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Abstract

An unsupervised machine learning method based on association rule is studied

for the Quadratic Assignment Problem. Parallel itemsets and local search algo-

rithms are proposed. The extraction of frequent itemsets in the context of local

search is shown to produce good results for a few problem instances. Negative

results of the proposed learning mechanism are reported for other instances.

This result contrasts with other hard optimization problems for which efficient

learning processes are known in the context of local search.
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1. Introduction

In the past few years, big data has captured the attention of analysts and

researchers since there is a strong demand to analyze large data collected from

monitoring systems to understand behaviors and identify hidden trends. Sci-

ence, business, industry, government and society have already undergone a5

change with the influence of big data. In [1], the authors are exposing op-

portunities and challenges that represent big data analytics.

On the one hand, with the increase of computational power, machine learning

has emerged as the leading research field in artificial intelligence for dealing with

big data and more generally with data science [2]. Machine learning techniques10
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have given rise to huge societal impacts in a wide range of applications such as

computer vision, natural language understanding and health.

On the other hand, metaheuristics such as genetic algorithms or local search

are iterative methods in operations research that have been successfully applied

to solve hard combinatorial optimization problems in the past. One of their15

main goals is to support decision-making processes in complex scenarios and

provide near-optimal solutions to industrial problems.

The hybridization of metaheuristics with machine learning techniques is a

promising research field for the operations research community [3]. The major

interest in using machine learning techniques is to extract useful knowledge from20

the history of the search in order to improve the efficiency and the effectiveness

of a metaheuristic [4].

This paper focuses on the association rule learning, which is an unsupervised

machine learning method for discovering interesting relations between variables

in very large databases [5]. Agrawal et al. [6] proposed frequent itemset mining25

for discovering similarities between products in a large-scale transaction data for

supermarket chain stores. Initially designed for data mining, finding association

rules is now widely generalized in many fields including web research, intrusion

detection and bioinformatics.

We propose to incorporate the extraction of frequent itemsets in the context30

of local search metaheuristics. A similar work comes from Ribeiro et Al. in

[7] to improve a GRASP metaheuristic where the learning process consists of

extracting different patterns (i.e. subsets of frequent itemsets) from an elite set

of 10 solutions and takes a few seconds to provide a new generation.

The motivation of our work goes further, and its application is more ap-35

propriate to a big data context with gigabytes of data. The goal is to investi-

gate if one can learn anything from the execution of thousands of local search

algorithms to generate new sets of improved solutions. Hence, we propose re-

producible strategies based on the extraction of millions frequent itemsets, i.e.

extending the training phase to last one day and considering thousands of solu-40

tions performed in parallel across many generations.
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The quadratic assignment problem (QAP) is considered in this study. This

problem is hard to solve, even for instances of moderate size (less than 100

elements). This contrasts, for instance, with the travelling salesman (TSP)

problem for which fairly large instances can be solved optimally. For the TSP,45

the set of edges composed by the union of a few locally optimal solutions of

moderate quality may contain a very large proportion of the edges of the best

solution known [8, 9]. A goal of this paper is to evaluate if learning with locally

optimal solutions is as successful for the QAP as it is for the TSP.

The objective values of solutions obtained by machine learning techniques50

for hard optimization problems are generally far from the values that can be

obtained by direct heuristic algorithms. For the QAP, the reader is referred

to [10] for a comparison of different methods based on neural graph machine

network.

The remaining of this paper is organized as follow. Section 2 describes some55

technical background to understand the traditional local search algorithm, the

quadratic assignment problem used for the experiments and frequent itemsets in

associative rule learning. Section 3 introduces the extraction of frequent itemsets

and its parallelization for local search algorithms. The experimental results are

reported in Section 4. Finally, 5 concludes and proposes future research avenues.60

2. Technical Background

2.1. Principles of Local Search Metaheuristics

Metaheuristics are a set of techniques for designing algorithms for producing

hopefully high-quality solutions to hard optimization problems in a reasonable

computational effort. Most of them are based on the iterative improvement of65

either a single solution (e.g. local search, simulated annealing or tabu search)

or a population of solutions (e.g. genetic algorithms) of a given optimization

problem.

Local search algorithms could be viewed as “walks through neighborhoods”

meaning search trajectories through the solutions domains of the problems at70
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hand. The walks are performed by moving from one solution to a (slightly)

different one (see Algorithm 1).

Algorithm 1 Local search pseudo-code

1: Generate(s0);

2: t := 0;

3: repeat

4: m(t) := SelectMove(s(t));

5: s(t+ 1) := ApplyMove(m(t), s(t));

6: t := t+ 1;

7: until Termination criterion(s(t))

A local search starts with any solution, for instance a randomly generated

one. At each iteration of the algorithm, the current solution is replaced by

another one selected from the set of its neighboring candidates, and so on.75

An evaluation function associates a fitness value to each solution indicating its

suitability to the problem. Many strategies related to the local search can be

applied in the selection of a move: best improvement, first improvement, random

selection, etc.

The computational complexity of a method based on metaheuristics is typ-80

ically a polynomial function of n, the size of the instance data. Generally, the

degree of the polynomial is moderate, but very seldom lower than O(n2).

A survey of the history and the state-of-the-art of metaheuristics can be

found in [11].

2.2. The Quadratic Assignment Problem85

To put in practice the different learning mechanisms proposed in this paper,

the popular quadratic assignment problem (QAP) [12] has been investigated.

The QAP [13] arises in many applications such as facility location or data

analysis. Let A = (aij) and B = (bij) be n× n matrices of positive integers. In

the context of local search, the most convenient solution representation is by a

permutation: The objective of the QAP is to find a permutation π = (1, 2, . . . , n)
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that minimizes the function:

z(π) =

n∑

i=1

n∑

j=1

aijbπ(i)π(j)

The evaluation function has a O(n2) time complexity where n is the in-

stance size. A neighborhood based on a pair-wise exchange (n×(n−1)
2 neighbors)

has been considered. Hence, for each iteration of a local search, (n−2)×(n−3)
290

neighbors can be evaluated in O(1) and 2n − 3 can be evaluated in O(n) (∆

evaluations). The requirement is a structure which stores previous ∆ evalua-

tions in a quadratic space complexity. Evaluating all the ∆ for the first time

takes an effort in O(n3) but an effort only in O(n2) for each of the next local

search iteration [14].95

A complete review of the most successful algorithms to solve the QAP is

proposed in [15].

2.3. Frequent Itemsets in Associative Rule Learning

In associate rule learning, the existence of very large databases requires

to determine groups of items that frequently appear together in transactions,100

called itemsets [16]. From any itemset, one can determine an association rule

that predicts how frequently an itemset is likely to occur in a transaction.

