
Formulation and Algorithms for Creating Parking Plans

in a Public Transportation Company

Thé Van Luong and Éric D. Taillard

University of Applied Sciences of Western Switzerland, HEIG-VD, Department of

Industrial Systems

Abstract

Creating parking plans for the vehicles of one of the largest public transportation

company of Switzerland is a difficult and long task to do by hand. This problem

is formulated as an integer linear program. Commercial MIP solvers can only

solve small instances. Heuristic algorithms were developed for this problem.

Yet, the company uses daily the software embedding the algorithms presented

in this article. For an easier management of vehicles in depots, the company

requires using as few parking lanes as possible while grouping vehicles of the

same type. This sub-problem is first solved and several good solutions are

stored. Then, a solution of this first sub-problem is used to fix the groups of

vehicles and the departure hour of each vehicle is assigned while taking into

account various practical constraints. This second sub-problem is approached

with taboo search metaheuristics in case an exact solution cannot be computed

in a reasonable time. If no appropriate solution is found, the second sub-problem

is solved again by fixing other groups.

The algorithms designed to solve both sub-problems are compared with a

commercial MIP solver, assessing the difficulty of this industrial problem.

Keywords: industrial problem; metaheuristics; logistic

1the-van.luong@heig-vd.ch, eric.taillard@heig-vd.ch

Preprint submitted to Elsevier May 27, 2021

1. Introduction

The placement of vehicles leaving a depot for performing travels of services

is certainly not new, but the literature for an automated placement in the depot

is very limited.

Apart from industrial problems, some depot models proposed in previous5

works in [1, 2, 3, 4, 5, 6] are rather simplified: unique vehicle length, single

vehicle type, an unlimited length of lanes, no strict respect on departure times,

no interaction between vehicles leaving the depot on adjacent lanes and so on.

Furthermore, the objective function used in algorithms from the works quoted

above is mainly based on the minimization of the number of shunting movements10

(i.e. manœuvers) needed to reposition vehicles that are not properly placed. In

practice, making a vehicle dispatching and performing such movements might

be not acceptable since it represents a loss of time for agents working in a depot

and it will systematically result in departure delays. In fact, the formalization

proposed in these works might be restricted only to academic problems.15

This limited literature might be explained by the fact each company has its

own operational constraints and each depot its own characteristics.

So, we had to imagine a methodology from scratch when one of the largest

Swiss public transportation companies asked us to design algorithms for the au-

tomatic placement of vehicles in its depots. The company owns several hundred20

different types of vehicles and has almost 10 kilometers of lanes in depots for

parking them. Furthermore, many operational constraints make this industrial

problem much complex than an academic one.

A key idea when solving a problem of large size with numerous constraints

is to decompose it into a series of sub-problems easier to solve. This reduces the25

search space of the combinatorial problem which is prohibitively large. Then,

the sub-problems are tentatively solved.

Two sub-problems were identified for constructing parking plan:

1. The group positioning.

2. The schedule assignment.30

2

This decomposition is based on the good practices imposed by the company

where the grouping of vehicles of the same type and the maximization of the

available space are the most important objectives.

Details of the methodology leading to this decomposition are presented in

[7] as well as complete information on this industrial problem An evaluation of35

the quality of parking plans generated by the software are also compared with

those ones manually designed by the logistics manager in this work.

The present article focuses on the two sub-problems and the algorithms

designed to solve them.

Section 2 briefly describes the problem. Sections 3 and 4 introduce mathe-40

matical formulations for the two sub-problems. Section 5 describes the heuristics

algorithms that were implemented in our software. Section 6 provides numerical

results and compares these algorithms with the solutions produced by a piece

of general optimization software.

2. Problem description45

Most vehicles are leaving depots at three different periods of the day: early

in the morning, noon and late afternoon.

Several reference plans are designed by the manager in charge of the depots.

These parking plans are adapted each day for taking into account additional

services (e.g. special events or vacations) and possible changes that might occur.50

Regarding the process inside a depot, hundreds of drivers are assigned to

vehicles. Each vehicle must be of appropriate type and characteristics for per-

forming the given service. Each service that must start exactly at the time

specified by the timetable.

The position of each vehicle in the depot must be determined according to55

operational constraints (good practices) to ensure a smooth and reliable process.

To avoid an ingoing vehicle having to wait for another vehicle of a different

type that is late and that must be parked in front of it on the same lane, a

good practice is to have lanes composed of a single vehicle type. So, a vehicle

3

coming back to the depot can be immediately parked at the right place for its60

next departure. To avoid drivers having to search in the depot for a vehicle of

the right type and characteristics, another good practice is to group the lanes

containing the vehicles of same type and functionalities.

A vehicle type or model is called a series by the company. A physical vehicle

servicing a given line according to a given timetable is referred to as a schedule.65

In addition to a set of vehicle series that must be used for a given schedule,

the latter may also be specified by additional characteristics known as schedule

type. This is, for instance, a vehicle equipped with a video camera or with an

automatic ticket distributor or the fact that the vehicle must be back to the

depot before 10 a.m.70

The company owns several depots, located at various places. Each depot

can be managed independently. Indeed, each schedule is already assigned by

the company to a given depot and the vehicles are always supposed to return

to the depot where they started their service.

2.1. Criteria for constructing a parking plan75

As input, a file extracted from the database contains a list of schedules or-

dered by day type and by departure time. As output, a solution is a permutation

of these schedules with the corresponding lanes that have been assigned.

Thus, a parking solution associates each schedule with a lane identifier and

a position in the assigned lane.80

The construction of a parking plan relies on different criteria:

• Physical hard constraints: the total length of vehicles stored on a lane,

the processing of each vehicle in a lane one behind the other, the series

interdiction on some lanes (e.g. megabuses that cannot be manœuvered),

the equipment compatibility of vehicles on lanes (rails and overhead wires)85

and, for the tramways, their direction (uni- and bidirectional vehicles and

lanes).

• Topological constraints of the depot: vehicles in front of some lanes must

4

leave before the other vehicles located in front of other lanes (trolley and

tramway lanes).90

• Good practices (soft constraints) imposed by the company leading to a

better organization of depots by order of importance:

1. The grouping of schedules with the same vehicle series on contiguous

lanes.

2. The maximization of free lanes and then the occupied space. Free95

lanes can store vehicles out of order when all repairing stations are

in use.

3. The grouping of schedule type (particularities) for the same vehicle

series.

4. The respect of minimal and ideal time periods between two depar-100

tures.

In practice, there are more than 200 schedules and 60 lanes for the most

constrained delivery and the largest depot, leading to over 300 possible positions

on lanes for each bus schedule.

The number of combinations is huge and traditional permutation-based105

methods might fail to deliver a solution compatible with production require-

ments.

To deal with this issue, our software decomposes the problem into a series

of sub-problems easier to solve. This decomposed approach is based on sim-

ilar principles than a column generation and is motivated by the hierarchical110

objectives (hard constraints and good practices) presented above.

The first sub-problem (i.e. the group positioning problem) is to maximize

the grouping of vehicle series on lanes and the number of free lanes (practices

1. and 2.). This sub-problem is exclusively based on vehicle series.

