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Abstract. Hybrid metaheuristics are powerful methods for solving com-
plex problems in science and industry. Nevertheless, the resolution time
remains prohibitive when dealing with large problem instances. As a re-
sult, the use of GPU computing has been recognized as a major way to
speed up the search process. However, most GPU-accelerated algorithms
of the literature do not take benefits of all the available CPU cores. In this
paper, we introduce a new guideline for the design and implementation
of effective hybrid metaheuristics using heterogeneous resources.

1 Introduction

Metaheuristics are approximate methods that make it possible to solve in a
reasonable time NP-hard complex problems. Two main categories are distin-
guished: population-based metaheuristics (P-metaheuristics) and solution-based
metaheuristics (S-metaheuristics). Theoretical and experimental studies have
shown that the hybridization between these two classes may improve the qual-
ity of provided solutions [1]. However, as it is time-consuming, there is often
a compromise between the number of solutions to use and the computational
complexity to explore it.

Recently, graphics processing units (GPU) have emerged as a popular support
for massively parallel computing [2]. To the best of our knowledge, most GPU-
accelerated metaheuristics designed in the literature only exploit a single CPU
core. This is typically the case for hybrid metaheuristics on GPU [3–5]. Thus,
it might be valuable to fully utilize the other remaining CPU resources. It may
be particularly significant when the acceleration factors obtained by the GPU-
based algorithm are relatively modest. Indeed, since all processors are nowadays
multi-core, performance of GPU-based algorithms might be improved.

Nevertheless, designing optimization methods on such a heterogeneous ar-
chitecture is not straightforward. Indeed, the major issues are mainly related to
the distribution of tasks processing between the GPU and CPU cores. In this
paper, we introduce a general guideline to deal with such issues. We propose
the re-design of hybrid metaheuristics on GPU taking advantage of every avail-
able CPU cores. In this purpose, an efficient distribution of the search process



between the GPU and the CPU is done. At the same time, an efficient load
balancing between the GPU and the remaining CPU cores is proposed to fully
utilize all the available heterogeneous resources.

As an example of application, the quadratic assignment problem (QAP) has
been considered. Such a problem provides interesting irregular properties, since
for optimized S-metaheuristics, most of move evaluations can be done in constant
time. Thereby, speed-ups from a parallel implementation are expected to be
relatively modest. Hence, the use of multi-core resources in addition with GPU-
based metaheuristics is clearly meaningful.

The remainder of the paper is organized as follows: Section 2 highlights the
principles of parallel models for metaheuristics on GPU. In Section 3, paral-
lelization concepts for designing hybrid metaheuristics on GPU are described.
An extension of these approaches is investigated in Section 4 for exploiting het-
erogeneous resources. Section 5 reports the performance results obtained for the
QAP. Finally, some conclusions of this work are drawn in Section 6.

2 Parallel Metaheuristics on GPU

2.1 Parallel Models of Metaheuristics

In general, for hybrid metaheuristics, executing the iterative process of a S-
metaheuristic (e.g. a local search) requires a large amount of computational
resources. Consequently, parallelism arises naturally when dealing with a neigh-
borhood. In this purpose, three major parallel models for metaheuristics can be
distinguished [6]: solution-level, iteration-level and algorithmic-level.

• Solution-level Parallel Model. The focus is on the parallel evaluation of a sin-
gle solution. Problem-dependent operations performed on solutions are par-
allelized. That model is particularly interesting when the evaluation function
can be itself parallelized, as it is CPU time-consuming and/or IO intensive.

• Iteration-level Parallel Model. This model is a low-level Master-Workermodel
that does not alter the behavior of the heuristic. The evaluation of solutions
is performed in parallel. An efficient execution is often obtained especially
when the evaluation of each solution is costly.

• Algorithmic-level Parallel Model. Several metaheuristics are simultaneously
launched for computing better and robust solutions. They may be heteroge-
neous or homogeneous, independent or cooperative, start from the same or
different solution(s), configured with the same or different parameters.

2.2 Metaheuristics on GPU Architectures

Recently, GPU accelerators have emerged as a powerful support for massively
parallel computing. Indeed, these architectures offer a substantial computational
horsepower and a high memory bandwidth compared to CPU-based architec-
tures. Due to their inherent parallel nature, P-metaheuristics such as evolution-
ary algorithms have been the first subject of parallelization on GPU: genetic
algorithms [7], particle swarm optimization [8], ant colonies [9] and so on.



