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ABSTRACT

Local search algorithms are powerful heuristics for solving computationally hard prob-
lems in science and industry. In these methods, designing neighborhood operators to
explore large promising regions of the search space may improve the quality of the ob-
tained solutions at the expense of a high computation process. As a consequence, the use
of GPU computing provides an efficient way to speed up the search. However, designing
applications on GPU is still complex and many issues have to be faced. We provide a
methodology to design and implement different neighborhood structures for LS algo-
rithms on GPU. The work has been evaluated for binary problems and the obtained
results are convincing both in terms of efficiency, quality and robustness of the provided
solutions at run time.

Keywords: GPU-based metaheuristics; parallel local search algorithms on GPU

1. Introduction

A large number of real-life optimization problems in science, engineering, economics,

and business are complex and difficult to solve. Using approximate algorithms such

as metaheuristics is the main alternative to solve this class of problems. Local search

algorithms (LS) are a class of metaheuristics which manipulate and transform a

single solution by exploring its neighborhood in the solution space. Fig. 1 gives a

general model for LS algorithms. At each iteration, a set of neighboring solutions is

generated and evaluated. The best of these candidate solutions is selected to replace

the current solution. The process is iterated until a stopping criterion is satisfied.

A complete review of LS algorithms can be found in [1].

In these methods, the definition of the neighborhood plays a crucial role in the

performance of the algorithm. Indeed, theoretical and experimental studies have
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Fig. 1. General model for local search algorithms.

shown that the increase of the neighborhood size may improve the quality of the

obtained solutions [2]. Nevertheless, as it is generally CPU time-consuming, this

mechanism is not often fully exploited in practice. Indeed, experiments using large

neighborhoods are often stopped without convergence being reached. Thereby, in

designing LS methods, there is often a trade-off between the size of the neighborhood

to use and the computational complexity to explore it. To deal with such issues,

only the use of parallelism allows to design methods based on large neighborhood

structures.

Nowadays, the calculation on GPU is recognized as an efficient way to achieve

high-performance on long-running scientific applications [3]. Designing LS algo-

rithms based on large neighborhood structures for solving real-world optimization

problems are good challenges for GPU computing. However, to the best of our

knowledge only few research works related to evolutionary algorithms on GPU ex-

ist [4–7]. Indeed, the parallel exploration of the neighborhood on GPU is not im-

mediate and several challenges persist and are related to the characteristics and

underlined issues of the GPU architecture and the LS structures.

The contribution of this work is on the first results of LS algorithms based on dif-

ferent neighborhood structures on GPU. Finding an efficient task distribution of the

LS process onto the GPU organization is a challenging issue dealt with in this paper.

In other words, one has to identify what must be performed on GPU and manage

the data on the different available memories. Another handled issue concerns the

adaptation of LS neighborhood structures with the GPU context execution. Since

the neighborhood structure strongly depends on the target optimization problem,

we focus on binary problems all along of this paper. Thereby, we propose to deal

with three neighborhoods of different sizes. More exactly, the focus is on finding

efficient/correct mappings between the different neighborhood structures and the

GPU thread execution model.
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The work has been experimentally validated on the permuted perceptron prob-

lem (PPP) [8]. Throughout this paper, we investigate to measure the impact on

how the increase of the size of the neighborhood can improve 1) the performance in

terms of efficiency and 2) the quality of the obtained solutions.

The rest of the paper is organized as follows: Section 2 presents the three neigh-

borhoods quoted above. In Section 3, generic concepts for designing parallel LS

methods on GPU are presented. Section 4 highlights on the main GPU issues that

need to be solved to obtain the best performance: a depth look on the GPU memory

management and efficient mappings are provided for each neighborhood structure.

An application of this methodology and a performance analysis is done for the per-

muted perceptron problem in Section 5. Finally, conclusions and a discussion of this

work are drawn in Section 6.

2. Neighborhood Structures for Binary Problems

Designing any iterative metaheuristic needs an encoding of a solution. The encod-

ing must be suitable and relevant to the tackled optimization problem. For binary

problems, any candidate solution is represented by a vector (or string) of binary val-

ues. Moreover, the efficiency of a representation is related to the search operators

applied on this representation i.e. the neighborhood.