For example, a retail organization provides thousands of products and ser-

vices [6]. The number of possible combinations of these products and services is

potentially huge. The enumeration of all possible combinations is impractical,105

and methods are needed to concentrate efforts on those itemsets that are recog-

nized as important to an organization. The most used measure of an itemset is

its support, which is calculated as the percentage of all transactions that contain

the itemset. Itemsets that meet a minimum support threshold are referred to

as frequent itemsets.110

An itemset which contains k items is a k-itemset. So, it can be said that an

itemset is frequent if the corresponding support count is greater than a minimum

support count.
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Figure 1: Extraction of one frequent itemset of size 3. In all solutions, elements 8, 7 and 1

appear at positions 1, 2 and 4.

3. Frequent Itemsets for Local Search Algorithms

The motivation of this research work is to investigate if one can learn any-115

thing from the solutions found in local search algorithms. One observation is

that some elements from local optima may be found at the exact same posi-

tions of the global optimum, meaning that elements that frequently appear at

particular positions may also be discovered in good solutions.

One tool to achieve this is to extract all the frequent itemsets from a set120

of solutions. In the context of combinatorial optimization, each itemset can

be represented by pairs of one element associated with one position. Figure 1

illustrates an extraction for a 3-itemset.

Once all frequent itemsets are known, a new generation of solutions can be

constructed from these itemsets.125

3.1. Extraction and Combination of Frequent Itemsets

The global process used in this paper can be divided into two phases: the

extraction of frequent itemsets and their combination to generate new solutions.

Algorithm 2 gives an insight of how this global process works.

The initial set of solutions is obtained from the execution of multi-start130

local search algorithms (lines 1 to 4). For each local search, the initial solution

is randomly generated and the selection of a better neighbor is done according

to the best improvement strategy (steepest descent).
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Algorithm 2 Extraction and combination of frequent itemsets

Require: instance data, nb solutions, nb generations, min sup and

itemsets limit

1: for i← 1, . . . , nb solutions do

2: solutions[i]← random initialization()

3: solutions[i]← local search(instance data, solutions[i])

4: end for

5: for generation← 1, . . . , nb generations do

6: all itemsets← extract itemsets(solutions,min sup, itemsets limit)

7: for i← 1, . . . , nb solutions do

8: solutions[i]← combine itemsets(all itemsets)

9: solutions[i]← local search(instance data, solutions[i])

10: end for

11: end for

Ensure: solutions

In the main loop, the first phase consists in extracting all frequent itemsets

from the current set of solutions (line 6) with Apriori algorithm [16]. Since135

the worst-case time complexity of Apriori algorithm is exponential according to

the number of items, min sup and itemsets limit are user-defined parameters

to control the number of candidate itemsets to retain in practice. The second

phase is a procedure that combines these itemsets to construct new solutions

that can be improved afterwards by the same local search algorithm (lines 7140

to 10). The process is repeated for a given number of generations.

3.2. Apriori Algorithm for Extracting Itemsets from a Set of Solutions

The Apriori algorithm is used in this paper to extract all frequent itemsets

from a set of solutions. It was originally designed to operate on databases

containing transactions [16]. Basically, Apriori performs a bottom-up approach145

where frequent subsets are extended one item at a time (groups of candidates)

and tested with the data. The algorithm finishes when no further successful
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extensions can be discovered.

Even if it is not the fastest method to directly extract the kth-itemset in

comparison with other approaches [17, 18], its application seems the most ap-150

propriate since all frequent itemsets of any size are required here. More impor-

tant, Apriori does not make any assumption of the size of the dataset and it

perfectly fits in the context of big data algorithms.

Algorithm 3 Apriori algorithm for the extraction of frequent itemsets

Require: solutions, min sup and itemsets limit

1: k := 1

2: Ck = generate itemsets(solutions, ∅)
3: Lk = filter itemsets(Ck,min sup, ∅)
4: all itemsets = Lk

5: while Lk 6= ∅ do
6: Ck+1 = generate itemsets(solutions, L k)

7: Lk+1 = filter itemsets(Ck+1,min sup, itemsets limit)

8: all itemsets = all itemsets ∪ Lk+1

9: k := k + 1

10: end while

Ensure: all itemsets

Algorithm 3 describes the major steps of Apriori used in the extract itemsets

procedure of Algorithm 2. The first step consists in generating the list of all155

candidate itemsets of size 1 (lines 1 and 2). In the case of combinatorial op-

timization, an 1-itemset is exactly a pair of one element associated with one

position. The candidate list is then pruned according to the minimum support

(i.e. minimum number of times that an itemset must appear in all solutions)

defined by the user (line 3). From the resulting filtered list of 1-itemsets, all160

candidate itemsets of size 2 are investigated (line 6) where a 2-itemset represents

two pairs of one element associated with one position. The process is repeated

with the filtered list of 2-itemsets to produce all 3-itemsets and so on until a

candidate list cannot be built.
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At each generation, all extracted k-itemsets are conserved in a list (lines 4165

and 8) that will be later used to construct new solutions in the combine itemsets

procedure of Algorithm 2.

Limiting the number of retained itemsets (e.g. keeping one million itemsets

that are among the most frequent ones) is necessary to reduce the computational

and space complexities when generating new candidates for further generations.170

3.3. Combining Itemsets for Creating a New Set of Solutions

The goal of the combine phase is to create a new set of solutions from all

the frequent itemsets extracted during the previous generation.

Each solution is constructed by exploring all frequent itemsets. In this paper,

two main strategies are taken into account regarding how itemsets are explored:175

1. Random exploration of all frequent itemsets (REFI). In this strategy, ev-

ery retained itemset has the same probability to be applied during the

construction of a new solution.

2. Exploration based on sorted frequent itemsets (ESFI). All itemsets are

sorted according to their support in decreasing order. The probability180

of applying an itemset to a solution (i.e. fixing elements at different po-

sitions) depends on the itemset support. For instance, a 2-itemset (e.g.

element 5 at position 10 and element 1 at position 7) that appears in 2% of

all previous solutions has also a probability of 2% to be in a new solution.

If the current solution cannot be completely constructed from the exploration185

of all itemsets, all unassigned elements will be randomly added at unassigned

positions.

3.4. Parallelization Techniques for Frequent Itemsets

3.4.1. Parallel Execution of Local Search Algorithms

In a multi-start algorithm, the execution of each local search being indepen-190

dent, all algorithms can be parallelized according to a pool of executions (i.e.

tasks waiting to be launched). The same stands for the combination of itemsets

during the construction of each new solution.
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Regarding the parallel thread execution, a dynamic scheduling is carried out

since each local search may take a different amount of time.195

A buffer is used to store a certain number of solutions that are being executed

in parallel (e.g. 1000 solutions). When solutions are completed, they are written

to a file and the buffer can be reused for the next solutions. Such a process

allows limiting the space complexity in case a lot of solutions are created (e.g.