Thereafter, the schedule assignment sub-problem is to assign departure times115

on vehicles while trying to maximize the grouping of schedule types within the

same vehicle series and respecting time periods between departures (practices

3. and 4.).

5

2.2. Illustration of a solution for a sub-depot

The following case gives an insight of a solution for a portion of a depot of120

a given morning delivery.

Figure 1(a) provides an illustration of a solution for the group positioning

problem. Based on vehicle lengths, vehicles of the same series are grouped, the

number of free lanes is maximized and then the occupied space is maximized.

Each rectangle in this figure represents a vehicle associated with a series.125

Each column corresponds to a parking lane specified by its length and its equip-

ment (rail, electrical wire).

On the one hand, vehicle were arranged to group schedules representing the

S50, S59, S37, S33 and S38 series. On the other hand, they were arranged in

such a way that the number of free lanes is maximized without cutting any130

vehicle series.

The schedule assignment sub-problem (see Figure 1(b)), is solved by starting

from the solution established during the group positioning phase.

From established positions of groups of vehicles series, the goal is to de-

termine for each group the best permutation of schedules that maximizes the135

grouping of schedule types and that respects minimal and ideal time periods

between two departures in the same lane.

Schedules are specified by the departure hour and a color corresponding to

schedule type (particularities). The other information depicted in brackets is

the line number.140

In this simple case (i.e. 35 schedules and 11 lanes), the number of possible

combinations is already significant.

3. Group positioning problem

The group positioning problem is the first step to create a parking plan.

Solving this sub-problem aims at calculating the best position of schedules145

on the lanes that first maximizes the grouping of vehicles of the same series,

then the number of free lanes and the occupied space.

6

S37 S38S33S59S50

(a) Group positioning problem. Based on vehicle lengths, the goal is to

group vehicle series while maximizing the available space.

����

�����

����

�����

�	�

�����

�	�

�
���

����

�����

�	�

�����

����

�����

���

�����

���

����

�
�

�
��

�
�

����

���

�����

��	�

�����

���

���
�

�
�

�����

��	�

����

�
�

�����

���

�����

�
�

�
���

���

�����

���

�����

���

�����

���

���
	

���

�����

���

�����

���

����

���

�����

���

�����

�
�

�����

�
�

�����

S37 S38S33S59

���

����

���

�
���

���

�
�
	

����

�����

����

����

S50

(b) Schedule assignment problem. From previous positioned groups, it

consists of assigning departure times while grouping schedule types.

Figure 1: Example of a solution for a portion of a depot of a given morning delivery.

7

This problem is exclusively based on vehicle lengths while respecting hard

constraints; other particularities such as the schedule type are discarded at this

step.150

While solving the problem, hard limitations, blocking topological constraints

and good practices must be satisfied as well: the total length of vehicles on a

lane (taking into account the spacing between the vehicles), the lane equipment

and topology adapted to the vehicle series, the tramway direction and applying

a single vehicle series on a lane.155

3.1. Mathematical formulation

3.1.1. Sets

• I: Logical vehicles to be placed.

• S: Vehicle series (including 0 indicating that a lane is empty).

• V : Lanes where the vehicles can be parked.160

• Vs ⊂ V, s ∈ S: Subset of lanes where vehicle series s can be parked.

3.1.2. Data

• si: Series of vehicle i.

• li: Length of vehicle i.

• cv: Capacity (length) of lane v.165

3.1.3. Variables

• xiv : Vehicle i ∈ I is on lane v ∈ Vsi (xiv = 1) or not (xiv = 0)

• ysv: Lane v ∈ Vs is occupied by vehicle series s (ysv = 1) or not (ysv = 0)

To obtain a linear objective, it is possible to introduce variables zss′v whose

value must be set to: zss′v = ysv · ys′(v+1). This is automatically done by a170

solver like Gurobi and does not significantly influence its computational time.

8

3.1.4. Constraints

• A vehicle is assigned to exactly one lane:

∑

v∈Vsi

xiv = 1 ∀i ∈ I (1)

• A lane is occupied by exactly one series:

∑

v

ysv = 1 ∀s ∈ S (2)

• A vehicle can be placed only on a lane with the right series:175

xiv ≤ ysv ∀i ∈ I, ∀v ∈ Vsi , ∀s ∈ S (3)

• The sum of vehicle lengths on a lane cannot exceed the lane capacity:

∑

i

li xiv ≤ cv ∀v ∈ Vsi (4)

3.1.5. Objectives

• First objective consists of grouping vehicle series, i.e. minimizing the

number of different series in adjacent lanes:

obj1 : Minimize
∑

s6=0

∑

s′ 6=s

|V |−1
∑

v=1

ysv · ys′(v+1) (5)

• Second objective is to minimize the number of occupied lanes (or maxi-180

mizing free lanes):

obj2 : Minimize
∑

s6=0

∑

v

ysv (6)

• Third objective is to minimize the remaining space on each lane (or max-

imizing the occupied space):

obj3 : Minimize
∑

s6=0

∑

v

cv ysv (7)

9

• The global and hierarchical objective for the group positioning is:

Minimize p1 obj1 + p2 obj2 + obj3,where p1 and p2 are weights such that

p1 ≫ obj2 and p2 ≫ obj3.

(8)

The set partitioning problem (which is NP-complete, [8]) can be polynomi-185

ally transformed into this group positioning problem by considering two vehicle

series having exactly the same number of vehicles and lane capacities equal to

the weight of the elements of the set partitioning problem. This shows that the

positioning of groups of vehicle series is NP-complete.

4. Schedule assignment problem190

Once all the groups of vehicle series are placed, the second sub-problem to

obtain a parking plan is the assignment of schedules.

The goal is to assign schedules on positioned groups in such a way schedule

types within a vehicle series are grouped. As a second hierarchical objective,

another good practice is to respect as much as possible minimal and ideal time195

periods separating two departures.

In addition, a feasible solution must respect the remaining hard and topolog-

ical constraints: chronological departure times on each lane, tramway direction

and weak blocking that may happen (i.e. a vehicle in front of a lane blocks the

vehicles in front of adjacent lanes).200

4.1. Mathematical formulation

4.1.1. Sets

• I: Schedules (or physical vehicles) to be placed.

• V : Lanes where the vehicles must be parked.

• Vi ⊂ V, i ∈ I: Subsets of lanes where vehicle i can be parked.205

• N ⊂ V : Lanes for which the vehicle in front must leave before those in

front of the next adjacent lane.

10

• P ⊂ V : Lanes where the vehicle in front must leave before those in front

of the previous adjacent lane.

4.1.2. Data and parameters210

• hi: Departure time of vehicle i (i ∈ I).

• hmin: Minimal difference of time between departures on the same lane

(hmin = 10).

• hideal: Ideal difference of time (hideal = 20).

• nv: Number of vehicles to be placed on lane v (v ∈ V)215

• tij : Schedule type of vehicle i and j are similar (tij = 1) or not (tij = 0).