The natural neighborhood for binary representations is based on the Hamming

distance. This distance measures the number of positions between two strings of

equal length in which the corresponding symbols are different. Fig. 2 gives an illus-

tration of three neighborhoods based on different Hamming distances.

• 1-Hamming Distance Neighborhood . A standard neighborhood for binary

representations is based on the Hamming distance equal to one. In this

neighborhood, generating a neighbor consists in flipping one bit of the can-

didate vector solution. Considering a candidate vector solution of size n,

the size of the associated neighborhood is n.

• 2-Hamming Distance Neighborhood . For binary problems, an improved

neighborhood for LS algorithms is based on the Hamming distance of two.

It consists in building a neighbor by flipping two values of a candidate so-

lution vector. Two indexes represent a particular neighbor. For a candidate

solution of size n, the number of neighbors is n×(n−1)
2 .

• 3-Hamming Distance Neighborhood . An instance of a large neighborhood is

a neighborhood built by modifying three values called 3-Hamming distance

neighborhood. This neighborhood is much complex since each neighboring

solution is identified by 3 indexes. The number of elements associated to

this neighborhood is n×(n−1)×(n−2)
6 .

Most of the LS algorithms use neighborhoods which are in general a linear (e.g.

1-Hamming distance) or quadratic (e.g. 2-Hamming distance) function of the input

instance size. Some large neighborhoods may be high-order polynomial of the size
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Fig. 2. Neighborhoods based on different Hamming distances.

of the input instance (e.g. 3-Hamming distance). Then, the complexity of the search

will be much higher. So, in practice, large neighborhoods algorithms are unusable

because of their high computational cost. In the other sections, we will show how

the use of GPU computing allows to fully exploit parallelism in such algorithms.

3. Design of Local Search Algorithms on GPU

GPU computing may be used to speed-up the search process when designing large

neighborhood algorithms. However, the use of GPU-based parallel computing for

metaheuristics is not straightforward. Indeed, the adaptation of LS algorithms on

GPU requires to take into account at the same time the characteristics of the GPU
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context execution and the LS structures. In this section, the focus is on the re-design

of the general LS model on GPU. The distribution of the search process among the

CPU and the GPU has to be faced to minimize the data transfer between them.

3.1. GPU Kernel Execution Model

Each processor device on GPU supports the single program multiple data (SPMD)

model, i.e. multiple autonomous processors simultaneously execute the same pro-

gram on different data. For achieving this, the concept of kernel is defined. The

kernel is a function callable from the host and executed on the specified device

simultaneously by several processors in parallel.

This kernel handling is dependent of the general-purpose language. For instance,

CUDA and OpenCL are parallel computing environments, which provide an appli-

cation programming interface for NVIDIA architectures [9]. The concept of a GPU

thread does not have exactly the same meaning as a CPU thread. A thread on GPU

can be seen as an element of the data to be processed. Compared to CPU threads,

GPU threads are lightweight. That means that changing the context between two

threads is not a costly operation.

Regarding their spatial organization, threads are organized within so called

thread blocks. A kernel is executed by multiple equally threaded blocks. All the

threads belonging to the same thread block will be assigned as a group to a single

multiprocessor, while different thread blocks can be assigned to different multipro-

cessors. Thus, a unique id can be deduced for each thread to perform computation

on different data.

3.2. The Proposed GPU-based Algorithm

Adapting traditional LS methods to GPU is not a straightforward task because

a hierarchical memory management on GPU has to be handled. Indeed, memory

transfers from the CPU to the GPU are slow and these copying operations have to

be minimized. We propose a methodology to adapt LS methods on GPU in a generic

way. The task distribution is clearly defined: the CPU manages the whole sequential

LS process and the GPU is dedicated to the costly part i.e. the parallel generation

and evaluation of the neighboring solutions. Algorithm 1 gives a template of any

LS algorithms on GPU.

First of all, at initialization stage, memory allocations on GPU are made: data

inputs and the candidate solution of the problem must be allocated (lines 4 and

5). Since GPUs require massive computations with predictable memory accesses, a

structure has to be allocated for storing all the neighborhood fitnesses at different

addresses (line 6). Additional solution structures which are problem-dependent can

also be allocated to facilitate the computation of the incremental evaluation (line

7). Second, problem data inputs, the initial candidate solution and some additional

structures associated to this solution have to be copied on the GPU (lines 8 to 10).