1,000,000 solutions). The process is repeated until all local search methods have200

been dealt with.

3.4.2. Parallel Extraction of Frequent Itemsets

Let n be the number of itemsets of size k. A new itemset being a combination

of two previous itemsets, the number of candidate itemsets of size k + 1 to

examine is m = n× (n− 1)/2.205

Since this extraction is independent for each itemset, all m itemsets in Apri-

ori can be performed in parallel.

On the one hand, an itemset is composed of two indexes of previous itemsets.

On the other hand, parallelization units such as threads are determined by a

unique id. Therefore, one mapping has to be considered to transform one index210

into two ones.

Given id the index of a new itemset to generate, the index of the first previous

itemset i is equal to n − 2 − ⌊
√

8×(m−id−1)+1−1

2 ⌋ and the index of the second

previous itemset j is equal to id− i× (n− 1) + i×(i+1)
2 + 1.

This calculated mapping avoids an unnecessary use of mapping tables (con-215

taining all indexes) that can rapidly become prohibitive in terms of memory.

In a similar manner, a buffer and a file are also required to reduce the space

complexity.

4. Performance Evaluation

The computational results presented in this section were obtained on a220

PC running on Linux and equipped with an AMD Ryzen Threadripper 1950X

3.4Ghz (16 cores / 32 threads). The algorithms introduced in Section 2 were
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implemented in C++ using the OpenMP Library for the parallelization. The

candidate itemsets for one generation representing up to a dozen of gigabytes

of data, they are written in a file and a buffer storing only 10,000 candidate225

itemsets is reused accordingly.

This parallelization approach results in almost ideal speed-ups (from 12× to

15× according to the number of candidate itemsets). An efficient parallelization

of a local search on GPU is not evident and previous works have reported

relatively modest speed-ups due to memory access latency [19].230

4.1. QAP instances

The QAPLIB repository [20] contains 136 instances and has been enriched by

hundreds other ones freely available on http://mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.h

Since it was not practically possible to conduct our numerical experiments for all

instances, only 11 QAP instances were carefully selected. All chosen instances235

are widely studied in the literature [21] and are considered as the hardest to

solve for the QAP.

The selected instances cover a large panel of the flows/distances matrices

structures that can be found in the literature. Their size (n between 45 and

64) is large enough so that a solver based on exact methods cannot solve the240

problem on modern computers.

The first 3 instances are from Skorin-Kapov [22] (sko49, sko56 and sko64).

No optimal solution has been proven yet for these instances. The distances are

Manhattan on a rectangular grid, and the flows are pseudo-random numbers.

These instances are similar to Nugent et al. ones, but larger. Due to symmetries245

in the distance matrix, multiples of 4 or 8 optimal solutions exists.

Then, 3 asymmetrical instances from Li and Pardalos (lipa50a, lipa60a and

lipa50b) were selected. These instances were generated so that the optimal

solutions are known [23].

Then, 2 symmetrical instances with flows and distances randomly, uniformly250

generated have been selected (tai50a and tai60a) [14]. These instances are sim-

ilar to Roucairol’s ones, but larger.
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Then, 2 asymmetrical instances non-uniformly generated (tai50b and tai60b)

comes from[24]. An instance for generating grey patterns (tai64c) proposed in

the same article has also been selected. This instance is not specially hard,255

but has a very large number of optimal solutions, spread all over the solutions’

space.

Finally, a symmetrical and structured instance (tai45e01) proposed in [25]

was selected. This instance was generated in such a way that a number of local

search based methods have difficulties to find a moderately good solution.260

4.2. Parameters for the Experiments

The algorithms of this paper rely on extracting most frequent itemsets from

all solutions then combining them to create a new set of solutions.

In Algorithm 2, the number of generations is set to 8 and 10,000 local

searches are executed per generation. The default minimum support for the265

extraction of itemsets is set to 0.1% (i.e. keep itemsets which appear in 10 out

of 10,000 solutions). The itemsets limit is set to one million for each k-itemset.

Basically, these parameters determined the duration of the training phase and

the memory space that is used. All these parameters were selected and tuned

in such a way that each generation does not exceed one day of calculation.270

Regarding the combining phase, the first set of experiments are based on the

random exploration of frequent itemsets (REFI) whereas the second one is on

the exploration on sorted frequent itemsets (ESFI). A multi-start with 90, 000

local search algorithms from random solutions is also considered. Even if the

execution time differs, it is used as an indicator of comparison where no learning275

process is implemented. Disregarding the time needed for selecting the itemsets

and building starting solutions, all the methods are indeed performing 90, 000

local searches.

4.3. Quality of Solutions

For optimization problems, the main criteria to be evaluated is the quality280

of solutions. The last is measured relatively to the value of the best solution
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Figure 2: REFI, ESFI and multi-start distribution of solutions quality for sko49 (Manhattan

distances on a square grid) using a kernel density estimation plot.

known to date (bvk), which is believed to be optimal. The distribution of the

quality of the solutions is visualized with a kernel density estimation plot.

The quality of the solutions for the instances are graphically illustrated in

Figures 2, to 13. All the solutions compared to the bvk are represented for the285

90, 000 solutions found by the multi-start algorithm (dash-dotted line) and the

8 generations of REFI (plain line) and ESFI (dotted line) learning methods.

Corresponding numerical results including the minimum, the 5th percentile,

the median, the mean and the maximum are reported in Tables A.3 to A.14 in

Appendix A.290

For the instance sko49 (Figure 2), the density reveals that most solutions

produced by REFI and ESFI algorithms are, respectively, about 0.5% and 1%

above the bvk whereas most of those produced by a random multi-start are

around 3%. A similar observation can be made for the instance sko56 (Figure 3).

The phenomenon is more pronounced for the instance sko64 (Figure 4) where295

the REFI algorithm was able to produce solutions very close to the bvk.

The benefits of the learning phase are also prominent for the lipa50a instance
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Figure 3: REFI, ESFI and multi-start distribution of solutions quality for sko56 (Manhattan

distances on a rectangular grid) using a kernel density estimation plot.

Figure 4: REFI, ESFI and multi-start distribution of solutions quality for sko64 (Manhattan

distances on a square grid) using a kernel density estimation plot.

(Figure 5), where the multi-start from random solutions was unable to find the

optimum. A similar behavior stands for the lipa60a instance in Figure 6 except
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Figure 5: REFI, ESFI and multi-start distribution of solutions quality for lipa50a (asymmetric

with known optimal solutions) using a kernel density estimation plot.