• wij : Reward for respecting departure time between hmin and hideal for

vehicles i and j (with hj > hi)

wij =























1.5 · hmin hmin ≤ hj − hi ≤ hideal

hmin hj − hi > hideal

−4 · (hmin − (hj − hi)) hj − hi < hmin

4.1.3. Variables

• xivp =











1 if schedule i is on lane v at position p

0 otherwise

(i ∈ I, v ∈ Vi, 1 ≤ p ≤ nv)

4.1.4. Constraints220

• A vehicle is assigned to exactly one position:

∑

i|v∈Vi

xivp = 1 ∀v ∈ V, 1 ≤ p ≤ nv (9)

• A position is occupied by exactly one vehicle:

∑

p=1

nvxivp = 1 ∀i ∈ I, ∀v ∈ Vi (10)

11

• The departure time of any vehicle must be prior to the vehicle following

it:

hi xivp ≤
∑

j 6=i

hj xjv(p+1) ∀i ∈ I, ∀v ∈ Vi, 1 ≤ p < nv − 1 (11)

• Weak blocking constraints:225

hi xiv1 ≤
∑

j 6=i

hj xj(v+1)1 ∀v ∈ N, ∀i ∈ I (12)

hi xiv1 ≤
∑

j 6=i

hj xj(v−1)1 ∀v ∈ P, ∀i ∈ I (13)

4.1.5. Objectives

• Maximize the number of schedules of the same type (color) on each lane.

obj1 : Maximize
∑

i

∑

j 6=i

∑

v∈Vi

nv−1
∑

p=1

tij (xivp · xjvp+1
) (14)

• Maximize the number of schedules of the same type between successive

lanes (i.e. comparing the last vehicle of a lane with the first vehicle of the230

next lane):

obj2 : Maximize
∑

i∈I

∑

j 6=i

∑

v,v+1∈Vi

tij (xivnv
· xj(v+1)1) (15)

• Maximize best practices between any two departures (i.e. penalizing de-

partures that do not respect a minimal time and rewarding departures

that respect an ideal time):

obj3 : Maximize
∑

i

∑

j 6=i

∑

v∈Vi

nv−1
∑

p=1

wij (xivp · xjv(p+1)) (16)

• The global and hierarchical objective for the schedule assignment problem235

is:

Maximize m (obj1 + obj2) + obj3, where m is such that m≫ obj3 (17)

12

The respect of good practices is taken into account by defining a hierarchical

objective function that assigns a penalty for each good practice that is not

respected. A large penalty is given if schedule types are not clustered (mixed

schedules on the same lane or all vehicles of a schedule type not on contiguous240

lanes). A smaller penalty is given if the time spacing between two departures is

not between minimal and ideal values. The values of penalties are determined

in such a way one has hierarchical objectives.

For a few events, the manager needs to regroup particular bus lines that go

to the district of international organizations [7]. Another similar hierarchical245

objective taking line groupings might be added between obj2 and obj3.

5. Heuristic solution

Since a piece of general optimization software might not be adapted to solve

this industrial problem, this section describes the algorithms that were imple-

mented in our software. The goal is to provide as many details as possible, so250

that the solutions to group positioning and schedule assignment can be repro-

duced.

The philosophy beyond the algorithms is simple: if an exact procedure fails

to rapidly solve a sub-problem, then a dedicated heuristic is executed.

5.1. Group positioning problem with contiguous blocks255

For positioning groups of vehicle series, the key idea of the proposed algo-

rithm consists of creating contiguous blocks of schedules with the same vehicle

series and finding the best position of these blocks on the available lanes. Blocks

of schedules are considered as an inseparable entity.

Algorithm 1 provides the steps of the group positioning heuristic. It requires260

all series, the set of all groups of vehicle series that must be parked in the lanes

of a depot, specified by the set lanes. First, for all series of vehicles, all the

possible positions for placing a compact block grouping all the vehicles of a

series are computed. This approach is feasible for the problem instances under

13

consideration since the number of different positions is limited to a few dozens.265

Then, the best position for each group is calculated by solving a kind of set

partitioning problem with a backtracking algorithm (Algorithm 2).

Algorithm 1 Group positioning

Require: all series and lanes

1: for each current group of all series do

2: group lanes← lanes

3: Filter in group lanes the lanes for which current group is forbidden

4: group position← ∅
5: for i← 1, . . . , |group lanes| do
6: if all vehicles of current group can be placed in an inseparable block

starting from lane i while verifying hard constraints for current group

then

7: current position ← smallest inseparable block starting from lane i

that contains all vehicles of current group

8: group positions← group positions ∪ current position

9: end if

10: end for

11: all positions[current group]← group positions

12: end for

13: series groups← Algorithm 2(all series, all positions, lanes)

Ensure: series groups

5.1.1. Backtracking algorithm to position all groups

Once all the possible block positions are generated, an enumerative method

based on a depth-first search is performed to position all groups optimally. This270

is done by Algorithm 2 which requires all positions provided by Algorithm 1 in

addition to all series and lanes.

The algorithm enumerates all possible positions for the first group, then

the second one with remaining lanes and so on. Since groups are considered

14

as inseparable blocks and their number is limited, the procedure checking if a275

group can be positioned on remaining lanes is very fast.

The exact method is able to rapidly find an optimal solution for small in-

stances. For larger ones, the algorithm execution might be stopped after a

certain period of time (user-defined parameter).

In any cases, a maximum of 10 best solutions found so far is saved. They are280

identified using equation (6) in Section 3 as first objective and then equation (7).

Keeping several solutions allows using different vehicle series grouping if the best

grouping solution reveals to be infeasible during the schedule assignment phase.

5.2. Group positioning with group cuts

Cutting groups of vehicle series occurs in few situations when the combina-285

tion of group positioning and schedule assignment has failed. For example, if it

is not possible to have only inseparable blocks of vehicle series or if the decisions

taken at a step may over-constrain the problem for the next step.

In all cases, the first objective is to maximize the number of free lanes when

cutting groups.290

Then, as a second hierarchical objective, the cuts are done in such a way

that: a) the distance of grouping of vehicle series in the lanes is minimized b) the

occupied space on each lane is maximized.

Algorithm 3 provides details about the backtracking algorithm that position

group cuts.295

According to what is done by the company, the groups often cut are the

series involving the highest number of vehicles and the simplest constraints to

satisfy. In practice, this corresponds to buses. As a consequence, the first groups

to be sorted must be the ones with the vehicles with the hardest constraints (the

lane equipment and the tramway direction).300

Thereafter, the main part of the algorithm aims at determining the best

position (Algorithm 4) for the first group on all available lanes, then the second

one on remaining lanes, and so on.