It is important to notice that problem data inputs are a read-only structure and
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Algorithm 1 Local search template on GPU.

1: Choose an initial solution
2: Evaluate the solution
3: Specific LS initializations
4: Allocate problem data inputs on GPU device memory
5: Allocate a solution on GPU device memory
6: Allocate a neighborhood fitnesses structure on GPU device memory
7: Allocate additional solution structures on GPU device memory
8: Copy problem data inputs on GPU device memory
9: Copy the solution on GPU device memory

10: Copy additional solution structures on GPU device memory
11: repeat

12: for each neighbor in parallel on GPU (Kernel) do
13: Incremental evaluation of the candidate solution
14: Insert the resulting fitness into the neighborhood fitnesses structure
15: end for

16: Copy neighborhood fitnesses structure on CPU host memory
17: Specific LS solution selection strategy on the neighborhood fitnesses structure
18: Specific LS post-treatment
19: Copy the chosen solution on GPU device memory
20: Copy additional solution structures on GPU device memory
21: until a stopping criterion satisfied

never change during all the execution of LS algorithms. Therefore, their associated

memory is copied only once during all the execution. Third, then comes the parallel

evaluation of the neighborhood (GPU kernel), in which each neighboring solution

is generated and evaluated (from lines 12 to 15). The results of the evaluated solu-

tions (fitnesses) are stored into a data structure. Fourth, since the order in which the

candidate neighbors are evaluated is undefined, the previous neighborhood fitnesses

structure has to be copied to the host CPU (line 16). Then a specific LS solution

selection strategy is applied to this structure (line 17): the exploration of the neigh-

borhood fitnesses structure is done by the CPU in a sequential way. Finally, after a

new candidate has been selected, this latter and its additional associated structures

are copied to the GPU (lines 19 and 20). The process is repeated until a stopping

criterion is satisfied.

4. GPU Performance Optimization

The task repartition between the CPU and the GPU has been proposed in the

previous section through a high-level template for LS algorithms. The next step

is to deal with some specific GPU issues to obtain the best performance. Indeed,

several challenges mainly related to the GPU context execution have to be consid-

ered: (1) the association of the different LS structures with the different available

memories; (2) finding the efficient mapping of the neighborhood structure with the

GPU threads. We propose in this section to deal with such issues.
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4.1. GPU Kernel Memory Management

Optimizing the performance of GPU applications often involves optimizing data

accesses which includes the appropriate use of the various GPU memory spaces.

The use of texture memory is a solution for reducing memory transactions due to

non-coalesced accesses. The texture memory provides a surprising aggregation of

capabilities including the ability to cache global memory (separate from register,

global, and shared memory). Indeed, the texture memory provides an alternative

memory access path that can be bound to regions of the global memory. Each

texture unit has some internal memory that buffers data from the global memory.

Therefore, the texture memory can be seen as a relaxed mechanism for the threads

to access the global memory because the coalescing requirements do not apply to

texture memory accesses. Thereby, the use of texture memory is well adapted for

LS algorithms for the following reasons:

• Data accesses are frequent in the computation of LS incremental evaluation

methods. Then, using the texture memory can provide a high performance

improvement by reducing the number of memory transactions.

• The texture memory is a read-only memory i.e. no writing operations can

be performed on it. This memory is adapted to LS algorithms since the

problem data and the solution representation are also read-only values.

• Minimizing the number of times that data goes through cache can increase

significantly the efficiency of algorithms [10]. In most of optimization prob-

lems, problem inputs (such as data problem or solution representation) do

not often require a large amount of allocated space memory. As a conse-

quence, these structures can take advantage of the 8KB cache per multi-

processor of texture units.

• Cached texture data are laid out to give the best performance for 1D/2D

access patterns. The best performance will be achieved when the threads

of a warp read locations that are close together from a spatial locality

perspective. Since optimization problem inputs are generally 2D matrices

or 1D solution vectors, LS structures can be bound to the texture memory.

The use of textures in place of global memory accesses is a completely mechanical

transformation. Details of texture coordinate clamping and filtering are given in

[9,11]. Table 1 summarizes the kernel memory management in accordance with the

different LS structures.

