
Parallel Metaheuristics

on GPU

Ph.D. Defense - Thé Van LUONG
December 1st 2011

Advisors: Nouredine MELAB and El-Ghazali TALBI

Outline
2

I. Scientific Context

1. Parallel Metaheuristics

2. GPU Computing

II. Contributions

1. Efficient CPU-GPU Cooperation

2. Efficient Parallelism Control

3. Efficient Memory Management

4. Extension of ParadisEO for GPU-based metaheuristics

III. Conclusion and Future Works

Optimization problems

 High-dimensional and complex optimization problems in many
areas of industrial concern

– Telecommunications, Transport, Biology, …

(Multi-Objective)
)()(...,),(),()(

21
xxxxfMin fff

n
 

Sx

Const.

2n

(Mono-Objective))(xfMin

Sx

3

 Exact methods: optimality but exploitation on small size problem instances

 Metaheuristics: near-optimality on larger problem instances, but …

 … Need of massively parallel computing on very large instances

Exploitation-oriented Exploration-oriented

Exact Algorithms Heuristics

Branch
and X

Dynamic
programming

CP Specific heuristics Metaheuristics

Solution-based Population-based

Hill Climbing
Simulated
Annealing

Tabu Search
Evolutionary
Algorithms

Ant …

4
A taxonomy of optimization methods

 Knapsack problem

 Solution: binary encoding

 Neighborhood example:
Hamming distance of one

Single solution-based metaheuristics

Neighborhood
evaluation

Initial solution

End ?
no

Full evaluation

Replacement

yes

Pre-treatment

Post-treatment

5

3 4 2 0 1

0 0 1 0 1

0 0 1 1 1

0 0 1 0 0

0 0 0 0 1

1 0 1 0 1

0 1 1 0 1

A candidate solution

Population-based metaheuristics
6

0 0 1 1 1

0 0 1 0 0

1 0 0 0 1

0 1 1 1 0

0 1 1 0 1

Population of solutions

Initialization

Pre-treatment

Population evaluation

Replacement

End ?

I0 I1 I2 In

no

yes

Individuals

Post-treatment

3 4 2 0 1

0 1 0 0 1
1 0 1 0 1

3 4 2 0 1

0 0 1 0 1

Crossover

1 0 0 0 1

3 4 2 0 1

0 0 0 1 1

0 0 0 0 1

3 4 2 0 1

1 0 0 1 1

Mutation

Evolutionary algorithms

Parallel models of metaheuristics
7

Iteration-level

Algorithmic-level

Solution-level

 M1

M2

 M3

M4

 M5

sol1

sol2

sol3

soln

f1(soln) fm(soln)

Previous parallel approaches

 Massively Parallel Processors [Chakrapani et al. 1993]

 Clusters and networks of workstations [Garcia et al. 1994, Crainic et al.
1995, Braun et al. 2001]

 Shared memory or SMP machines [Bevilacqua et al. 2002]

 Large-scale computational grids [Tantar et al. 2007]

 S-metaheuristics: simulated annealing [Chandy et al. 1996], tabu search
[Crainic et al. 2002], GRASP [Aiex et al. 2003]

 P-metaheuristics: genetic programming [André et al. 1996], ant colonies
[Gambardella et al. 1999], evolutionary algorithms [Alba et al. 2002]

 Unified view of parallel metaheuristics [Talbi et al. 2009]

 Parallelization concepts of metaheuristics

 Implementations on parallel and distributed architectures

8

 Used in the past for graphics and video applications …

 … but now popular for many other applications such as scientific
computing [Owens et al. 2008]

 Popularity due to the publication of the CUDA development
toolkit allowing …

 … GPU programming in a C-like language [Garland et al. 2008]

Graphics Processing Units (GPU)
9

0

250

500

750

1000

1250

1500

1750

Th
e

o
re

ti
ca

l G
B

/s

Floating-point operations per second

GPU

CPU

0

20

40

60

80

100

120

140

160

180

200

Th
e

o
re

ti
ca

l G
B

/s

Memory bandwidth

GPU

CPU

GeForce
8600 GT

GeForce
8600 GT

GeForce
8800 GTX

GeForce
8800 GTX

GTX 280

GTX 280

Tesla
M2050

Tesla
M2050

Core 2
Core 2

Xeon
Nehalem

Xeon
Nehalem

GPU trends

Pentium 4

Pentium 4

10

Hardware repartition
11

DRAM

Cache

Control
ALU ALU

ALU ALU

DRAM

CPU GPU

 CPU: complex instructions, flow control

 GPU: compute intensive, highly parallel computation

Kernel 1
execution

Allocate Device Memory

Mem2

Mem1

DMem1

DMem2

Mem1

DMem1

DMem2

CPU code

Mem2

Kernel 1 call

Allocate Device Memory

Copy

Copy

CPU code

CPU (host)