15

Algorithm 2 Backtracking to position all groups

Require: all series, all positions and lanes

1: Sort all series by increasing order of possible positions on lanes (it quickly

allows pruning unwanted nodes and detecting if no solution is feasible)

2: for each position of all positions[1] do

3: Create node with node.current group ← all series[1],

node.current position ← position, node.remaining lanes ← lanes

and node.used lanes← ∅
4: Push node to pool

5: end for

6: while pool 6= ∅ AND NOT end condition do

7: Pop node from pool

8: if node.current position is available on node.remaining lanes then

9: Update node.used lanes and node.remaining lanes with

node.current position

10: if node.current group is the last of all series (all vehicules placed)

then

11: Compute the score of the feasible solution (number of free lanes

given by |node.remaining lanes| (equation (6), Section 3) and the

remaining space in node.used lanes (equation (7))

12: all solutions← all solutions ∪ solution

13: else

14: for each position of all positions[node.current group+ 1] do

15: Create new node with new node.current position ← position,

new node.current group ← node.current group + 1,

new node.remaining lanes ← node.remaining lanes,

new node.used lanes← node.used lanes

16: Push new node to pool

17: end for

18: end if

19: end if

20: end while

21: series groups ← 10 best solutions from all solutions

Ensure: series groups

16

Algorithm 3 Backtracking to position all cut groups

Require: all series and lanes

1: Sort all series by decreasing constraint difficulty and then by increasing

number of vehicles

2: Create node:

node.current group← all series[1],

node.remaining lanes← lanes, node.used lanes← ∅
3: Push node to pool

4: while pool 6= ∅ do
5: Pop node from pool

6: if node.current group is the last of all series (all vehicules placed) then

7: Retrieve the feasible solution from node.used lanes and all series

8: all solutions← all solutions ∪ solution

9: else

10: if vehicle lengths of node.current group not higher than length of

node.remaining lanes then

11: group positions←Algorithm 4(node.current group, node.remaining lanes)

12: if group positions 6= ∅ then
13: for each position of group positions do

14: Create new node:

new node.used lanes← node.used lanes,

new node.remaining lanes← node.remaining lanes,

new node.current group← node.current group+ 1

15: Update new node.used lanes and new node.remaining lanes

with position

16: Push new node to pool

17: end for

18: end if

19: end if

20: end if

21: end while

22: series groups ← 10 best solutions from all solutions

Ensure: series groups 17

For some groups, the number of best positions (partial solutions) can be

multiple (Pareto Front). In practice, this number is very low for the first groups.305

Hence, the whole front of solutions of each group can be used for subsequent

computations.

Then, the list of global solutions is sorted according to the second objective of

the hierarchical evaluation function (minimization of distance within a cut group

and maximization of the occupied space on used lanes) for each combination of310

groups, keeping a maximum of 10 solutions.

5.2.1. Backtracking to generate all best positions

Given a group and a set of lanes, the internal backtracking (Algorithm 4) is

able to generate all best cut positions.

The key idea is to construct all best possible positions in an enumerative315

way by starting to check the feasibility of all possible sub-lanes of size one, then

all the sub-lanes of size two and so on.

Determining in advance the minimal number of lanes required allows quickly

pruning non-promising nodes.

The second hierarchical objective (equations (5) and (7)) is used to generate320

a set of Pareto solutions with a maximum number of free lanes, limiting the

number of solutions with cut positions. Note that a solution with the minimum

distance between 2 sub-groups of the same series, corresponds to a group that

is not cut.

The exact algorithm finds an optimal solution or a Pareto optimal set for325

small instances. For larger instances, the algorithm might be stopped after a

certain time (parameter set by the user).

5.3. Schedule assignment problem

Once the positioning of groups of vehicles series on the lanes is determined,

the next problem is to find for each group the best assignment of schedules on330

these lanes. The best solution from the group positioning problem is extracted

18

Algorithm 4 Generate best positions for group cuts

Require: group and lanes

1: minimal number lanes is determined with a greedy heuristic by sorting

lanes by decreasing order of lengths and then by placing vehicles on them

2: for each lane of lanes do

3: Create node: node.sub lanes← lane

4: Push node to pool

5: end for

6: while pool 6= ∅ AND NOT end condition do

7: Pop node from pool

8: if total vehicle length is above the length of node.sub lanes then

9: if group is compatible with hard constraints of node.sub lanes AND

|node.sub lanes| < minimal number lanes then

10: for each lane ∈ lanes \ node.sub lanes do

11: Create new node: new node.sub lanes← node.sub lanes ∪ lane

12: Push new node to pool

13: end for

14: end if

15: else

16: For the feasible solution, compute obj1, the grouping distance objective

between sub-groups of vehicles of the same series (equation (5)) and

obj3, the occupation of lanes (equation (7))

17: if solution non-dominated according to obj1 and obj3 then

18: Update the archive of non-dominated solutions and best positions

19: Save current position associated with group and node.sub lanes

20: best positions← best positions ∪ current position

21: end if

22: end if

23: end while

Ensure: best positions

19

and assignments of schedules are done group by group independently with Al-

gorithm 5. Since there might be possible interactions between groups, several

global assignments are tentatively performed by changing the order in which

each group is treated.335

5.3.1. Separation of groups of vehicle series

Groups of vehicle series can be divided into two categories:

• Independent groups for which the schedules can be assigned in an inde-

pendent manner without interacting with other vehicle series (buses in

most cases).340

• Dependent groups for which the schedule assignment could have an im-

pact on the future assignment of other group positions on adjacent lanes

(mostly for trolleybuses and tram-cars). In this case, the algorithm tries

different combinations until reaching one that works. It is not necessary

to try all combinations exhaustively: it is sufficient to think about only345

combinations involving adjacent groups.

If it is not possible to construct valid parking plans because of dependent

groups, the assignment is restarted with the second best solution from the

group positioning problem and so on.

Algorithm 5 shows how assignments are processed for both dependent and350

independent groups.

5.3.2. Process of schedule assignment

Algorithm 6 details the different steps to assign schedules of a given group.

Basically, a time-limited branch-and-bound is used to construct a solution.

For dependent groups, the procedure needs to take into account schedules355

that have been previously assigned to other groups (tentative parking plans).

As said above in Algorithm 5, the order of execution of groups may lead to a

non-feasible solution.

20

Algorithm 5 Global schedule assignment

Require: series groups

1: Get one group solution from series groups

2: Separate group solution into: dependent groups and independent groups

3: for each i group of independent groups do

4: parking plan← Algorithm 6(i group, ∅)
5: parking plans← parking plans ∪ parking plan

6: end for

7: Determine combination list, containing all the permutations of adjacent

dependent groups

8: repeat

9: Get current combination from combination list

10: tentative parking plans← ∅, error ← false

11: for each d group of current combination AND NOT error do

12: tentative parking plan←Algorithm 6(d group, tentative parking plans)

13: if tentative parking plan = ∅ then
14: error ← true

15: else

16: tentative parking plans ← tentative parking plans ∪
tentative parking plan

17: end if

18: end for

19: until NOT error OR combination list = ∅
20: if NOT error then

21: parking plans← parking plans ∪ tentatives parking plans

22: end if

Ensure: parking plans

21

If the sub-problem cannot be solved in an exact manner, a taboo search

metaheuristic is used to improve the solution obtained.360

Algorithm 6 Schedule assignment for a single group

Require: current group and tentative parking plans

1: Apply a (time-limited) branch-and-bound for current group with

tentative parking plans to obtain schedule solution

2: if schedule solution = ∅ then
3: tentative parking plan = ∅
4: else

5: if schedule solution not optimal then

6: Apply a taboo search to refine schedule solution

7: end if

8: tentative parking plan← tentative parking plan ∪ schedule solution

9: end if

Ensure: tentative parking plan

Once the schedule assignment is found for the group at hand, the process is

repeated for other groups until resulting parking plans are completed.