Regarding S-metaheuristics, the parallelization on GPU architectures is much
harder, due to the improvement of a single solution. Therefore, only few research
works have been investigated for local search algorithms [10–12]. The same goes
on when dealing with hybrid metaheuristics on GPU, where there exists only
few parallelization approaches [3–5].

3 Design of Parallel Hybrid Metaheuristics on GPU

3.1 Parallel Evaluation of Solutions on GPU

The parallel iteration-level model has to be designed according to the data-
parallel single program multiple data model of GPUs. The CPU-GPU task par-
titioning is such that the CPU executes the entire sequential part of the handled
metaheuristic. The GPU is in charge of the evaluation of the solutions set at
each iteration. In this model, a function code called kernel is sent to the GPU
to be executed by a large number of threads grouped into blocks.

This parallelization strategy has been widely used for P-metaheuristics on
GPU especially for evolutionary algorithms due to their intrinsic parallel work-
load (e.g. in [7]). One of the major issues is to optimize the data transfer between
the CPU and the GPU. Indeed, the GPU has its own memory and processing
elements that are separate from the host computer.

When it comes to parallelization, the optimization of data transfers is more
prominent for S-metaheuristics. As a result, when designing hybrid metaheuris-
tics, the focus is on the embedded S-metaheuristic. In this purpose, we have
contributed in [13] for the parallel evaluation of solutions (iteration-level) for
local search algorithms. The key point of this approach is to generate the neigh-
borhood of the S-metaheuristic at hand on the GPU side. Such a parallelization
strategy makes it possible to minimize data transfers through the PCIe bus:
the solution which generates the neighborhood and the resulting fitnesses (see
Figure 1).

3.2 Parallelization Strategies for Hybrid Metaheuristics

The previous parallelization approach stands for one S-metaheuristic on GPU
according to the iteration-level. For designing GPU-accelerated hybrid meta-
heuristics that involve a population of solutions, the algorithmic-level parallel
model has to be deeply examined. In other words, multiple executions of S-
metaheuristics on GPU have to be considered. For achieving this, previous ap-
proaches from the iteration-level must be adapted for the algorithmic-level. In
this purpose, there are fundamentally two parallelization strategies:

• One neighborhood evaluation on GPU. This approach consists in evaluating
one neighborhood (a set of solutions) at a time on GPU. According to Fig-
ure 1, a possible interpretation could be to repeat the whole process (i.e.
the repetition of the execution of a single S-metaheuristic on GPU) to deal
with as many S-metaheuristics as needed. The drawback of this approach is
that the number of threads executed for one kernel on GPU might not be



Fig. 1: For S-metaheuristics, the generation and the evaluation of the neighborhood is
performed on GPU, and the CPU executes the sequential part of the search process.

enough to cover the memory access latency for few optimization problems.
As a result, in the rest of the paper, we will not consider this approach.

• Many neighborhood evaluations on GPU. In the second approach, many
neighborhoods are evaluated at a time on GPU. For instance, given a cer-
tain iteration, if k embedded S-metaheuristics have to be performed on k

solutions, the k associated neighborhoods will be generated and evaluated
on GPU at the same time. Regarding the thread organization, a thread is
associated with many neighbor calculations. For example, a thread block
might represent a particular neighborhood from a given S-metaheuristic.
Such a parallelization strategy deals with the issues encountered in the first
approach since 1) there are enough calculations to keep the GPU multipro-
cessors busy; 2) the creation overhead of multiple kernel calls is reduced.
However, in this second approach, homogeneous embedded S-metaheuristics
are required. In such a case, the semantic of the original sequential algorithm
might be altered.

4 Parallelization Strategies for Heterogenous Resources

4.1 Multiple S-metaheuristics on Multi-core Architectures

Parallelization approaches for hybrid metaheuristics on GPU presented in the
previous section only exploit one single CPU core. To exploit the remaining com-
putational capabilities, thread-based approaches on CPU have to be examined.

In general, for a hybrid metaheuristic, a certain number of independent tasks
is likely to be performed in parallel (e.g. a number of S-metaheuristic executions).
Therefore, the algorithmic-level parallel model is particularly adapted to CPU
architectures, since processes distributed among CPU threads do not necessary
share the same instructions and the same execution context.