Figure 6: REFI, ESFI and multi-start distribution of solutions quality for lipa60a (asymmetric

with known optimal solutions) using a kernel density estimation plot.

that REFI is the only algorithm able to reach the known optimum.300

Regarding the lipa50b instance (Figure 7), the difference of quality is very
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Figure 7: REFI, ESFI and multi-start distribution of solutions quality for lipa50b (asymmetric

with known optimal solutions) using a kernel density estimation plot.

Figure 8: REFI, ESFI and multi-start distribution of solutions quality for tai50a (uniformly

generated) using a kernel density estimation plot.

important since most REFI and ESFI solutions are optimal whereas multi-start

solutions are between 15 and 20% above the bvk. For the 11 selected instances,
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Figure 9: REFI, ESFI and multi-start distribution of solutions quality for tai60a (uniformly

generated) using a kernel density estimation plot.

Figure 10: REFI, ESFI and multi-start distribution of solutions quality for tai50b (asymmetric

and randomly generated) using a kernel density estimation plot.

this is the only one for which learning with itemsets is highly successful.

For the tai50a instance (Figure 8), there is a moderate trend indicating that305
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Figure 11: REFI, ESFI and multi-start distribution of solutions quality for tai60b (asymmetric

and randomly generated) using a kernel density estimation plot.

Figure 12: REFI, ESFI and multi-start distribution of solutions quality for tai45e01 (struc-

tured) using a kernel density estimation plot.

most of the REFI and ESFI runs are able to learn something. Unsurprisingly,

the learning is less pronounced for randomly, uniformly generated instances. A

similar observation can be made for the tai60a instance (Figure 9).
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Figure 13: REFI, ESFI and multi-start distribution of solutions quality for tai64c (structured)

using a kernel density estimation plot.

Regarding the instance tai50b ((Figure 10), there are peaks showing that

most ESFI and REFI solutions are between 0.5 and 1% above the bvk. The310

multi-start algorithm produces solutions that are spread 7.3% above the bvk

with a standard deviation of 3.3%.

A similar observation can be made for the instance tai60b in Figure 11,

where different high-density peaks indicate that most ESFI and REFI solutions

are between 2 and 4% above the bvk. The multi-start algorithm solutions that315

are spread 8% above the bvk with a standard deviation of 3.4%. For this type

of instances, learning with itemsets is possible, but not as successful as it is for

lipab instances.

Regarding the structured instance tai45e01 (Figure 12), the ESFI and REFI

algorithms are completely unable to learn something interesting. These algo-320

rithms are just focusing on solutions that are very far from the optimal one. The

learning techniques based on the frequent itemsets seem to be inefficient for deal-

ing with such structured instances. The population of solutions just converges

too early. We were rather surprised by this result, since various metaheuristics
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combining a local search with a learning mechanism are perfectly able to reach325

the best solution, for instance GRASP with path relinking, late acceptance local

search, genetic hybrids or ant systems [25].

For tai64c (Figure 13), most solutions being below 1% above the bvk, it is

not clear that a learning algorithm outperforms a simple multi-start. It might

be explained by the fact that the instance has multiple global optima and it is330

easy to solve it optimally [26].

4.4. Additional Information for the Positions of Solutions

Another criterion to assess is the similarity of the solutions produced by the

algorithms with a target solution with bvk. The similarity can be measured

by the number of elements in that are at the same position. These results are335

reported in Table 1 and Table 2. The 3. column provides the mean and the

standard deviation of the number of positions identical to the target solution.

The next two columns are the percentage of solutions under 5% above the bvk

including those ones that share at least 10% of common positions with the

target. The next column provides the percentage of different solutions. This340

proportion gives an indication of the population diversity. Finally, the number

of itemsets revealing all the patterns discovered during the exploration phase is

reported.

Table 1 shows for the sko49 instance that the number of positions identical

to the target is almost non-existent for all algorithms (between 1 and 2 on the345

average). It is an easy instance since more than 98% of solutions are under

5% above the bvk, including the simple multi-start from random solutions. As

shown in Figure 2, the learning mechanism helps improving the last percentages

above the bvk.

A similar observation can be made for sko56. The main difference is that350

among all the solutions that are under 5% above the bvk, there is a significant

percentage of solutions (61.88% for REFI and 24.61% for ESFI) that share more

than 10% of common positions with the target. The same remark occurs for

the instance sko64 but the diversity of REFI solutions is pretty low (3.04%).
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Table 1: Additional results for the positions of produced solutions for sko49, sko56, sko64,

lipa50a, lipa60a and lipa50b instances : number of positions that are identical (mean and

standard deviation) to a target solution, percentage of solutions under 5% above the best

value known (bvk) and, for those that share at least 10% of common positions with the

target, percentage of different solutions and total number of itemsets discovered.

instance algorithm

# positions % solutions under
% different
solutions # itemsetsidentical to 5% above the bvk

the target all pos > 10%

sko49

REFI 1.31.5 99.80% 3.85% 51.35% 66.8× 106

multi-start 1.81.7 98.32% 7.20% 100.00% -

ESFI 1.11.4 99.74% 2.69% 69.78% 58.9× 106

sko56

REFI 7.64.9 99.92% 61.88% 46.13% 83.1× 106

multi-start 2.02.0 99.27% 6.01% 100.00% -

ESFI 4.12.2 99.93% 24.61% 83.80% 58.9× 106

sko64

REFI 7.47.2 100.00% 49.74% 3.04% 136.4× 106

multi-start 2.22.0 99.94% 3.55% 100.00% -

ESFI 4.62.3 99.99% 17.16% 67.41% 84.3× 106

lipa50a

REFI 30.321.1 100.00% 71.57% 45.46% 79.9× 106

multi-start 1.31.5 100.00% 1.87% 100.00% -

ESFI 22.416.9 100.00% 70.06% 59.93% 101.4× 106

lipa60a

REFI 32.727.0 100.00% 66.31% 50.06% 176.7× 106

multi-start 1.21.4 100.00% 0.61% 100.00% -

ESFI 10.18.2 100.00% 53.88% 77.09% 63.8× 106

lipa50b

REFI 50.00.0 100.00% 100.00% 0.00% 37.6× 106

multi-start 1.93.7 0.41% 0.41% 99.59% -

ESFI 49.16.2 98.03% 98.03% 1.97% 23.0× 106
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Table 2: Additional results for the positions of produced solutions for tai50a, tai60a, tai50b,

tai60b, tai45e01 and tai64c instances: number of positions that are identical (mean and stan-

dard deviation) to a target solution, percentage of solutions under 5% above the best value

known (bvk) and, for those that share at least 10% of common positions with the target, the

percentage of different solutions and the number of itemsets discovered.

