principles of parallel iteration-level S-Metaheuristics and their challenges when
using GPU computing. In Section 3, we describe the major design features and
architecture of ParadisEO. Section 4 presents the design and implementation
of ParadisEO-MO on top of GPU called ParadisEO-MO-GPU. Section 5 shows
and comments some experimental results obtained with ParadisEO-MO-GPU
on the QAP. In Section 6, we conclude the paper and draw some perspectives of
the presented work.

2 Parallel GPU-based S-Metaheuristics

An S-Metaheuristic is an iterative procedure which explores the neighborhood
of a solution in order to improve its quality. The associated algorithm generates
an initial (current) solution to the problem to be solved. This current solution is
evaluated and its neighborhood is generated and evaluated. Based on the eval-
uation of the neighborhood, the best solution is selected to become the current
solution. The process is repeated until a stopping criterion is found.

For large-scale combinatorial optimization problems, the neighborhood of a
solution is often extremely large. Therefore, massively parallel computing is re-
quired to generate and evaluate it. The parallel generation and evaluation of the
neighborhood is a master-worker and problem independent regular data-parallel
application. GPU computing is very well-suited for this kind of parallel applica-
tion. In the GPU (CUDA-based) model, the master is the CPU and the workers
are threads executed by the processing cores of the GPU. Using GPU computing
is not straightforward especially for non-experts in parallel computing. Indeed, a
GPU accelerator provides a hierarchy of memories with different sizes and access
latencies.



The challenge is to re-think the design of the parallel exploration and evalu-
ation of the neighborhood taking into account the characteristics of GPU. Dif-
ferent issues have to be dealt with: (1) defining an efficient cooperation between
CPU and GPU, which requires to share the work and to optimize the data
transfer between the two components; (2) GPU computing is based on hyper-
threading (massively parallel multi-threading) and the order in which the threads
are executed is not known. Therefore, an efficient mapping has to be defined be-
tween each neighboring candidate solution and a thread designated by a unique
identifier assigned by the GPU runtime; (3) the neighborhood has to be placed
efficiently on the different memories taking into account their sizes and access
latencies. From an implementation point of view, the challenge is to provide
solutions to these issues in ParadisEO as transparent as possible way for the
user.

3 ParadisEO-MO-based Parallel S-Metaheuristics

3.1 Parallel iteration-level model on GPU

The parallel iteration-level model is designed according to the data-parallel
SPMD model of CUDA. In this model, a function code called the kernel is sent to
the GPU to be executed by a large number of threads grouped into blocks. The
task partitioning is such that the CPU hosts executes the whole serial part of the
local search method. The GPU is in charge of the evaluation of the neighborhood
of the current solution at each iteration. In order to minimize the cost of the
data transfer from the CPU to GPU, the neighboring solutions are generated
on GPU rather than on CPU. Indeed, only the current solution is sent to the
GPU and each thread executes the same kernel. This is highly efficient for large
neighborhoods. The kernel consists in generating and evaluating a neighbor. A
defined mapping function allows each thread to find its corresponding neigh-
boring solution. Once all the neighboring solutions are generated and evaluated
they are sent back to the CPU where the best solution is selected. The process
is iterated until a stopping criterion is satisfied.

3.2 The ParadisEO-MO framework

ParadisEO-MO is part of ParadisEO dedicated to S-Metaheuristics such as Hill
Climbing, Simulated Annealing, Tabu Search, ILS, etc. ParadisEO [2] is a frame-
work dedicated to the reusable design of parallel hybrid metaheuristics by pro-
viding a broad range of features including evolutionary algorithms (ParadisEO-
EO), local search methods (ParadisEO-MO), parallel and distributed models
(ParadisEO-PEO), different hybridization mechanisms, etc. ParadisEO is a C++
LGPL extensible open source framework based on a clear conceptual separation
of the metaheuristics. ParadisEO is one of the rare frameworks that provide the
most common parallel and distributed models. These models are portable on
distributed-memory machines and shared-memory multi-processors as they are
implemented using standard libraries such as MPI, PVM and Pthreads.



4 GPU-enabled ParadisEO

4.1 Architecture of ParadisEO-MO-GPU

ParadisEO-MO-GPU is a new framework which is a coupling between ParadisEO-
MO and CUDA. It aims at deploying the S-Metaheuristics on GPU in a generic
way. It is composed by a set of new C++ abstract and predefined classes that
allows an easy and transparent development of S-metaheuristics on GPU accel-
erators. The architecture of ParadisEO-MO-GPU is layered as it is illustrated
in Fig. 1.

Fig. 1. A layered architecture of ParadisEO-MO-GPU.