Table 1. Summary of the different memories used in the evaluation function.

Type of memory LS structure

Texture memory data inputs, solution representation

Global memory neighborhood fitnesses structure

Registers additional variables

Local memory additional structures
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The inputs of the problem (e.g. a matrix in TSP) and the solution which gen-

erates the neighborhood are associated with the texture memory. The fitnesses

structure which stores the obtained results for each neighbor is associated with the

global memory. Indeed, since only one writing operation per thread is performed at

each iteration, this structure is not part of intensive calculation. Declared variables

for the computation of the evaluation function of each neighbor are automatically

associated with registers by the compiler. Additional complex structures which are

private to a neighbor will reside in local memory. Regarding the shared memory,

since it implies local synchronizations in each threads block, its use is not appropri-

ate in the proposed GPU-based LS algorithm.

4.2. Mappings of Neighborhood Structures on GPU

The remaining critical issue is to find efficient mappings between a GPU thread and

a particular neighbor. Indeed, this step is crucial in the design of new large neighbor-

hood LS algorithms for binary problems since it is clearly identified as the gateway

between a GPU process and a candidate neighbor. On the one hand, the thread id

is represented by a single index. On the other hand, the move representation of a

neighbor varies according to the neighborhood.

4.2.1. Mapping for a neighborhood based on a 1-Hamming distance

For neighborhoods based on a Hamming distance of one, a mapping between the

neighborhood encoding and GPU threads is quiet direct. Indeed, for a binary vector

of size n, the neighborhood size is exactly n where each neighbor is represented by

one index varying from 0 to n− 1. Regarding the GPU threads, they are provided

with a unique id and thus associated with one single index in a similar manner.

That way, the associated kernel can be launched with n threads (each neighbor is

associated to a single thread). As a result, a IN → IN mapping can be made in

constant time.

4.2.2. Mappings for a neighborhood based on a 2-Hamming distance

For a binary vector of size n, the size of this new neighborhood is n×(n−1)
2 . The

associated kernel is executed by n×(n−1)
2 threads. For this encoding a mapping

between a neighbor and a GPU thread is not straightforward. Indeed, on the one

hand, a neighbor is composed by two indexes to modify. On the other hand, threads

are identified by a unique id (single index). As a result, a IN → IN× IN mapping has

to be considered to transform one index into two. In a similar way, a IN× IN → IN

mapping must be handled to transform two indexes into one.

Proposition 4.1. Two-to-one index transformation

Given i and j the indexes of two elements to modify in the binary representa-

tion, the corresponding index f(i, j) in the neighborhood representation is equal to
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i× (n− 1) + (j − 1)− i×(i+1)
2 , where n is the vector size.

Proposition 4.2. One-to-two index transformation

Given f(i, j) the index of the element in the neighborhood representation, the

corresponding index i is equal to n − 2 − b
√

8×(m−f(i,j)−1)+1−1

2 c and j is equal to

f(i, j)− i× (n− 1)+ i×(i+1)
2 +1 in the binary representation, where n is the vector

size and m the neighborhood size.

The proofs of two-to-one and one-to-two index transformations can be found

in Appendix A and Appendix B. The complexity of such mappings is in nearly

constant time i.e. it depends on the calculation of the square root on GPU (solving

quadratic equation).

4.2.3. Mappings for a neighborhood based on a 3-Hamming distance

For an array of size n, the size of this neighborhood is n×(n−1)×(n−2)
6 . The associated

kernel on GPU is executed by n×(n−1)×(n−2)
6 threads. A mapping here between a

neighbor and a GPU thread is also particularly challenging. IN → IN× IN× IN and

IN× IN× IN → IN mappings must be handled efficiently.

The mapping for this neighborhood is a generalization of the 2-Hamming dis-

tance neighborhood with a third index (see Appendix C and Appendix D). The

complexity of the mappings is logarithmic in practice i.e. it depends on the numer-

ical Newton-Raphson method (solving cubic equation).