instance algorithm

# positions % solutions under
% different
solutions # itemsetsidentical to 5% above the bvk

the target all pos > 10%

tai50a

REFI 1.91.4 79.93% 0.71% 88.39% 20.5× 106

multi-start 1.11.2 48.76% 0.25% 100.00% -

ESFI 1.61.3 76.29% 0.64% 100.00% 40.2× 106

tai60a

REFI 0.91.0 88.77% 0.01% 99.99% 33.0× 106

multi-start 1.01.0 66.41% 0.01% 100.00% -

ESFI 0.80.9 85.50% 0.01% 100.00% 24.2× 106

tai50b

REFI 22.911.4 87.58% 78.93% 12.86% 106.0× 106

multi-start 2.12.6 26.70% 4.28% 100.00% -

ESFI 1.21.7 86.11% 1.56% 38.59% 108.2× 106

tai60b

REFI 1.83.5 97.67% 3.70% 24.40% 123.4× 106

multi-start 3.13.1 21.91% 6.89% 100.00% -

ESFI 2.52.0 94.27% 1.88% 25.53% 226.9× 106

tai45e01

REFI 0.93.6 0.02% 0.02% 10.68% 33.2× 106

multi-start 3.35.0 0.01% 0.01% 96.76% -

ESFI 0.53.1 0.03% 0.03% 9.48% 109.4× 106

tai64c*

REFI 30.015.1 99.98% 55.01% 100.00% 71.6× 106

multi-start 10.413.7 99.98% 6.14% 100.00% -

ESFI 22.817.3 99.98% 33.73% 94.41% 45.1× 106
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Regarding lipa50a and lipa60a instances (asymmetric with known optimal355

solutions), the number of shared positions of REFI and ESFI with the target is

prominent (around 10 and 30). But it is not a difficult instance since 100% of

solutions are under 5% above the bvk. As shown in Figure 5 and Figure 6, the

learning phase is also determinant for improving the last percentages above the

bvk.360

The lipa50b case (high values for matrix entries) is interesting since only

0.41% of multi-start solutions are under 5% above the bvk. The benefits of

learning mechanisms are meaningful for this instance since most REFI and ESFI

solutions converge to the target.

For tai50a and tai60a instances, Table 2 shows that the number of positions365

identical to the target is also almost non-existent. Indeed, the produced solu-

tions that share 10% of common positions with the target and that are under

5% above the bvk is less than 1%. The number of itemsets (patterns) discovered

for both tai50a and tai60a is lower than the other instances.

Things are quite different for the tai50b (asymmetric and randomly gener-370

ated) where the percentage of different solutions is rather low (less than 40%),

meaning that many solutions converge to the same local optima. On the one

hand, the solutions produced by REFI share an important number of common

positions with the target (22.9 in average). On the other hand, ESFI has very

little in common with the target. In both cases, the number of discovered item-375

sets is rather high (more than 100 millions) and 85% solutions are under 5%

above the bvk. It is really significant in comparison with a multi-start where

only 26.7% solutions are within the same quality.

A similar observation can be made for the tai60b instance. Even if the

number of positions shared with the target is pretty low (less than 2.5), more380

than 94% of produced solutions by a learning algorithm are under 5% above the

bvk, whereas a simple multi-start has only 21.91% under this level. Interestingly

this instance has generated the highest number of different patterns.

Regarding the instance tai45e01, the diversity of the population of solutions

is also significantly low. It represents less than 11% of different solutions even385
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if the number of itemsets is significant. The number of positions identical to

the target is even lower than a multi-start with 90, 000 random solutions. The

number of solutions under 5% above the bvk is close to 0%. It seems that the

learning mechanisms studied in this article are not really efficient for such a

structured instance. The itemsets produced are just focusing on bad quality390

local optima, very far from the global optimum.

The structured tai64c is easy to solve since 12, 715 different global optima

were found during the different runs. Since global optima are spread all over the

solutions’ space, it is not clear whether something can be learned with itemsets

or not. Anyway, since 99.98% solutions are under 5% above the bvk for all395

algorithms, the benefits of a learning process are not really meaningful in the

context of optimization.

5. Conclusions

The main interest in combining the unsupervised association rule learning

with metaheuristics is to discover useful knowledge about the history of the400

search in order to enhance the produced solutions.

In this paper, we proposed to incorporate the extraction of frequent itemsets

for parallel local search algorithms in a big data context. The global process

can be iterated through two phases: the extraction of millions frequent itemsets

and their combination for generating new solutions.405

For the QAP, learning mechanisms through association rule learning have

shown significant improvements in comparison with a multi-start from random

solutions for a number of problem instances of the literature. From this point

of view, the REFI and ESFI developed in this paper have been revealed to be

competitive but for one problem instance. It has to be mentioned that a uniform410

selection of itemsets reveals superior to a selection biased with the frequency of

appearance.

The drawback of this learning is that they take a full day on a single machine

to train one generation of solutions. In comparison, the dedicated robust taboo
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search [14] or the fast ant systems [27] will find better solutions in just a few415

minutes.

However, in the context of big data, one day of calculation on a single ma-

chine is still reasonable regarding usual machine and deep learning trainings

that may take a couple of weeks on a cluster of GPU-based machines [28].

In contrast with metaheuristics dedicated to a specific optimization problem,420

the advantage of these learning techniques is that they are rather simple to

design and do not require a priori knowledge of the problem at hand. However,

for the QAP, the quality of the solution produced with these learning techniques

is not competitive compared to state-of-the-art metaheuristics.

A research avenue could be a finer tuning of parameters (i.e. minimum425

support, itemsets limit and number of solutions) to see how they can influence

the search process and to control the duration of the execution according to

the scenario. For example, a low minimum support allows limiting the training

phase to couple minutes, while a higher number of solutions will make it last

a week. Another perspective could be to investigate how machine learning can430

enhance state-of-the-art metaheuristics for the QAP.