Templates of branch-and-bound and taboo search are not detailed since they

do not present any implementation particularities or difficulties. Specific details

are emphasized below though.365

5.3.3. Branch-and-bound to build a schedule assignment

For each group of vehicle series, a set of lanes is initially available with

locations for which all the schedules of the group must be assigned. The method

tries in an enumerative way to put a schedule on the first location, another

schedule on the second one and so on. A depth-first search quickly allows370

constructing a feasible solution.

The evaluation function is hierarchical (implemented by aggregating objec-

tives with a strong difference of weights):

1. Grouping by schedule type (equations (14) and (15)). This part evaluates

22

the number of groups done on the same lane and on adjacent lanes.375

2. Respect of the minimal time period between two departures (equation (16)).

The lower bound computation is based on the potential maximum grouping

of schedule types that could be obtained if the exploration goes further. This

estimate is often lower than the best solution found so far and allows pruning a

very high number of unwanted solutions.380

The algorithm also includes another natural pruning procedure based on

the equipment compatibility, the tramway direction, schedule compatibility and

topological constraints on adjacent lanes (trolleybus and tramways).

The exact algorithm quickly finds an optimal solution for small instances.

For larger ones, the algorithm stops after a user-defined time limit and returns385

the best feasible solution found.

5.3.4. Taboo search to improve the schedule solution

The taboo search is based on moves that exchange two schedules. This

exchange operator does not allow transforming a feasible solution into a non-

feasible one. Taboo conditions are implemented with a simple array that stores390

the iteration at which a move can be used again. In practice, this method

provides better results (for a time-limited execution) than taboo conditions that

prevent from replacing the two same schedules to the same position.

The taboo duration is set to the number of moves divided by 16 (determined

by a parameter tuning heuristic). A simplified variant of the pruning procedure395

aforementioned is used to rapidly determine if a tentative move leads to an

infeasible solution. Both taboo search and branch-and-bound use the same

evaluation function. The algorithm stops after a user-defined time limit as well.

6. Experiments

All the algorithms presented in the previous section were embedded in a400

software that was designed for the company.

23

Table 1: Configuration of the different depots. Information gathered on the lane length gives

an estimation of the instance size.

Depot

DB DJ DC DK DV

lanes 29 70 43 6 11

Total lanes length [m] 2982 4649 993 405 589

Average lane length [m] 102 66 23 67 53

Tram (22, 31, 42, 44 and 53 meters)
√ √ √

Trolleybus (18, 19 and 24 meters)
√

Bus (12, 18 and 24 meters)
√ √ √

topological and blocking constraints 24 20 28 1 1

When we started designing the application, the transportation company

shared with us a number of test instances. These instances correspond to the

complete constructions of morning deliveries, which are the hardest problems.

The numerical data of 30 group positioning and 90 schedule assignment in-405

stances are available on http://mistic.heig-vd.ch/taillard/problemes.dir/problemes.html.

These instances are given under the form of the mathematical formulations of

Sections 3 and 4.

The quality of the parking plans generated by our software are discussed in

another article [7]. Very shortly, it can be said that the solutions produced by410

our software totally satisfy the production requirements of the company. The

last runs the software daily for a few years.

The goal of this section is to compare the performance of these algorithms

with a piece of general optimization software like Gurobi.

6.1. Instances and depot configuration415

Table 1 provides details on the different depots of the company.

For each depot, basic information such as the number of lanes, the total

lanes length of the depot or constraints about the lanes is reported. This gives

24

an insight of the difficulty of the instances for each depot.

The number of topological and blocking constraints is composed of the lanes420

that go to a specific direction for tramways, weak blockings that might occur

between vehicles in adjacent lanes (tramways and trolleybuses) and vehicle series

that are forbidden on some lanes (e.g. mega buses hard to maneuvered).

6.2. Configuration used for the experiments

All the experiments of this article were executed on a MacBook Pro Intel425

Core i7-3840QM 2.8 Ghz with 16 GB ram using Mac OS X with Gurobi version

8.1. Although this is a quad core laptop, only one CPU core was used for

the experiments. This is in accordance with the setup of the transportation

company.

The parameters of our software were set up in such a way that the construc-430

tion of all plans for a complete week (sixteen deliveries) never exceeds an hour

on a desktop computer.

6.3. Group positioning and schedules assignment

To evaluate our software for a regular usage, we asked the transportation

company to provide us all the data to build new reference plans from scratch.435

This set is composed of 29 instances.

All the instances were directly extracted from the HASTUS timetable system

that the transport company uses [9].

There are 5 depots, leading to 145 group positioning instances. Since there

are different series to handle for each depot (not all series are present in the 29440

instances), this represents a total of 420 schedule assignment instances.

6.3.1. Mathematical programming evaluation

Both group positioning (mathematical model given in Section 3) and sched-

ule assignment problems (mathematical model given in Section 4) were tenta-

tively solved with Gurobi for 29 instances.445

Only one execution and a time limit of 1000 seconds are considered for each

instance (a complete run of our software never exceeds this time limit). Since the

25

objective function of each problem is implemented as a weighted sum of multiple

objectives, the best solution returned by Gurobi might not have the best value

for each of the three objectives. Hence, the PoolSearchMode parameter was set450

to do a systematic search for a maximum of 10 solutions (i.e. when Gurobi finds

the best solution, it continues finding the second best solution and so on).

To evaluate the solution quality, the best hierarchical objective values found

by Gurobi and our software are reported for the group positioning problem

(minimize equations 5, then 6, then 7) and for each vehicle series of the schedule455

assignment problem (maximize equations 14 and 15, then 16).

Since some instances for specific depots are identical, results are grouped

and the average computational time is also reported. The standard deviation is

not represented since its value is close to 0.

A number of results are reported in Tables 2 to 5. Supplementary results460

are presented in Appendix, Tables A.6 to A.12.

In Table 2 and Table 3, we see that Gurobi instantly finds optimal solutions

(0.1 seconds) for the group positioning sub-problems for depots DC, DK and

DV. These are the easiest instances since there are at most three different series

of vehicles (e.g. S06b, S50 and S59) in these depots.465

In Table 4, we see Gurobi is not able to reach an optimal positioning after

1000 seconds for the depot DB where there are 6 different series (10001 means

only one solution is returned after a time-limit of 1000 seconds). Compared

to our software, the difference in terms of obj2 (equation 6: minimization of

occupied lanes) is significant (up to 2 lanes for the instance #8). Furthermore,470

not minimizing obj1 (equation 5) for instances #23-29 indicates that a cutting

vehicle series happens whereas it is possible to have inseparable blocks of vehicle

series.