Algorithm 1 Template for each thread on multi-core CPUs

Require: p tasks and number threads;
1: offset := p / number threads;
2: tid := get thread id();
3: for k = tid * offset; k < tid * offset + offset; k++ do

4: S-metaheuristic(k);
5: end for

6: if tid < (p mod number threads) then
7: k = offset * number threads + tid;
8: S-metaheuristic(k);
9: end if

Algorithm 1 provides a template for processing independent S-metaheuristics
on multi-core architectures. Basically, p tasks (i.e. p S-metaheuristics) have to be
equally distributed among the different threads. Each CPU thread is in charge of
executing a specific number of S-metaheuristics (lines 1 and 2). Such a realization
is performed in a sequential manner (lines 3 to 5). If the number of tasks is not
proportional to the number of available cores, remaining tasks will be assigned
to the first CPU threads (lines 6 to 9).

4.2 Hybrid Metaheuristics using Heterogeneous Resources

As previously said, one CPU thread is actually associated with the GPU-based
algorithm. The major idea for designing a hybrid metaheuristic is to manage
the other CPU threads to overlap the calculations performed on GPU. Never-
theless, most of the time, in hybrid metaheuristics, the search process evolves in
a synchronous manner at each iteration.

Algorithm 2 Hybrid metaheuristic template using heterogeneous resources

Require: m tasks, p tasks and n cores;
1: repeat

2: Hybrid metaheuristic pre-treatment on host side
3: S-metaheuristic multi-core(p,n-1) overlap
4: S-metaheuristic gpu(m)
5: Join results
6: Hybrid metaheuristic post-treatment on host side
7: until a stopping criterion satisfied

For dealing with this issue, we provide in Algorithm 2 a general template
for hybrid metaheuristics using heterogeneous resources. Let k be the number
of tasks to assess, m the number assigned to the GPU using one CPU core,
and p the number assigned to the remaining CPU cores. As quoted above, p
S-metaheuristics are executed in parallel on CPU cores (number of available
cores minus one) according to Algorithm 1 (line 3). Parallel techniques must be
performed to obtain overlapping calculations. Meanwhile,m S-metaheuristics are
evaluated on GPU as described in Section 3 (line 4). Then, a synchronization



point is set to gather all the obtained results (line 5). Post-treatment operations
on the hybrid metaheuristic can be applied afterwards. The process is repeated
until a certain criterion is satisfied.

4.3 Load Balancing Heuristic

The remaining issue is to find an efficient load balancing between 1) the GPU
using one single core; 2) the remaining CPU cores. Such a task repartition must
be done in accordance with the computational capability of heterogeneous re-
sources. We propose in Algorithm 3 a heuristic for doing this load balancing in
an efficient way. The major idea of this heuristic is to automatically tune previ-
ous m and p parameters during the first iterations of the hybrid metaheuristic
at hand.

Algorithm 3 Template for load balancing heuristic

Require: k tasks and n cores;
1: m := ceil (k / 2); p := floor (k / 2);
2: repeat

3: Hybrid metaheuristic pre-treatment on host side
4: gpu time := time (S-metaheuristic gpu(m));
5: cpu time := time (S-metaheuristic multi-core(p,n-1));
6: Hybrid metaheuristic post-treatment on host side
7: relat speedup := cpu time / gpu time;
8: if relat speedup > 1 then

9: potential p := p / relat speedup; mult coeff := k / (m + potential p);
10: m := round (m * mult coeff);
11: p := round (potential p * mult coeff);
12: else

13: potential m := m * rel speedup; mult coeff := k / (p + potential m);
14: m := round (potential m * mult coeff);
15: p := round (p * mult coeff);
16: end if

17: until a certain number of trials
Ensure: m tasks and p tasks;

At the beginning of the algorithm, tasks are equally divided between the GPU
and the CPU cores (line 1). Then, the time measurement of m S-metaheuristic
executions on GPU using one CPU core is accomplished (line 4). The same goes
on for the creation of p S-metaheuristics on the other available CPU cores (line
5). Thereafter, the relative speed-up between the two versions is calculated (line
7). If the time to evaluate m tasks on GPU is less important than the time to
compute p tasks on remaining CPU cores, then more tasks will be assigned to
the GPU during the next iteration (lines 8 to 11). Otherwise, more tasks will
be assigned to the remaining CPU cores (lines 12 to 16). In other words, m and
p values are proportionally adjusted with the relative acceleration factor. The
process is repeated until a certain number of trials.