The general conclusion of this paper is that there is still a long way till

general learning techniques will surpass more direct optimization techniques

for the QAP. This contrasts with works on other optimization problems like

the travelling salesman. Indeed, for this problem, a few dozen of a very fast435

randomized local search is able to extract most of the components of target

solutions. Since learning techniques can be very efficient for this optimization

problem, it would be interesting to study its behavior for in other problems

where a permutation is search for, such as the flowshop scheduling problem.
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Appendix A. Quality of Solutions: Minimum, 5th percentile, Me-

dian, Mean and Maximum
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Table A.3: Quality of the solutions for sko49. 10,000 solutions per generation. The common

starting point is a multi-start then 10, 000 local search methods are executed for each gener-

ation of algorithm (REFI and ESFI). The minimum, the 5th percentile of the best solutions,

the median, the mean and the maximum are reported.

algorithm min 5% median meanstd max

multi-start10000 23506 23796 24100 24106.8197.4 24924

REFI gen 1 23478 23752 24046 24051.3188.3 24872

REFI gen 2 23428 23740 24032 24037.7188.4 24806

REFI gen 3 23446 23724 24006 24014.3189.5 24872

REFI gen 4 23450 23639 23876 23896.5178.4 24602

REFI gen 5 23422 23482 23582 23608.9120.0 24326

REFI gen 6 23420 23452 23494 23496.725.9 23672

REFI gen 7 23440 23458 23484 23492.717.5 23602

REFI gen 8 23440 23458 23484 23488.618.3 23634

ESFI gen 1 23446 23758 24056 24063.4192.3 24988

ESFI gen 2 23522 23755 24050 24056.1190.0 24764

ESFI gen 3 23488 23720 24018 24020.6189.0 24796

ESFI gen 4 23480 23676 23924 23932.8173.9 24646

ESFI gen 5 23504 23608 23702 23708.570.7 24164

ESFI gen 6 23530 23576 23644 23646.145.9 23892

ESFI gen 7 23540 23598 23646 23643.733.6 23768

ESFI gen 8 23550 23588 23604 23609.418.8 23748

multi-start90000 23474 23790 24098 24105.1198.3 25086
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Table A.4: Quality of the solutions for sko56. 10,000 solutions per generation. The common

starting point is a multi-start then 10, 000 local search methods are executed for each gener-

ation of algorithm (REFI and ESFI). The minimum, the 5th percentile of the best solutions,

the median, the mean and the maximum are reported.

algorithm min 5% median meanstd max

multi-start10000 34582 35048 35460 35475.7272.4 36518

REFI gen 1 34628 34984 35368 35383.2260.3 36518

REFI gen 2 34570 34955 35340 35354.2258.9 36402

REFI gen 3 34556 34900 35302 35314.8264.3 36408

REFI gen 4 34534 34724 35064 35099.2265.4 36434

REFI gen 5 34462 34512 34616 34619.973.2 35094

REFI gen 6 34462 34516 34550 34560.632.7 34748

REFI gen 7 34462 34528 34548 34552.917.5 34742

REFI gen 8 34462 34542 34548 34549.711.2 34708

ESFI gen 1 34620 34992 35392 35402.3260.2 36646

ESFI gen 2 34614 34966 35366 35378.8262.9 36420

ESFI gen 3 34634 34930 35286 35299.7242.5 36732

ESFI gen 4 34572 34816 35000 35004.5116.8 35544

ESFI gen 5 34544 34800 34916 34915.671.3 35210

ESFI gen 6 34566 34802 34904 34904.070.9 35180

ESFI gen 7 34566 34804 34934 34928.679.5 35286

ESFI gen 8 34580 34808 34930 34930.076.8 35242

multi-start90000 34628 35056 35464 35477.9272.2 36750
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Table A.5: Quality of the solutions for sko64. 10,000 solutions per generation. The common

starting point is a multi-start then 10, 000 local search methods are executed for each gener-

ation of algorithm (REFI and ESFI). The minimum, the 5th percentile of the best solutions,

the median, the mean and the maximum are reported.

algorithm min 5% median meanstd max

multi-start10000 48498 48498 48514 48519.118.5 48666

REFI gen 1 48498 48498 48518 48578.2214.4 50364

REFI gen 2 48498 48508 48518 48516.617.5 49160

REFI gen 3 48498 48518 48518 48514.76.0 48592

REFI gen 4 48498 48504 48518 48520.417.1 48674

REFI gen 5 48498 48504 48518 48523.122.1 48708

REFI gen 6 48498 48506 48522 48529.823.0 48698

REFI gen 7 48498 48508 48508 48516.713.2 48656

REFI gen 8 48498 48506 48526 48529.221.7 48666

ESFI gen 1 48738 49220 49700 49716.7319.6 51082

ESFI gen 2 48754 49178 49674 49686.8323.7 51006

ESFI gen 3 48692 49058 49508 49529.7308.9 50832

ESFI gen 4 48704 48880 49080 49088.4137.1 49814

ESFI gen 5 48672 48792 48940 48945.998.7 49312

ESFI gen 6 48680 48799 48902 48915.771.0 49244

ESFI gen 7 48742 48786 48906 48881.359.6 49246

ESFI gen 8 48812 48852 48896 48892.217.2 49010

multi-start90000 48664 49288 49788 49803.3327.2 51240
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Table A.6: Quality of the solutions for lipa50a. 10,000 solutions per generation. The common

starting point is a multi-start then 10, 000 local search methods are executed for each gener-

ation of algorithm (REFI and ESFI). The minimum, the 5th percentile of the best solutions,

the median, the mean and the maximum are reported.

algorithm min 5% median meanstd max

multi-start10000 62693 62823 62904 62903.548.9 63081

REFI gen 1 62683 62808 62888 62887.648.3 63074

REFI gen 2 62579 62789 62874 62872.750.4 63104

REFI gen 3 62357 62718 62837 62831.965.4 63034

REFI gen 4 62093 62093 62329 62319.3174.1 62839

REFI gen 5 62093 62093 62093 62156.296.1 62569

REFI gen 6 62093 62093 62093 62149.383.3 62457

REFI gen 7 62093 62093 62093 62143.475.0 62432

REFI gen 8 62093 62093 62093 62151.881.8 62430

ESFI gen 1 62656 62812 62891 62891.049.1 63074

ESFI gen 2 62624 62798 62880 62879.949.4 63086

ESFI gen 3 62396 62746 62849 62845.658.9 63028

ESFI gen 4 62093 62381 62611 62591.2117.5 62877

ESFI gen 5 62093 62259 62536 62518.2137.9 62856

ESFI gen 6 62093 62093 62440 62458.4142.5 62730

ESFI gen 7 62093 62495 62495 62512.835.7 62552

ESFI gen 8 62093 62093 62093 62086.56.5 62093

multi-start90000 62672 62824 62904 62936.758.5 63128
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Table A.7: Quality of the solutions for lipa60a. 10,000 solutions per generation. The common

starting point is a multi-start then 10, 000 local search methods are executed for each gener-

ation of algorithm (REFI and ESFI). The minimum, the 5th percentile of the best solutions,

the median, the mean and the maximum are reported.