GPU (device)

12

 The CPU is considered as a host and
the GPU is used as a device
coprocessor

 Data must be transferred between the
different memory spaces via the PCI
bus express …

General GPU model

One transfer of 30 MB

 … many data transfers might become a
bottleneck in the performance of GPU
applications

 Kernel execution is invoked
by CPU over a compute grid

 Subdivided in a set of
thread blocks
 Containing a set of threads
with access to shared
memory

 All threads in the grid run
the same program

 Individual data and
individual code flow (Single
Program Multiple Data)

Grid

Block (0,0) Block (1,0)

Block (1,1) Block (0,1)

Block (1,1)

Thread (0,0) Thread (1,0)

Thread (0,1) Thread (1,1)

Programming model: SPMD model
13

Thread (2,0)

Thread (2,1)

CPU scalar op: CPU SSE op: GPU Multiprocessor:

GPU Multiprocessor: => 32 thread process 32 data elements

 These groups of 32 threads are called warps
 Exposed as individual threads …
 … but run the same instruction.
 … large number of threads à détailler, hyperthreading, context switch
rapide

14

Execution model: SIMD model

 GPU architectures are based on hyper-threading

 Single instruction executed on multiple threads (SIMD). Instructions are issued
per warp (32 threads).

 A large number of threads are required to cover the memory access latency ...

 … an issue is to control the generation of threads

 Context switching …

 … between warps when stalled (e.g. an operand is not ready)

 … enables to minimize stalls with little overhead

GPU

Constant
Memory

Texture
Memory

Global
Memory

Block 0

Shared Memory

Local
Memory

Thread 0

Registers

Local
Memory

Thread 1

Registers

Block 1

Shared Memory

Local
Memory

Thread 0

Registers

Local
Memory

Thread 1

Registers

CPU

Memory type Access latency Size

Global Medium Big

Registers Very fast Very small

Local Medium Medium

Shared Fast Small

Constant Fast (cached) Medium

Texture Fast (cached) Medium

- Highly parallel multi-threaded
many core

- High memory bandwidth
compared to CPU

- Different levels of memory
(different latencies)

Hierarchy of memories
15

 Re-think the parallel models of metaheuristics to take into
account the characteristics of GPU

 The focus on: iteration-level (MW) and algorithmic-level (PC)

 Three major challenges …

 Challenge1: efficient CPU-GPU cooperation

 Work partitioning between CPU and GPU, data transfer optimization

 Challenge2: efficient parallelism control

 Threads generation control (memory constraints)

 Efficient mapping between work units and threads Ids

 Challenge3: efficient memory management

 Which data on which memory (latency and capacity constraints) ?

16

Objective and challenging issues

Outline

I. Scientific Context

1. Parallel Metaheuristics

2. GPU Computing

II. Contributions

1. Efficient CPU-GPU Cooperation

2. Efficient Parallelism Control

3. Efficient Memory Management

4. Extension of ParadisEO for GPU-based metaheuristics

III. Conclusion and Future Works

17

Taxonomy of major works

Algorithms CPU-GPU
cooperation

Parallelism
control

Memory
management

38 works

Panmictic Evaluation on GPU One thread per
individual

Global memory
8

2D toroidal
Grid

Evaluation, full
parallelization on GPU

One thread per
individual

Global, shared and
texture memory 10

Island model Evaluation, full
parallelization on GPU

One block per
population

Global, shared and
texture memory 4

Multi-start Full parallelization
on GPU

One thread per
algorithm

Global and texture
memory 3

Single
solution-based

Generation and
evaluation on GPU

One thread per
neighbor

Global and texture
memory

5

Hybrid Generation and evaluation,
full parallelization on GPU

One thread per
individual / neighbor

Global and texture
memory

6

Multiobjective
optimization

Generation and
evaluation on GPU

One thread per
individual / neighbor

Global and texture
memory

2

texture

texture

texture

Evaluation

Generation

Island model

Multi-start

 Single
solution-based

Hybrid

Multiobjective
optimization

Generation and
evaluation on GPU

 One thread per
neighbor

Global and texture
memory 5

neighbor

neighbor

Generation and evaluation

18

Optimization problems

 Permuted perceptron problem (PPP)

 Cryptographic identification scheme

 Binary encoding

 Quadratic assignment problem (QAP)

 Facility location or data analysis

 Permutation

 The Weierstrass continuous function

 Simulation of fractal surfaces

 Vector of real values

 Traveling salesman problem (TSP)

 Planning and logistics

 Permutation (large instances)