5 Performance Evaluation

5.1 Fast Ant System

To validate the approaches presented in this paper, the fast ant system (FANT)
metaheuristic [14] has been considered. Basically, the major idea of FANT is to
construct each solution (active ant) in a probabilistic way from the values of the
decision variables in past searches by using a memory structure. To accelerate the
convergence process, a local search algorithm is performed each time a solution
is built. The process is repeated until a certain number of iterations is reached.
The reinforcement parameter R has an impact during the intensification phase
of the FANT metaheuristic.

The embedded local search is based on the selection of the best neighbor
at each iteration. Such a selection mechanism accepting non-improving neigh-
bors, will lead to cycles during the search process. Thereby, the number of local
iterations has been restricted to n

2 (n is the instance size).

5.2 Application to the Quadratic Assignment Problem

The well-known QAP arises in many applications such as facility location or data
analysis. The evaluation function has a O(n2) time complexity. In the next imple-

mentations, a neighborhood based on a pair-wise exchange (n×(n−1)
2 neighbors)

has been considered. For each iteration of a local search, (n−2)×(n−3)
2 neighbors

can be evaluated in O(1) and 2n− 3 can be evaluated in O(n).
From an implementation point of view, since calculations may be irregular

according to the given neighbor, threads are reorganized in such a way that
threads belonging to a same group of 32 threads (a.k.a. a warp) execute the same
computation. In other words, groups of threads which perform O(1) and O(n)
calculations are clearly separated. Such a mechanism allows reducing threads
divergence due to conditional branches. Furthermore, to minimize the idle time
due to irregular computations, 2n threads are associated with O(n) calculations

and (n−1)
2 threads execute n × O(1) calculations per local search. In this way,

each thread block corresponds to one neighborhood evaluation.

5.3 Configuration

Experiments have been carried out on top of two different configurations. The
first one is an Intel Core i7 930 with 4 cores cadenced at 2.8 Ghz using a
NVIDIA GTX 480 graphic card (480 GPU cores). The second configuration
is a bi-processor Intel Xeon E5520 with 2×4 cores cadenced at 2.26 Ghz using
a Tesla C1060 (240 GPU cores). Since the first card provides on-chip memory
for L1 cache memory, techniques to cache input data using the texture memory
have only been applied to the second configuration. Posix threads have been
considered for multi-core versions.

The average time has been measured in seconds for 30 runs, and accelera-
tion factors are reported in comparison with a single CPU core. The standard
deviation is not represented since its value is close to zero.



Table 1: Measures in terms of efficiency for the QAP using a pair-wise-exchange neigh-
borhood. 4 FANT implementations on different architectures are considered.

Instance

Core i7 930 2.8Ghz Xeon E5520 2.26Ghz

GeForce GTX 480 Tesla C1060

4 CPU cores 8 CPU cores

480 GPU cores 240 GPU cores

Multi-core GPU Heterogeneous Multi-core GPU Heterogeneous
tai50a 10.5×2.4 2.1×11.8 2.1×11.9|×14 .2 7.5×3.0 3.2×7.0 2.3×9.8|×10 .0

tai60a 17.8×2.4 3.4×12.7 3.3×13.1|×15 .1 12.7×3.1 5.4×7.3 3.8×10.4|×10 .4

tai80a 41.2×2.6 7.5×14.4 7.0×15.4|×17 .0 29.4×3.3 12.0×8.1 8.5×11.4|×11 .4

tai100a 81.7×2.7 15.6×14.0 13.9×15.8|×16 .7 52.3×3.8 22.3×9.0 16.2×12.3|×12 .8

tai150b 288.1×2.7 73.7×10.6 58.9×13.2|×13 .3 138.7×5.5 74.3×10.3 50.3×15.2|×15 .8

tai256c 1620.5×2.7 382.7×11.3 373.2×11.6|×14 .0 610.1×6.9 615.9×6.9 351.9×12.1|×13 .8

5.4 Experimentation

The set of experiments consists in measuring the performance of proposed par-
allelization schemes. For doing this, four FANT versions have been implemented
for the QAP. A CPU implementation using one single core, a multi-core version,
a GPU implementation and another one using all the available heterogeneous
resources. For all versions, 50 neighborhood evaluations (i.e. 50 active ants per
global iteration) at a time have been considered. Regarding the semantic of the
algorithms, there is no difference of the quality of solutions provided by both
versions. The multi-core version does not intentionally utilize one CPU core in
order to highlight the performance improvements of the heterogeneous version
(since one core is associated with the GPU). The number of global iterations
has been fixed to 10000, which corresponds to a realistic scenario in accordance
with the algorithm convergence. Experimental results are reported in Table 1.
The CPU column is not represented since the associated values can be deduced
from the other columns.