algorithm min 5% median meanstd max

multi-start10000 108196 108298 108403 108403.664.3 108622

REFI gen 1 108110 108281 108387 108387.264.0 108592

REFI gen 2 108056 108259 108366 108365.464.8 108582

REFI gen 3 107941 108220 108336 108334.769.4 108626

REFI gen 4 107218 107978 108218 108198.0128.6 108526

REFI gen 5 107218 107218 107218 107215.129.2 108036

REFI gen 6 107218 107218 107218 107243.269.0 107401

REFI gen 7 107218 107218 107218 107259.380.4 107401

REFI gen 8 107218 107218 107218 107261.081.1 107401

ESFI gen 1 108147 108285 108392 108391.564.6 108637

ESFI gen 2 108120 108275 108381 108380.764.2 108609

ESFI gen 3 108119 108261 108368 108367.665.1 108623

ESFI gen 4 108012 108232 108342 108341.766.0 108576

ESFI gen 5 107513 108049 108212 108205.787.0 108573

ESFI gen 6 107668 107974 108130 108121.884.4 108367

ESFI gen 7 107876 108001 108172 108140.775.1 108333

ESFI gen 8 107947 108000 108091 108072.054.5 108185

multi-start90000 108106 108297 108404 108471.894.1 108669
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Table A.8: Quality of the solutions for lipa50b. 10,000 solutions per generation. The common

starting point is a multi-start then 10, 000 local search methods are executed for each gener-

ation of algorithm (REFI and ESFI). The minimum, the 5th percentile of the best solutions,

the median, the mean and the maximum are reported.

algorithm min 5% median meanstd max

multi-start10000 1210244 1427465 1437272 1436333.515298.1 1459683

REFI gen 1 1210244 1210244 1210244 1210345.2101.3 1210244

REFI gen 2 1210244 1210244 1210244 1210345.2101.3 1210244

REFI gen 3 1210244 1210244 1210244 1210345.2101.3 1210244

REFI gen 4 1210244 1210244 1210244 1210345.2101.3 1210244

REFI gen 5 1210244 1210244 1210244 1210345.2101.3 1210244

REFI gen 6 1210244 1210244 1210244 1210345.2101.3 1210244

REFI gen 7 1210244 1210244 1210244 1210345.2101.3 1210244

REFI gen 8 1210244 1210244 1210244 1210345.2101.3 1210244

ESFI gen 1 1210244 1210244 1210244 1245422.181194.2 1453442

ESFI gen 2 1210244 1210244 1210244 1210345.2101.3 1210244

ESFI gen 3 1210244 1210244 1210244 1210345.2101.3 1210244

ESFI gen 4 1210244 1210244 1210244 1210345.2101.3 1210244

ESFI gen 5 1210244 1210244 1210244 1210345.2101.3 1210244

ESFI gen 6 1210244 1210244 1210244 1210345.2101.3 1210244

ESFI gen 7 1210244 1210244 1210244 1210345.2101.3 1210244

ESFI gen 8 1210244 1210244 1210244 1210345.2101.3 1210244

multi-start90000 1210244 1427468 1437230 1436295.415700.8 1462070
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Table A.9: Quality of the solutions for tai50a. 10,000 solutions per generation. The common

starting point is a multi-start then 10, 000 local search methods are executed for each gener-

ation of algorithm (REFI and ESFI). The minimum, the 5th percentile of the best solutions,

the median, the mean and the maximum are reported.

algorithm min 5% median meanstd max

multi-start10000 5063184 5132739 5186884 5187009.533038.6 5310002

REFI gen 1 5063168 5124209 5176272 5176624.531945.7 5316194

REFI gen 2 5053050 5121611 5172418 5172665.531910.2 5295152

REFI gen 3 5045192 5118250 5170511 5170641.031708.1 5308670

REFI gen 4 5036054 5114363 5166370 5166714.531811.9 5275734

REFI gen 5 5033100 5108081 5159545 5160104.531627.9 5304274

REFI gen 6 5021506 5091967 5141618 5141535.030270.8 5261996

REFI gen 7 5018182 5058936 5102462 5102097.025329.6 5200178

REFI gen 8 5018182 5048834 5087568 5084641.017904.2 5153608

ESFI gen 1 5064096 5129209 5181559 5181889.532846.1 5307170

ESFI gen 2 5061370 5124526 5177912 5178253.532489.0 5312104

ESFI gen 3 5065478 5122971 5175219 5175634.532433.0 5304444

ESFI gen 4 5054256 5119025 5170738 5171047.032013.8 5288918

ESFI gen 5 5039096 5106205 5157359 5157884.531591.2 5283254

ESFI gen 6 5027022 5086195 5132262 5132346.028146.3 5232916

ESFI gen 7 5023610 5094308 5143031 5142891.029622.1 5252534

ESFI gen 8 5017024 5091101 5138713 5138868.028969.9 5238334

multi-start90000 5045838 5133043 5186781 5186889.532964.5 5343300
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Table A.10: Quality of the solutions for tai60a. 10,000 solutions per generation. The common

starting point is a multi-start then 10, 000 local search methods are executed for each gener-

ation of algorithm (REFI and ESFI). The minimum, the 5th percentile of the best solutions,

the median, the mean and the maximum are reported.

algorithm min 5% median meanstd max

multi-start10000 7390306 7480823 7547714 7548364.541549.6 7718816

REFI gen 1 7408304 7469956 7535587 7535738.039787.3 7694328

REFI gen 2 7377916 7464064 7528840 7529231.039711.7 7689762

REFI gen 3 7365166 7463834 7526508 7526913.538854.9 7680518

REFI gen 4 7388740 7461063 7524574 7524828.039079.6 7654806

REFI gen 5 7363014 7455432 7519646 7519943.039319.9 7671852

REFI gen 6 7375208 7446550 7509378 7509672.038559.7 7674214

REFI gen 7 7322694 7423893 7483624 7483851.536744.4 7610188

REFI gen 8 7321632 7395713 7450103 7449910.532878.1 7579504

ESFI gen 1 7368098 7474779 7542200 7541912.540506.5 7689608

ESFI gen 2 7375510 7472263 7536184 7536732.540402.1 7691958

ESFI gen 3 7383938 7468625 7533693 7534254.540368.1 7694198

ESFI gen 4 7364126 7466962 7530445 7530784.539562.9 7688154

ESFI gen 5 7359572 7458935 7523814 7524240.539973.9 7680950

ESFI gen 6 7364390 7441710 7504444 7504441.538115.1 7645068

ESFI gen 7 7351906 7432209 7494194 7493773.537245.0 7661714

ESFI gen 8 7363172 7431633 7493303 7493433.037475.0 7640796

multi-start90000 7372634 7481713 7548760 7548856.541104.5 7720164
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Table A.11: Quality of the solutions for tai50b. 10,000 solutions per generation. The common

starting point is a multi-start then 10, 000 local search methods are executed for each gener-

ation of algorithm (REFI and ESFI). The minimum, the 5th percentile of the best solutions,

the median, the mean and the maximum are reported.