The user level indicates the different problem-dependent components which
must be defined: input data, the evaluation function, neighbor and neighbor-
hood representations. The second level presents the ParadisEO-MO framework
including optimization solvers embedding S-metaheuristics. The interaction is
done with the ParadisEO-GPU module which automatically pilots the CUDA
programming interface. The hardware level supplies the different transparent
tools provided by ParadisEO-GPU such as the allocation and copy of data or the
parallel generation and evaluation of the considered neighborhood. In addition
to this, the platform proposes predefined neighborhood and mapping wrappers
adapted to hardware constraints to deal with binary and permutation problems.



4.2 A case study: parallel evaluation of a neighborhood

ParadisEO-MO-GPU is illustrated in Fig. 2 through an UML sequence diagram.
The scenario shows the design and implementation of parallel neighborhood
evaluation of a local search on GPU. The different steps of the parallel evaluation
process on GPU for each iteration are the following:

Fig. 2. The parallel generation and evaluation of a neighborhood provided in
ParadisEO-MO-GPU.

1. The neighborhood moCudaNeighborhood prepares all the steps for the par-
allel generation of the neighborhood on GPU. The initialization consists in
setting a mapping table between GPU threads and neighbors. Then, the as-
sociated data are sent only once to the GPU since the mapping structure
does not change during the execution process of local searches. The last step
invokes the parallel evaluation and will be informed on its completion to
retrieve the precomputed fitnesses structure.

2. Before proceeding to the parallel evaluation, the object moCudaEval con-
figures a kernel with N threads such that each thread is associated exactly



with one neighbor evaluation (N designates the neighborhood size). During
the first iteration, the object allocates the neighborhood fitnesses structure
where the result of the evaluated neighbors will be stored. Otherwise, in any
case, it only sends to the GPU device the candidate solution which generates
the neighborhood.

3. The object moCudaKernelEval modelizes the main body which will be exe-
cuted by N concurrent threads on different input data. A first step consists
in getting the thread identifier then the set of its associated data. This mech-
anism is done thanks to the mapping table previously mentioned. The second
step performs the evaluation computation of the corresponding neighbor. Fi-
nally, the resulting fitness is stored in the corresponding index of the fitnesses
structure.

4. The worker moCudaEvalFunc is the specific object with computes on the
GPU device the corresponding evaluation neighbor and returns the provided
result.

Once the entire neighborhood has been performed in parallel on GPU, the
precalculated fitness structure is copied back to the CPU and given as input to
the ParadisEO-MO module. This way, the local search continues the neighbor-
hood exploration (iteration) on the CPU side. Instead of evaluating again each
neighbor in a sequential manner, the corresponding fitness value will only need
to be retrieved from the precomputed fitnesses structure. Hence, this mechanism
has the advantage of allowing both the deployment of any S-metaheuristics and
the use of toolboxes provided in ParadisEO-MO (e.g. statistical or fitnesses land-
scape analysis, checkpoint monitors, etc.)

5 Experimentation

The QAP arises in many applications such as facility location or data analysis.
Let A = (aij) and B = (bij) be n × n matrices of positive integers. Finding a
solution of the QAP is equivalent to finding a permutation π = (1, 2, . . . , n) that
minimizes the objective function:

z(π) =

n∑

i=1

n∑

j=1

aijbπ(i)π(j)

As the iteration-level parallel model does not change the semantics of the
sequential algorithm, the effectiveness in terms of quality of solutions is not ad-
dressed here. The objective is to assess the impact in terms of efficiency of an
implementation done with ParadisEO-MO-GPU compared with an optimized
version made outside the platform. To achieve this, a tabu search has been im-
plemented in 4 different versions: 1) a ParadisEO-MO implementation on CPU
and its counterpart on GPU; 2) an optimized CPU implementation and its asso-
ciated GPU version. ParadisEO versions are pure object-based implementations
whereas the optimized ones are pointer-based.



The neighborhood is built by pair-wise exchange operations (known as the 2-
exchange neighborhood) which is a standard way for permutation problems. The
number of global iterations of the local search is set to 10000. The considered
instances are the Taillard instances proposed in [6].

Experiments have been carried on top of an Intel Core i7 970 3.2Ghz with a
GTX 480 card (15 multiprocessors with 32 cores). For measuring the acceleration
factors, only a single core has been considered using the Intel i7 turbo mode
(3.46Ghz). The average time has been measured in seconds for 30 runs. Results
are reported in Table 1 for the different versions.

Table 1. Measures in terms of efficiency of a ParadisEO-MO-GPU implementation
with an optimized version made outside the platform.