5. Application to the Permuted Perceptron Problem

5.1. Definition of the Problem

As illustration of a binary problem, the PPP is a NP-complete problem that has

received a great attention given its importance in security protocols. The problem is

a cryptographic identification scheme based on NP-complete problems, which seems

to be well suited for resource constrained devices such as smart cards. An ε-vector

is a vector with all entries being either +1 or -1. Similarly an ε-matrix is a matrix

in which all entries are either +1 or -1. The PPP is defined as follows according

to [8]:

Definition 5.1. Given an ε-matrix A of size m × n and a multi-set S of non-

negative integers of size m, find an ε-vector V of size n such that {{(AV )j/j =

{1, . . . ,m}}} = S.

Let Y = AV be a matrix-vector product. Determine a histogram vector H over

the integers such that Hi = #{Yj = i | j = 1, . . . ,m}. Let V ′ denote a candidate for
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the solution V , let Y ′ = AV ′ and let H ′

i denote the histogram vector of Y ′. Then

an objective function is given in [12] by:

f(V ′) = 30×
m∑

i=1

(|(AV ′)i| − (AV ′)i) +

n∑

i=1

(|Hi −H ′

i|).

This corresponds to a minimization problem where a value f(V ′) = 0 gives a

successful solution to the problem.

5.2. Configuration for the Experiments

A tabu search has been implemented on CUDA for each neighborhood using the tex-

ture optimization. This algorithm is an instance of the general LS model presented

in introduction. Basically, this algorithm uses a tabu list (a short-term memory)

which contains the solutions that have been visited in the recent past. More details

of this algorithm are given in [13].

The used configuration is an Intel Core 2 Duo 2.67GHz with a NVIDIA GTX 280

card. The number of multiprocessors of this card is equal to 30 and the constraints

of memory alignment are relaxed in comparison with the previous architectures

(G80 series). Therefore, GTX 280 cards get a better global memory performance.

The following experiments intend to measure the quality of the solutions for

the instances of the literature addressed in [12]. A tabu search has been executed

50 times with a maximum number of n×(n−1)×(n−2)
6 iterations (stopping criterion).

The tabu list size has been arbitrary set to m
6 where m is the number of neighbors.

The average value of the evaluation function (fitness) and its standard deviation

(in sub index) have been measured. The number of successful tries (fitness equal to

zero) and the average number of iterations are also represented.

5.3. Neighborhood based on a 1-Hamming Distance

Table 2 reports the results for the tabu search based on the 1-Hamming distance

neighborhood. In a short execution time, the algorithm has been able to find

few solutions for the instances m = 73, n = 73 (10 successful tries on 50) and

m = 81, n = 81 (6 successful tries on 50). The two other instances are well-known

for their difficulties and no solutions were found. Regarding the execution time,

the GPU version does not offer anything in terms of efficiency. Indeed, since the

neighborhood is relatively small (n threads), the number of threads per block is

not enough to fully cover the memory access latency. To measure the efficiency of

the GPU-based implementation of this neighborhood, bigger instances of the PPP

should be considered.

5.4. Neighborhood based on a 2-Hamming Distance

A tabu search has been implemented on GPU using a 2-Hamming distance neigh-

borhood. Results of the experiment for the PPP are reported in Table 3.
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Table 2. Results obtained using a neighborhood based on a 1-Hamming Distance.

Problem Fitness # iterations # solutions CPU time GPU time

73× 73 10.35.1 59184.1 10/50 4s 9s

81× 81 10.85.6 77321.3 6/50 6s 13s

101× 101 20.214.1 166650 0/50 16s 33s

101× 117 16.45.4 260130 0/50 29s 57s

Table 3. Results obtained using a neighborhood based on a 2-Hamming Distance.

Problem Fitness # iterations # solutions CPU time GPU time Acc.

73× 73 16.417.9 43031.7 19/50 81s 10s ×8.2

81× 81 15.516.6 67462.5 13/50 174s 16s ×11.0

101× 101 14.214.3 138349 12/50 748s 44s ×17.0

101× 117 13.810.8 260130 0/50 1947s 105s ×18.5

By using this other neighborhood, in comparison with Table 2, the quality of

solutions has been significantly improved: on the one side the number of successful

tries for both m = 73, n = 73 (19 solutions) and m = 81, n = 81 (13 solutions)

is more important. On the other side, 12 solutions were found for the instance

m = 101, n = 101. Regarding the execution time, the acceleration factor for the

GPU version is really efficient (from ×8.2 to ×18.5). Indeed, since a large number

of threads are executed, the GPU can take full advantage of the multiprocessors

occupancy.