algorithm min 5% median meanstd max

multi-start10000 460019200 469334422 491514704 492297088.015079275.0 560795776

REFI gen 1 458834944 462755248 481617232 483789056.015227086.0 551268544

REFI gen 2 458821504 459174080 460514400 462097696.06372497.0 534738432

REFI gen 3 458896928 460225536 460409216 460460800.0487539.0 501801440

REFI gen 4 459194624 460225536 460396960 460403808.0122913.8 461893216

REFI gen 5 460149280 460307424 460396960 460419712.0100541.9 461546560

REFI gen 6 460149280 460307424 460440768 460446560.0127234.4 461834688

REFI gen 7 460149280 460307424 460440768 460456832.0135945.8 461949120

REFI gen 8 460149280 460307424 460442432 460457760.0134727.1 461812800

ESFI gen 1 459318272 467149560 488284976 489368128.015344915.0 569918592

ESFI gen 2 460043328 465814897 480042912 484013248.014892598.0 551371136

ESFI gen 3 460713088 462353508 469842144 470045728.04768029.0 514776960

ESFI gen 4 460729024 461875520 466398400 466454304.02365897.8 476795136

ESFI gen 5 461431424 462597248 462597248 462769344.0597814.8 467657600

ESFI gen 6 462316672 463986688 463986688 463985760.080095.0 464520928

ESFI gen 7 462803904 462803904 463404096 463144384.0296389.4 463404096

ESFI gen 8 463404096 463404096 463404096 463423936.019842.1 463404096

multi-start90000 458913472 469258948 491238624 492124736.015113656.0 575916032
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Table A.12: Quality of the solutions for tai60b. 10,000 solutions per generation. The common

starting point is a multi-start then 10, 000 local search methods are executed for each gener-

ation of algorithm (REFI and ESFI). The minimum, the 5th percentile of the best solutions,

the median, the mean and the maximum are reported.

algorithm min 5% median meanstd max

multi-start10000 609355200 623452550 656833568 656662528.020697538.0 732287040

REFI gen 1 608216512 611743132 626683424 629156096.014141397.0 699654336

REFI gen 2 608216512 621378368 626683584 626597632.04616621.0 685744192

REFI gen 3 623767680 624075776 626510304 626395200.02086134.8 636349632

REFI gen 4 623818624 624022464 624477760 625653888.02084760.6 636581760

REFI gen 5 623934144 623938816 624217728 624534272.01326390.0 636548160

REFI gen 6 623935552 623938816 624129664 624122944.0301865.6 635483648

REFI gen 7 623934144 623935552 623938816 623947520.081396.4 624488128

REFI gen 8 623935552 623935552 623977920 623978880.0104172.8 624594048

ESFI gen 1 608387520 616770499 636278272 640118528.017702224.0 706870016

ESFI gen 2 617880256 619691958 622211680 623065024.03118336.2 651764160

ESFI gen 3 619384832 619712384 620080256 620425152.01429504.0 636607808

ESFI gen 4 619601024 626998464 627137472 626881280.01068640.9 632455424

ESFI gen 5 621768960 622274688 623017792 623327808.01058790.0 625134848

ESFI gen 6 624292992 624292992 624292992 624288448.04543.9 624292992

ESFI gen 7 624292992 624292992 624292992 624288448.04543.9 624292992

ESFI gen 8 624292992 624292992 624292992 624288448.04543.9 624292992

multi-start90000 608666880 623378672 656834016 656634432.020708170.0 740834112
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Table A.13: Quality of the solutions for tai45e01. 10,000 solutions per generation. The

common starting point is a multi-start then 10, 000 local search methods are executed for

each generation of algorithm (REFI and ESFI). The minimum, the 5th percentile of the best

solutions, the median, the mean and the maximum are reported.

algorithm min 5% median meanstd max

multi-start10000 6554 8964 12689 22200.712553.5 268332

REFI gen 1 6412 8381 31901 24559.111524.5 268720

REFI gen 2 30472 30806 30814 31217.0515.7 35526

REFI gen 3 30472 30472 30814 31109.3543.0 34920

REFI gen 4 30472 30472 30814 31078.0557.4 34306

REFI gen 5 30472 30472 30814 31042.6637.5 34980

REFI gen 6 30472 30472 30806 30907.6491.9 34728

REFI gen 7 30472 30472 30814 31094.1580.0 35802

REFI gen 8 30472 30472 30806 30957.8444.6 34348

ESFI gen 1 6412 7749 31892 25615.210635.0 40740

ESFI gen 2 30472 30644 31682 31943.71059.2 37860

ESFI gen 3 30644 30644 30710 31001.6494.6 35048

ESFI gen 4 31272 31272 31320 31317.216.4 31320

ESFI gen 5 31320 31320 31320 31324.64.6 31320

ESFI gen 6 31320 31320 31320 31324.64.6 31320

ESFI gen 7 31320 31320 31320 31324.64.6 31320

ESFI gen 8 31320 31320 31320 31324.64.6 31320

multi-start90000 6444 8940 12705 22236.812499.1 267652
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Table A.14: Quality of the solutions for tai64c. 10,000 solutions per generation. The common

starting point is a multi-start then 10, 000 local search methods are executed for each gener-

ation of algorithm (REFI and ESFI). The minimum, the 5th percentile of the best solutions,

the median, the mean and the maximum are reported.

algorithm min 5% median meanstd max

multi-start10000 1855928 1855928 1863678 1864225.49427.4 1955976

REFI gen 1 1855928 1855928 1863678 1864032.69131.2 1955976

REFI gen 2 1855928 1855928 1863678 1863845.98690.8 1955976

REFI gen 3 1855928 1855928 1863678 1863434.98147.6 1955976

REFI gen 4 1855928 1856396 1860942 1862543.86655.9 1934358

REFI gen 5 1855928 1856396 1860348 1861328.94973.1 1933266

REFI gen 6 1855928 1857646 1858710 1860166.24137.7 1907616

REFI gen 7 1855928 1857646 1857646 1859543.23665.3 1903972

REFI gen 8 1855928 1857646 1857646 1858774.63146.6 1903972

ESFI gen 1 1855928 1855928 1863678 1864049.59126.9 1955976

ESFI gen 2 1855928 1855928 1863678 1864110.28938.6 1955976

ESFI gen 3 1855928 1855928 1863678 1863979.49177.8 1955976

ESFI gen 4 1855928 1855928 1863678 1863527.08294.2 1955976

ESFI gen 5 1855928 1856396 1860942 1862569.46869.1 1955976

ESFI gen 6 1855928 1856396 1860942 1861213.14676.7 1913788

ESFI gen 7 1855928 1856396 1860942 1861499.14499.0 1903972

ESFI gen 8 1855928 1857646 1863678 1863013.83000.8 1926154

multi-start90000 1855928 1855928 1863678 1864672.19265.7 1955976
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