Regarding the multi-core version (number of CPU cores minus one), the ob-
tained acceleration factors grow with the instance size. For the first configuration
using three cores, these speed-ups linearly vary from ×2.4 to ×2.7. This is not
exactly the same phenomenon for the second configuration where acceleration
factors alternate from ×3.0 to ×6.9. Indeed, for smaller instances, the overhead
creation is significant in regards with the computational time. This is mainly
due to the important number of threads to be created and synchronized (seven
threads). But, as long as the size increases, the acceleration factor converges to
the expected value.

For the GPU implementation, the obtained speed-ups are quite significant
but relatively modest. They alternate from ×10.6 to ×14.4 for the first configura-
tion, and from ×7 to ×9.3 for the second configuration. Such performance results
are limited since most of move evaluations can be performed in O(1). Therefore,
the amount of computations is not enough to fully cover the memory access
latency. Furthermore, the application is memory bound since non-coalescing ac-
cesses to the global memory drastically reduces the performance of the GPU
implementation. This is due to high-misaligned accesses present in flows and
distances matrices in QAP.



Regarding the heterogeneous version taking advantage of all CPU cores, the
performance improvements in comparison with the GPU implementation are
significant. Indeed, for the first configuration corresponding to three additional
CPU cores, acceleration factors vary from ×11.6 to ×15.8, which corresponds
to an improvement between 1% and 25%. For the second one with seven addi-
tional cores, better performance improvements between 39% and 75% (speed-ups
varying from ×9.8 to ×15.2) can be observed.

To assess the efficiency of the heterogeneous version, potential acceleration
factors are represented in italic in sub indices. These theoretical values are ob-
tained by adding the speed-ups obtained for both multi-core and GPU versions.
The performance difference, which occurs between the obtained results and the
potential speed-up, is due to synchronization points between the GPU and the
other CPU cores. One can clearly see that the acceleration factors obtained for
the heterogeneous version are not so far from the expected theoretical ones. This
is particularly the case for the second configuration containing more CPU cores.
As a consequence, the heuristic for finding a parameters auto-tuning provides
an efficient way to deal with load balancing for heterogeneous resources.

6 Conclusion

Hybrid metaheuristics having complementary behaviors allow improving the ef-
fectiveness and robustness in optimization. Their exploitation for solving real-
world problems is possible only by using a great computational power. High-
performance computing based on heterogeneous resources is recently revealed as
an efficient way to use the huge amount of resources at disposal. However, the
exploitation of parallel models is not trivial and many issues related to the task
repartition between the GPU and multi-core architectures have to be faced.

In this paper, we have investigated on different parallelization strategies for
hybrid metaheuristics on such heterogeneous resources. In the proposed paral-
lelization approaches, the CPU manages the metaheuristic process and let the
GPU be used as a coprocessor dedicated to intensive calculations. Thereafter,
parts of these computations are distributed among the available CPU cores. Such
a task repartition is provided by an efficient heuristic for parameters tuning.

The designed and implemented approaches have been experimentally vali-
dated on the QAP using the FANT metaheuristic. The evaluation of a neighbor-
ing solution in the QAP can be performed most of the time in constant time. As
a result, for problems with modest GPU accelerations, the performance improve-
ment provided by multi-core CPUs is particularly significant (up to 75% for eight
CPU cores). In particular, we showed that our methodology enables gaining to a
×15 factor in terms of acceleration compared with a single core architecture. A
perspective of this work will be to implement the proposed approaches for other
combinatorial optimization problems, in which the computational complexity of
move evaluations is more prominent.

With the arrival of GPU resources in clusters of workstations and grids, the
next objective is to examine the conjunction of GPU computing and distributed
computing to fully and efficiently exploit the hierarchy of parallel models of



metaheuristics. Indeed, since all processors are currently multi-core, performance
of GPU-based algorithms might be drastically improved. The challenge will be
to find the best mapping in terms of efficiency of the hierarchy of parallel models
on the hierarchy of CPU-GPU resources provided by multi-level architectures.
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