In Table 5, the same observation occurs for the depot DJ regarding instances

#10-14 and #16-19 (7 different series): No optimal solution could be found. For475

instances #3, 6, 7, 22 (6 different series), the unique solution returned by Gurobi

is the same that the one generated by our software.

Since Gurobi is not able to provide an optimal solution in a reasonable time

26

Table 2: Main results for depots DC and DK. Hierarchical objective values are reported for

the group positioning problem (minimize equations 5, then 6, then 7) and for each vehicle

series of the schedule assignment problem (maximize equations 14 and 15, then 16).

Gurobi Our software

#sched obj1 obj2 obj3 time [s] obj1 obj2 obj3 time [s]

DC 43 lanes - 993 m

Instances #3-7

Group positioning 33 2 33 849 0.1 2 33 849

1.6

Schedules assignment

S06b 11 0 9 0 210.7 0 9 0

S50 7 0 3 0 0.1 0 3 0

S59 15 0 11 0 1000+ 0 11 0

Instances #9-14, 16-19

Group positioning 35 2 35 885 0.1 2 35 885

2.0

Schedules assignment

S06b 11 0 10 0 1000+ 0 10 0

S50 7 0 3 0 0.1 0 3 0

S59 17 0 13 0 1000+ 0 13 0

DK 6 lanes - 405 m

Instances #1-29

Group positioning 4 0 1 180 0.1 0 1 180

0.1Schedules assignment

S05 4 3 0 45 0.1 3 0 45

27

Table 3: Main results for the depot DV. Hierarchical objective values are reported for the

group positioning problem (minimize equations 5, then 6, then 7) and for each vehicle series

of the schedule assignment problem (maximize equations 14 and 15, then 16).

Gurobi Our software

DV 11 lanes - 589 m #sched obj1 obj2 obj3 time [s] obj1 obj2 obj3 time [s]

Instances #9-14

Group positioning 30 0 11 589 0.1 0 11 589

197.8Schedules assignment

S59 30 18 10 237 10001 18 10 265

Instances #20

Group positioning 30 0 11 589 0.1 0 11 589

189.6Schedules assignment

S59 30 18 10 245 10001 18 10 260

Instances #23-29

Group positioning 30 0 11 589 0.1 0 11 589

191.7Schedules assignment

S59 30 18 10 225 10001 18 10 255

28

Table 4: Main results for the depot DB. Hierarchical objective values are reported for the

group positioning problem (minimize equations 5, then 6, then 7) and for each vehicle series

of the schedule assignment problem (maximize equations 14 and 15, then 16).

Gurobi Our software

DB 29 lanes - 2982 m #sched obj1 obj2 obj3 time [s] obj1 obj2 obj3 time [s]

Instances #1-7, 15, 22

Group positioning 40 5 19 2171 10001 5 19 2125

194.9

Schedules assignment

S03-04 14 7 4 90 1000+ 7 4 90

S03-04b 5 2 1 25 0.8 2 1 25

S05 5 1 2 20 165.3 1 2 20

S05b 12 7 3 105 147.3 7 3 105

S06 1 0 0 0 0.1 0 0 0

S06b 3 2 0 -40 0.1 2 0 -40

Instance #8

Group positioning 40 5 20 2164 10001 5 18 2071

216.4

Schedules assignment

S03-04 14 7 4 90 1000+ 7 4 90

S03-04b 5 2 1 25 0.8 2 1 25

S05 4 2 0 20 221.7 2 0 20

S05b 12 8 2 100 173.7 8 2 100

S06 2 1 0 10 0.1 1 0 10

S06b 3 1 0 -6 0.1 1 0 -6

Instances #23-29

Group positioning 53 6 27 2825 10001 5 27 2825

24.9

Schedules assignment

S03-04 16 7 7 100 10001 7 7 105

S03-04b 6 0 4 0 0.1 0 4 0

S05 6 4 1 21 0.1 4 1 21

S05b 16 9 5 130 264.2 9 5 130

S06 7 4 2 55 54.8 4 2 55

S06b 2 1 0 10 0.1 1 0 10

29

Table 5: Main results for the depot DJ. Hierarchical objective values are reported for the

group positioning problem (minimize equations 5, then 6, then 7) and for each vehicle series

of the schedule assignment problem (maximize equations 14 and 15, then 16).

Gurobi Our software

DJ 67 lanes - 4649 m #sched obj1 obj2 obj3 time [s] obj1 obj2 obj3 time [s]

Instances #3, 6, 7, 22

Group positioning 140 5 39 3054 10001 5 39 3054

353.0

Schedules assignment

S301 30 19 7 209 10001 20 7 273

S37 10 5 1 -5 1000+ 5 1 -5

S38 8 4 1 70 1000+ 4 1 70

S50 9 6 1 35 0.4 6 1 35

S57 4 2 1 30 5.3 2 1 30

S59 79 infeasible 10001 54 19 678

Instances #10-14

Group positioning 187 6 54 4062 10001 6 52 3954

211.0

Schedules assignment

S301 28 20 4 224 10001 19 5 275

S35 7 4 1 -7 7.4 4 1 -7

S37 28 18 5 188 10001 17 6 248

S38 9 4 2 80 1000+ 4 2 80

S50 7 4 1 28 1000+ 4 1 28

S57 5 3 1 40 9.9 3 1 40

S59 103 51 10 -501 10001 70 28 931

Instances #16-19

Group positioning 189 7 54 3996 10001 6 53 4012

218.3

Schedules assignment

S301 28 20 4 224 10001 19 5 275

S35 7 4 1 -7 7.6 4 1 -7

S37 28 18 5 188 10001 17 6 248

S38 9 4 2 80 1000+ 4 2 80

S50 7 4 1 36 478.1 4 1 36

S57 5 3 1 40 9.5 3 1 40

S59 105 29 14 464 10001 71 29 1000

30

for large instances of the group positioning sub-problem, the schedule assign-

ment problem was started from the group positioning found by our software.480

In Table 2, we see that Gurobi can optimally solve the smallest 231 (out of

420) the schedules assignment sub-problems instances, especially for DC and DK

series. A time written 1000+ seconds means that not all the best 10 solutions

have been returned within 1000 seconds.

In Table 3 and Table 4, we see that Gurobi can not solve the schedules485

assignment sub-problems instances for depot DV and the instances #23-29 for

the depot DB. Since obj3 (equation 16: penalizing and rewarding departures)

is not maximized, it means that there are departures that do not respect a

minimal time and an ideal time.

More important, for the depot DJ, the difference in terms of obj1 and obj2490

(equations 14 15: maximization of groupings of schedules of the same type) with

our software is consequent for every sub-problems involving the S59 series. It

represents more than 30 schedules that cannot be grouped. It will lead to solu-

tions with many mixed schedule types, that are not acceptable for the company

in terms of resulting parking plans. Worse, Gurobi was not able to generate a495

feasible solution within 1000 seconds for some of these instances involving the

S59 series.

Generally, Gurobi cannot properly solve schedule assignment sub-problems

in a reasonable time when the number of schedules is higher than 15.