5.5. Neighborhood based on a 3-Hamming Distance

A tabu search using a 3-Hamming distance neighborhood has been implemented.

Since the computational time is too exorbitant, the average expected time for the

CPU implementation is deduced from the base of 100 iterations per execution. The

obtained results are collected in Table 4.

Table 4. Results obtained using a neighborhood based on a 3-Hamming Distance.

Problem Fitness # iterations # solutions CPU time GPU time Acc.

73× 73 2.44.3 21360.2 35/50 1202s 50s ×24.2

81× 81 3.54.4 43230.7 28/50 3730s 146s ×25.5

101× 101 6.25.4 117422 18/50 24657s 955s ×25.8

101× 117 7.72.7 255337 1/50 88151s 3351s ×26.3

In comparison with Knudsen and Meier’s article [12], the results found by the

generic tabu search are competitive without any use of cryptanalysis techniques.

Indeed, the number of successful solutions has been drastically improved for every

instance (respectively 35, 28 and 18 successful tries) and a solution has been even

found for the difficult instance m = 101, n = 117. Regarding the execution time,
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acceleration factors using the GPU are very significant (from ×24.2 to ×26.2).

The conclusions from this experiment indicate that the use of the GPU provides

an efficient way to deal with large neighborhoods. Indeed, the 3 Hamming-distance

neighborhood on PPP was unpractical in terms of single CPU computational re-

sources. So, implementing this algorithm on GPU has allowed to exploit the paral-

lelism in such neighborhood and to improve the quality of solutions.

5.6. Analysis of the Performances

To validate the performance of our algorithms, we propose to make an analysis of

the time spent by each major operation to evaluate its impact in terms of efficiency.

The obtained results are reported in Fig. 3.

Fig. 3. Analysis of the time spent for each major operation. The 3 different neighborhoods are
compared and the PPP instances are ordered according to their size.

For the first neighborhood (n neighbors), one can notice that the time spent by

the data transfer is significant. For example, it represents 28% of the total execution

time for the instance m = 73, n = 73. The same goes on for the other instances.

Furthermore, regarding the time spent on the LS process on CPU, almost 15% is

dedicated to this task whatever the instance size. As a consequence, since only half

of the total execution time is dedicated to the GPU kernel, the amount of calculation

may not be enough to fully cover the memory access latency. That is the reason

why, no acceleration is provided for a tabu search based on a neighborhood with a

Hamming distance of one (see Table 2).

To go on with the idea, if a neighborhood based on a Hamming distance of

two is considered (n×(n−1)
2 neighbors), one can notice that the time spent of the

GPU calculation is greater than 70% for each instance. This time is almost equal to

90% for a neighborhood based on Hamming distance of three. Thereby, regarding
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the time spent on both the data transfer and the LS process on CPU, it tends to

decrease with 1) the number of neighbors ; 2) the instance size increase. Indeed,

this can be explained by the fact that in designing LS algorithms, these two latter

parameters usually have a significant influence on the total execution time and

thus the amount of calculation. As a result, in accordance with the previous results

(Table 3 and Table 4), algorithms based on bigger neighborhoods clearly improve

the GPU occupancy i.e. the amount of calculation performed by the GPU, leading

to a better global performance.

6. Discussion and Conclusion

LS algorithms based on large neighborhoods may allow to enhance the quality of

provided solutions for solving real-world problems [2]. However, the exploitation of

such structures is possible only by using a great computing power. GPU computing

is recently revealed as a complementary way to use the huge amount of resources

at disposal and fully exploit the parallelism of neighborhoods. However, the ex-

ploitation of LS parallel models is not trivial and many issues related to the GPU

memory hierarchical management of this architecture have to be considered. To the

best of our knowledge, no research work has been published on LS algorithms on

GPU based on different neighborhoods exploration.