Instance
ParadisEO-MO Optimized version Perf. gap

CPU GPU Acc. CPU GPU Acc. CPU GPU

tai30a 0.8 0.9 ×0.9 0.7 0.7 ×1.0 13% 23%
tai40a 1.9 1.2 ×1.6 1.7 1.0 ×1.7 11% 17%
tai50a 3.6 1.6 ×2.2 3.0 1.3 ×2.3 17% 19%
tai60a 6.0 2.0 ×3.0 5.0 1.6 ×3.1 17% 20%
tai80a 15.1 2.8 ×5.4 12.3 2.1 ×5.8 19% 25%
tai100a 31.7 3.8 ×8.3 26.0 2.8 ×9.2 18% 27%
tai150b 119.7 8.9 ×13.4 98.1 6.5 ×15.1 18% 27%

From the instance tai40a, both GPU versions start to give positive acceler-
ations (from ×1.6 to ×1.7). The poor performance for small instances can be
explained by the fact that since the neighborhood is relatively small, the num-
ber of threads per block is not enough to fully cover the memory access latency.
However, as long as the instance size increases, the acceleration factor grows
accordingly (e.g. from ×5.4 to ×5.8 for tai80a). Finally, efficient speed-ups are
obtained for the instance tai150b. They vary between ×13.4 and ×15.1.

A thorough examination of the acceleration factors highlights that they are
quite similar for the two GPU versions. The performance difference which ex-
ists is certainly due to the CPU version provided by ParadisEO-MO. Indeed,
regarding the two CPU versions, initially, there is already a slight performance
gap regarding the execution time. It varies between 11% and 19% according to
the instance. This gap can be explained by the overhead caused by the creation
of generic objects in ParadisEO whereas the optimized version on CPU is a pure
pointer-based implementation. This can also explain the performance difference
between the two different GPU counterparts in which the same phenomenon
occurs. However, for such transparent exploitation, the obtained results are re-
ally convincing. A conclusion of the experiments indicates that the performance
results of the GPU version provided by ParadisEO are not so far from the GPU
pointer-based one.



6 Conclusions and Future Work

In this paper, we have presented a step towards a ParadisEO framework for the
reusable design and implementation of the GPU-based parallel metaheuristics.
The focus is set on S-metaheuristics and the iteration-level parallel exploration
of the neighborhood of a solution. We have revisited the design and implemen-
tation of this last model in ParadisEO-MO to allow its efficient execution and
its transparent use on GPU.

The implementation in ParadisEO-MO using CUDA has been experimented
on the QAP and compared to the same implementation realized outside Par-
adisEO. The preliminary results show that the performance gap which occurs be-
tween the two implementations is not really important. Indeed, for such flexibility
and easiness of reuse at implementation, the obtained results with ParadisEO-
MO-GPU are really promising (up to ×13). We are strongly convinced that the
overall performance provided by ParadisEO-MO-GPU will be much better for
larger neighborhoods or other problems requiring more computational calcula-
tions (see [7] and [1] for previous test cases).

The first release of ParadisEO-MO on GPU is available on the ParadisEO
website1. Tutorials and documentation are provided to facilitate its reuse. This
release is dedicated to parallel S-metaheuristics based on the iteration-level par-
allel model. In the short run, this release will be first extended to the algorithmic
(multi-start) and solution-level parallel models. Second, it will be extended to
other problem representations such as discrete representation and other solution
methods. Third, it will be validated on a wider range of problems. In the long
run, ParadisEO will be revisited following the same roadmap for evolutionary
algorithms on GPU.

References

1. Luong, T.V., Melab, N., Talbi, E.G.: Local Search Algorithms on Graphics Process-
ing Units. A Case Study: the Permutation Perceptron Problem. In: EvoCOP’2010.
Volume 6022 of LNCS., Springer (2010) 264–275

2. Cahon, S., Melab, N., Talbi, E.G.: ParadisEO: A Framework for the Reusable
Design of Parallel and Distributed Metaheuristics. J. of Heuristics 10(3) (2004)
357–380

3. Melab, N., Cahon, S., Talbi, E.G.: Grid computing for parallel bioinspired algo-
rithms. J. Parallel Distributed Computing 66(8) (2006) 1052–1061

4. Tantar, A.A., Melab, N., Demarey, C., Talbi, E.G.: Building a Virtual Globus Grid
in a Reconfigurable Environment - A case study: Grid5000 (2007)

5. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable Parallel Programming
with CUDA. ACM Queue 6(2) (2008) 40–53

6. Taillard, É.D.: Robust tabu search for the quadratic assignment problem. Parallel
Computing 17(4-5) (1991) 443–455

7. Luong, T.V., Melab, N., Talbi, E.G.: Parallel hybrid evolutionary algorithms on
gpu. In: IEEE Congress on Evolutionary Computation, IEEE (2010) 1–8

1 http://paradiseo.gforge.inria.fr