Regarding our software, the reported execution time accounts for the group500

positioning and schedule assignment problems. Default parameters were set up

to have an equivalent amount of time during each phase. Our software is able

to produce optimal and satisfactory solutions to all instances in a reasonable

time.

Solving small group positioning instances (DC, DK and DV) with Gurobi505

is faster and simpler in terms of implementations (number of lines of code). It

could have been easily integrated in our application.

31

7. Conclusions

For the large instances that the company faces, a piece of general optimiza-

tion software is not able to provide a solution in a computational time com-510

patible with production requirements, at least when using simple mathematical

models. Indeed, after one hour of computation, for a single delivery, no optimal

solution is found for the group positioning problem which is the first part of the

general problem to solve. This highlights the difficulty of solving this industrial

problem. In contrast, the software described in this article is able to provide515

in one hour a solution that meets all the expectations of the company for the

entire problem and for all 16 deliveries of a week.

The key to success of the proposed algorithm is a right decomposition of the

problem into sub-problems that can be solved efficiently with an exact method

in most cases and with heuristics in other cases. Since the solution of a sub-520

problem may over-constrain the next one at a further stage, several sub-optimal

solutions are kept during the process, increasing the probability one of them

leads to a feasible solution for subsequent stages.

The software has been used daily with satisfaction by the company for sev-

eral years. The company has produced over 3000 departure schedules with the525

software, none of them needing a manual treatment.

In this article, algorithms for creating parking plans are presented for the

general case. However, in practice, the problem is constantly evolving, and there

are additional constraints that might occur in few specific situations.

For instance, the company bought new vehicles. The indoor garages are not530

large enough to park all vehicles for morning deliveries. So buses are parked

outside the garage building, in front of the doors. These buses must be first

processed to avoid blocking all the other vehicles in the depot.

Another good practice is the refinement of departure times for bus of a given

schedule type. For each block of vehicles, the company operates a Z distribution535

of bus departures on adjacent lanes. Such a method achieved by the company

ensures a smooth process for vehicles leaving the depot.

32

Furthermore, another new constraint is about sets of three adjacent lanes

in given depots that must be released before a given hour during the morning

delivery. These lanes can then be used by the staff as an angle parking for their540

private cars.

Finally, during the weekend, a maximal time interval should separate two

departures in the same lane. This constraint prevents the last schedule to block

a lane when all the other vehicles are already outside since fewer vehicles are in

service.545

All these issues are related in [7] that focus on the complete description of

the industrial problem.

Acknowledgement

The funding body will be acknowledged following peer review.

[1] U. Blasum, M. R. Bussieck, W. Hochstättler, C. Moll, H.-H. Scheel, T. Win-550

ter, Scheduling trams in the morning, Math. Meth. of OR 49 1 (1999) 137–

148.

[2] T. Winter, U. T. Zimmermann, Real-time dispatch of trams in stor-

age yards, Annals of Operations Research 96 (1-4) (2000) 287–315.

doi:10.1023/A:1018907720194.555

[3] G. Gallo, F. D. Miele, Dispatching buses in parking depots, Transportation

Science 35 3 (2001) 322–330.

[4] M. Hamdouni, G. Desaulniers, O. Marcotte, F. Soumis, M. van Putten,

Dispatching buses in a depot using block patterns., Transportation Science

40 3 (2006) 364–377.560

[5] R. Freling, R. Lentink, L. Kroon, D. Huisman, Shunting of passenger train

units in a railway station., Transportation Science39 2 (2005) 261–272.

[6] L. G. Kroon, R. M. Lentink, A. Schrijver, Shunting of passenger train units:

An integrated approach, Transportation Science 42 4 (2008) 436–449.

33

http://dx.doi.org/10.1023/A:1018907720194

[7] Luong, Taillard, A methodology for creating parking plans in a public trans-565

portation company, Tech. rep., HEIG-VD (2019).

[8] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman and Company, 1979.

[9] J.-M. Rousseau, J.-Y. Blais, Hastus: An interactive system for buses and

crew scheduling., Computer Scheduling of Public Transport–2 (1985) 45–60.570

Appendix A. Supplementary results

34

Table A.6: Supplementary results for the depot DC. Hierarchical objective values are reported

for the group positioning problem (minimize equations 5, then 6, then 7) and for each vehicle

series of the schedule assignment problem (maximize equations 14 and 15, then 16).

Gurobi Our software

DC 43 lanes - 993 m #sched obj1 obj2 obj3 time [s] obj1 obj2 obj3 time [s]

Instances #1, 2, 15, 20

Group positioning 34 2 34 867 0.1 2 34 867

1.6

Schedules assignment

S06b 11 0 9 0 209.9 0 9 0

S50 7 0 3 0 0.1 0 3 0

S59 16 0 12 0 1000+ 0 12 0

Instance #8

Group positioning 34 3 34 867 0.1 3 34 867

1.6

Schedules assignment

S05b 3 0 2 0 9.5 0 2 0

S06b 8 0 6 0 2.4 0 6 0

S50 7 0 3 0 0.1 0 3 0

S59 16 0 12 0 1000+ 0 12 0

Instance #21

Group positioning 32 2 32 831 0.1 2 32 831

1.2

Schedules assignment

S06b 11 0 10 0 1000+ 0 10 0

S50 7 0 3 0 0.1 0 3 0

S59 14 0 11 0 1000+ 0 11 0

Instances #22, 29

Group positioning 33 2 33 849 0.1 2 33 849

8.9

Schedules assignment

S06b 11 0 9 0 232.9 0 9 0

S50 7 0 3 0 0.1 0 3 0

S59 15 0 11 0 1000+ 0 11 0

Instance #23-25

Group positioning 35 3 35 885 0.1 3 35 885

1.9

Schedules assignment

S05b 5 0 4 0 0.1 0 4 0

S06b 6 0 5 0 0.2 0 5 0

S50 7 0 3 0 0.1 0 3 0

S59 17 0 13 0 1000+ 0 13 0

35

Table A.7: Supplementary results for the depot DB. Hierarchical objective values are reported

for the group positioning problem (minimize equations 5, then 6, then 7) and for each vehicle

series of the schedule assignment problem (maximize equations 14 and 15, then 16).

Gurobi Our software

DB 29 lanes - 2982 m #sched obj1 obj2 obj3 time [s] obj1 obj2 obj3 time [s]

Instances #9-14, 16-21

Group positioning 53 5 28 2908 10001 5 28 2885

25.2

Schedules assignment

S03-04 16 7 7 100 10001 7 7 105

S03-04b 6 0 4 0 0.1 0 4 0

S05 10 6 3 85 9.2 6 3 85

S05b 17 11 4 140 10001 11 4 140

S06 3 1 1 15 0.3 1 1 15

S06b 1 0 0 0 0.1 0 0 0

Table A.8: Supplementary results for the depot DV. Hierarchical objective values are reported

for the group positioning problem (minimize equations 5, then 6, then 7) and for each vehicle

series of the schedule assignment problem (maximize equations 14 and 15, then 16).