In this paper, a focus has been particularly made on the design of three differ-

ent neighborhoods to the hierarchical GPU for binary problems. The designed and

implemented approaches have been experimentally validated on a cryptographic ap-

plication. The experiments indicate that GPU computing allows not only to speed

up the search process, but also to exploit large neighborhoods structures to im-

prove the quality of the obtained solutions. For instance, LS algorithms based on

a Hamming distance of three were unpractical on traditional machines because of

their high computational cost. So, GPU computing has permitted their achieve-

ment and the obtained results are particularly promising in terms of effectiveness.

Indeed, all along the paper, we have investigated on how the increase of the size

of neighborhood allows to improve the quality of the solutions. Furthermore, we

strongly believe that the quality of the solutions would be drastically enhanced by

(1) increasing the number of running iterations of the algorithm and (2) introducing

appropriate cryptanalysis heuristics.

In the future, GPU concepts will be integrated in the ParadisEO platform. This

framework was developped for the design of parallel hybrid metaheuristics dedicated

to the mono/multiobjective resolution [14]. ParadisEO can be seen as a white-box

object-oriented framework based on a clear conceptual separation of metaheuristics

concepts. The Parallel Evolving Objects (PEO) module of ParadisEO includes the

well-known parallel and distributed models for metaheuristics. This module will be

extended in the future with GPU-based implementation.
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Appendix A Two-to-one index transformation

Let us consider a 2D abstraction in which the elements of the neighborhood are disposed in a
zero-based indexing 2D representation in a similar way that a lower triangular matrix. Let n be

the size of the solution representation and let m =
n×(n−1)

2
be the size of its neighborhood. Let i

and j be the indexes of two elements to modify in a binary encoding. A candidate neighbor is then
identified by both i and j indexes in the 2D abstraction. Let f(i, j) be the corresponding index in
the 1D neighborhood fitnesses structure. Fig. A1 gives through an example an illustration of this
abstraction.

In this example, n = 6, m = 15 and the neighbor identified by the coordinates (i = 2 , j = 3)
is mapped to the corresponding 1D array element f(i, j) = 9.

The neighbor represented by the (i, j) coordinates is known, and its corresponding index f(i, j)
on the 1D structure has to be calculated. If the 1D array size was n ∗n, the 2D abstraction would
be similar to a matrix and the IN× IN→ IN mapping would be:

f(i, j) = i× (n− 1) + (j − 1)

Since the 1D array size is m =
n×(n−1)

2
, in the 2D abstraction, elements above the diag-
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Fig. A1. IN× IN→ IN mapping.

onal preceding the neighbor must not be considered (illustrated in Fig. A1 by a triangle). The
corresponding mapping IN × IN→ IN is therefore:

f(i, j) = i× (n− 1) + (j − 1)− i× (i+ 1)

2
(A.1)

Appendix B One-to-two index transformation

Let us consider the 2D abstraction previously presented. If the element corresponding to f(i, j) in
the 2D abstraction has a given i abscissa, then let k be the distance plus one between the i + 1
and n− 2 abscissas. If k is known, the value of i can be deduced:

i = n− 2− b
√
8X + 1− 1

2
c (B.1)

Let X be the number of elements following f(i, j) in the neighborhood index-based array
numbering:

X = m− f(i, j)− 1 (B.2)

Since this number can be also represented in the 2D abstraction, the main idea is to maximize
the distance k such as:

k × (k + 1)

2
≤ X (B.3)

Fig. B1 gives an illustration of this idea (represented by a triangle).

Fig. B1. IN→ IN × IN mapping.

Resolving (B.3) gives the greatest distance k:

k = b
√
8X + 1− 1

2
c (B.4)
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A value of i can then be calculated according to (B.1). Finally, by using (A.1) j can be given
by:

j = f(i, j)− i× (n− 1) +
i× (i + 1)

2
+ 1 (B.5)

IN→ IN× IN mapping is also done.

Appendix C One-to-three index transformation

f(x, y, z) is a given index of the 1D neighborhood fitnesses structure and the objective is to find the

three indexes x, y and z. Let n be the size of the solution representation and m =
n×(n−1)×(n−2)

6
be the size of the neighborhood. The main idea is to find in which plan (coordinate z) corresponds
the given element f(x, y, z) in the 3D abstraction. If this corresponding plan is found, then the
rest is similar as the IN → IN × IN mapping for the one-to-two index transformation previously
seen. Figure C1 illustrates an example of the 3D abstraction.