Gurobi Our software

DV 11 lanes - 589 m #sched obj1 obj2 obj3 time [s] obj1 obj2 obj3 time [s]

Instances #16-19, 21

Group positioning 30 0 11 589 0.1 0 11 589

193.6Schedules assignment

S59 30 18 10 250 10001 18 10 260

36

Table A.9: Supplementary results for the depot DJ (1). Hierarchical objective values are

reported for the group positioning problem (minimize equations 5, then 6, then 7) and for

each vehicle series of the schedule assignment problem (maximize equations 14 and 15, then

16).

Gurobi Our software

DJ 67 lanes - 4649 m #sched obj1 obj2 obj3 time [s] obj1 obj2 obj3 time [s]

Instance #4

Group positioning 140 4 39 2976 10001 4 39 2958

299.0

Schedules assignment

S301 27 18 6 261 10001 18 6 261

S37 13 7 2 30 1000+ 7 2 30

S38 8 4 1 70 1000+ 4 1 70

S50 9 6 1 35 0.4 6 1 35

S59 83 44 11 46 10001 56 22 653

Instance #5

Group positioning 142 4 39 3034 10001 4 39 3034

295.1

Schedules assignment

S301 27 18 6 261 10001 18 6 261

S37 13 7 2 22 1000+ 7 2 22

S38 8 4 1 70 1000+ 4 1 70

S50 9 6 1 35 0.4 6 1 35

S59 85 28 9 256 10001 59 21 710

Instances #8

Group positioning 161 5 45 3460 10001 5 45 3460

321.2

Schedules assignment

S301 25 17 5 240 10001 17 5 245

S37 22 14 4 126 10001 14 4 140

S38 8 4 1 70 1000+ 4 1 70

S50 11 8 1 84 1000+ 8 1 84

S57 5 3 1 40 9.8 3 1 40

S59 90 37 13 -144 10001 62 23 910

37

Table A.10: Supplementary results for the depot DJ (2). Hierarchical objective values are

reported for the group positioning problem (minimize equations 5, then 6, then 7) and for

each vehicle series of the schedule assignment problem (maximize equations 14 and 15, then

16).

Gurobi Our software

DJ 67 lanes - 4649 m #sched obj1 obj2 obj3 time [s] obj1 obj2 obj3 time [s]

Instances #1, 2

Group positioning 161 5 45 3460 10001 5 45 3460

329.8

Schedules assignment

S301 25 17 5 240 10001 17 5 245

S37 22 14 4 126 10001 14 4 140

S38 8 4 1 70 1000+ 4 1 70

S50 11 8 1 84 1000+ 8 1 84

S57 5 3 1 40 9.9 3 1 40

S59 90 29 12 463 10001 62 23 900

Instance #9

Group positioning 187 8 53 4034 10001 7 53 4034

333.3

Schedules assignment

S301 28 20 4 224 10001 19 5 275

S35 7 4 1 -7 7.3 4 1 -7

S36 1 0 0 0 0.1 0 0 0

S37 28 18 5 188 10001 17 6 248

S38 8 5 2 75 1000+ 5 2 75

S50 7 4 1 28 1000+ 4 1 28

S57 5 3 1 40 9.6 3 1 40

S59 103 51 10 -501 10001 70 28 931

Instance #15

Group positioning 172 5 48 3656 10001 5 48 3656

323.0

Schedules assignment

S301 25 17 5 240 10001 17 5 245

S37 22 14 4 126 10001 14 4 140

S38 8 4 1 70 1000+ 4 1 70

S50 12 9 1 76 10.9 9 1 76

S57 5 3 1 40 9.5 3 1 40

S59 100 infeasible 10000 69 26 995
38

Table A.11: Supplementary results for the depot DJ (3). Hierarchical objective values are

reported for the group positioning problem (minimize equations 5, then 6, then 7) and for

each vehicle series of the schedule assignment problem (maximize equations 14 and 15, then

16).

Gurobi Our software

DJ 67 lanes - 4649 m #sched obj1 obj2 obj3 time [s] obj1 obj2 obj3 time [s]

Instance #20

Group positioning 187 6 54 4062 10001 6 52 3954

209.1

Schedules assignment

S301 28 20 4 224 10001 19 5 275

S35 7 4 1 -7 7.3 4 1 -7

S37 28 18 5 188 10001 17 6 248

S38 9 4 2 80 1000+ 4 2 80

S50 7 4 1 36 481.4 4 1 36

S57 5 3 1 40 9.7 3 1 40

S59 103 51 8 -416 10001 70 27 985

Instance #21

Group positioning 181 6 51 3932 10001 6 50 3838

223.1

Schedules assignment

S301 28 20 4 224 10001 19 5 275

S35 7 4 1 -7 7.3 4 1 -7

S37 28 18 5 188 10001 17 6 248

S38 9 4 2 80 1000+ 4 2 80

S50 7 3 1 36 1000+ 3 1 36

S57 5 3 1 40 9.6 3 1 40

S59 97 infeasible 10000 68 24 951

Instances #23, 24

Group positioning 188 5 53 3980 10001 5 53 3980

378.8

Schedules assignment

S301 37 23 5 205 10001 24 9 370

S35 7 4 1 -7 7.3 4 1 -7

S37 28 18 5 188 10001 17 6 248

S50 7 4 1 36 475.7 4 1 36

S57 5 3 1 40 9.9 3 1 40

S59 104 52 9 -593 10001 70 29 980
39

Table A.12: Supplementary results for the depot DJ (4). Hierarchical objective values are

reported for the group positioning problem (minimize equations 5, then 6, then 7) and for

each vehicle series of the schedule assignment problem (maximize equations 14 and 15, then

16).

Gurobi Our software

DJ 67 lanes - 4649 m #sched obj1 obj2 obj3 time [s] obj1 obj2 obj3 time [s]

Instances #25-29

Group positioning 188 6 54 3996 10001 6 53 3980

208.9

Schedules assignment

S301 28 20 4 224 10001 19 5 275

S35 7 4 1 -7 7.7 4 1 -7

S37 28 18 5 188 10001 17 6 248

S38 9 4 2 80 1000+ 4 2 80

S50 7 4 1 36 491.4 4 1 36

S57 5 3 1 40 10.0 3 1 40

S59 104 52 9 -593 10001 70 29 980

40

	Introduction
	Problem description
	Criteria for constructing a parking plan
	Illustration of a solution for a sub-depot

	Group positioning problem
	Mathematical formulation
	Sets
	Data
	Variables
	Constraints
	Objectives

	Schedule assignment problem
	Mathematical formulation
	Sets
	Data and parameters
	Variables
	Constraints
	Objectives

	Heuristic solution
	Group positioning problem with contiguous blocks
	Backtracking algorithm to position all groups

	Group positioning with group cuts
	Backtracking to generate all best positions

	Schedule assignment problem
	Separation of groups of vehicle series
	Process of schedule assignment
	Branch-and-bound to build a schedule assignment
	Taboo search to improve the schedule solution

	Experiments
	Instances and depot configuration
	Configuration used for the experiments
	Group positioning and schedules assignment
	Mathematical programming evaluation

	Conclusions
	Appendix
	Supplementary results