Fig. C1. IN→ IN × IN× IN mapping.

In this representation, since each plan is a 2D abstraction, the number of elements in each
plan is the number of combinations C2

k
where k ∈ {2, 3, . . . , n− 1} according to each plan. For a

specific neighbor, if a value of k is found, then the value of the corresponding plan z is:

z = n− k − 1 (C.1)

For a given index f(x, y, z) belonging to the plan k in the 3D abstraction, the number of

elements contained in the following plans is C2
k
(also equal to

k×(k−1)×(k−2)
6

).
Let Y be the number of elements following f(x, y, z) in both the 1D neighborhood fitnesses

structure and the 3D abstraction:
Y = m− f(x, y, z)

Then the main idea is to minimize k such as:

k × (k − 1) × (k − 2)

6
>= Y (C.2)

By reordering (C.2), in order to find a value of k, the next step is to solve the following
equation:

k31 − k1 − 6Y = 0 (C.3)
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Cardano’s method in theory allows to solve cubic equation. Nevertheless, in the case of finite
discrete machine, this method can lose precision especially for big integers. As a consequence, a
simple Newton-Raphson method for finding an approximate value of k1 is enough for our problem.
Indeed, this iterative process follows a set guideline to approximate one root, considering the
function, its derivative, an initial arbitrary k1-value and a certain precision (see Algorithm 2).

Algorithm 2 Newton-Raphson method for solving k31 − k1 − 6Y = 0.

1: k1 ← initial value;
2: repeat

3: term ← (k1 ∗ k1 ∗ k1 − k1 − 6 ∗ Y ) / (3 ∗ k1 ∗ k1 − 1);
4: k1 ← k1 − term;
5: until |term / k1| > precision

Finally, since the minimization of k in (C.2) is expected, the value of k is:

k = dk1e
Then a value of z can be deduced with (C.1). At this step, the plan corresponding to the

element f(x, y, z) is known. The next steps for finding x and y are identically the same as the
one-to-two index transformation with a change of variables.

First, the number of elements preceding f(x, y, z) in the neighborhood index-based array
numbering is exactly:

nbElementsBefore = m − (k + 1) × k × (k − 1)

6

Second, the number of elements contained in the same plan z as f(x, y, z) is:

nbElements =
k × (k − 1)

2

Finally the index of the last element of the plan z is:

lastElement = nbElementsBefore+ nbElements− 1

As a result, the one-to-two index transformation is applied with a change of variables:

f(i, j) = f(x, y, z)− nbElementsBefore

n′ = n− (z + 1)

X = lastElement− f(x, y, z)

After performing this transformation, a value of x and y can be deduced:

x = i+ (z + 1)

y = j + (z + 1)

IN→ IN× IN× IN mapping is done.

Appendix D Three-to-one index transformation

x, y and z are known and its corresponding index f(x, y, z) must be found. According to the 3D
abstraction, since a value of z is known, k can be calculated:

k = n− 1− z

Then the number of elements preceding f(x, y, z) in the neighborhood index-based array num-
bering can be also deduced.

If each plan size was (n − 2) ∗ (n− 2), each 2D abstraction would be similar to a matrix and
the IN× IN→ IN mapping would be:

f1(x, y, z) = z × (n− 2)× (n− 2) + (x− 1)× (n− 2) + (y − 2) (D.1)
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Fig. D1. IN× IN × IN→ IN mapping.

Since each 2D abstraction is some kind of triangular matrix, some elements must not be
considered. The advantage of the 3D abstraction is that these elements can be found by geometric
construction (see Fig. D1).

First, given a plan z, the number of elements in the previous plans to not consider is:

n1 = z × (n− 2)× (n− 2) − nbElementsBefore

Second, the number of elements on the left side to not consider in the plan z is:

n2 = z × (n− 2)

Third, the number of elements on the upper side to not consider in the plan z is:

n3 = (y − z)× (n− k − 1)

Fourth, the number of elements on the upper triangle above f(x, y, z) to not consider is:

n4 =
(y − z)× (y − z − 1)

2

Finally a value of f(x, y, z) can be deduced:

f(x, y, z) = f1(x, y, z)− n1− n2− n3− n4 (D.2)

IN× IN× IN→ IN mapping is also done.