 The Golomb rulers

 Interferometer for radio astronomy

 Vector of discrete values

0 0 1 0 1

2 4 5 4 2

Binary encoding

Vector of discrete values

3 4 0 2 1

Permutation

4.8 1.4 5.1 0.3 2.2

Vector of real values

Representation

19

Memory bound

Compute
bound

TSP

QAP

PPP

Golomb

Weierstrass

0

250

500

750

1000

1250

1500

1750

Th
e

o
re

ti
ca

l G
B

/s

Floating-point operations per second

GPU

CPU

GeForce
8600 GT

GeForce
8800 GTX

GTX 280

Tesla
M2050

Core 2 Pentium 4

 Configuration 1: laptop
Core 2 Duo 2 Ghz + 8600M GT
(4 multiprocessors - 32 cores)

 Configuration 2: desktop
Core 2 Quad 2.4 Ghz + 8800 GTX
(16 multiprocessors - 128 cores)

 Configuration 3: workstation
Intel Xeon 3 Ghz + GTX 280
(30 multiprocessors - 240 cores)

 Configuration 4: workstation
Intel Xeon 3.2 Ghz + Tesla M2050
(14 multiprocessors - 448 cores)

Hardware configurations

Xeon
Nehalem

20

1. Efficient CPU-GPU Cooperation

 Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. GPU Computing for Parallel
Local Search Metaheuristic Algorithms. IEEE Transactions on Computers, in
press, 2011

 Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. GPU-based Approaches for
Multiobjective Local Search Algorithms. A Case Study: the Flowshop
Scheduling Problem. 11th European Conference on Evolutionary Computation
in Combinatorial Optimisation (EvoCOP), Torino, Italy, 2011

21

Objective and challenging issues

 Re-think the parallel models of metaheuristics to take into
account the characteristics of GPU

 The focus on: iteration-level (MW) and algorithmic-level(PC)

 Three major challenges …

 Challenge1: efficient CPU-GPU cooperation

 Work partitioning between CPU and GPU, data transfer optimization

 Challenge2: efficient parallelism control

 Threads generation control (memory constraints)

 Efficient mapping between work units and threads Ids

 Challenge3: efficient memory management

 Which data on which memory (latency and capacity constraints) ?

22

 … Need of massively parallel computing on very large solutions set

Iteration-level parallel model: MW

Set of solutions
(master)

worker1

worker2

worker3

Initialization

Pre-treatment

Solutions evaluation

Replacement

End ?
no

yes

Post-treatment

23

CPU

Solutions
evaluation

0 1 2 … m

Initialization

End ?
no

Pre-treatment

Replacement

yes

T0 T1 T2 Tm

Evaluation function

GPU

Threads Block

G
lo

b
al M

em
o

ry
glo

b
al so

lu
tio

n
s, glo

b
al

fitn
e

sse
s, d

ata in
p

u
ts

copy solutions

copy fitnesses Post-treatment

Work partitioning

 CPU (host) controls the whole sequential part of the metaheuristic

 GPU evaluates the solutions set in parallel

24

 Issue for S-metaheuristics

• Where the neighborhood is generated ?

• Two approaches:

 Approach1: generation on CPU and
evaluation on GPU

 Approach2: generation and evaluation on
GPU (parallelism control)

Neighborhood
evaluation

Initial solution

End ?
no

Full evaluation

Replacement

yes

Pre-treatment

Post-treatment

Optimize CPU–>GPU data transfer

 Tabu search - Hamming distance of two

• Where the neighborhood is generated ?

• Two approaches: n(n-1)/2 neighbors

 Approach1: additional O(n3) transfers

 Approach2: additional O(n) transfers

25

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CPU LS
process

data
transfers

GPU kernel

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CPU LS
process

data
transfers

GPU kernel

0

10

20

30

40

50

60

70

80

Evaluation on GPU

8600M GT

8800 GTX

GTX 280

Tesla M2050

0

10

20

30

40

50

60

70

80

Generation and evaluation on GPU

8600M GT

8800 GTX

GTX 280

Tesla M2050

Application to the PPP

Speed-up Speed-up

26

 Issue for S-metaheuristics

• Where the selection of the best neighbor is
done?

• Two approaches:

 Approach1: on CPU i.e. transfer of the data
structure storing the solution results

 Approach2: on GPU i.e. use of the
reduction operation to select the best
solution

Optimize GPU–>CPU data transfer

Neighborhood
evaluation

Initial solution

End ?
no

Full evaluation

Replacement

yes

Pre-treatment

Post-treatment

 Hill climbing - Hamming distance of two

• Two approaches: n(n-1)/2 neighbors

 Approach1: additional O(n²) transfers

 Approach2: additional O(1) transfer

27

 Binary tree-based reduction mechanism to find the minimum of each block
of threads

 Cooperation of threads of a same block through the shared memory
(latency: ~10 cycles)

 Performing iterations on reduction kernels allows to find the minimum of all
neighbors

 Complexity: O(log2(n)), n: size of the neighborhood

GPU reduction to select the best solution

5 6 11 2 3 7 9 1

3 6 9 1 3 7 9 1

3 1 9 1 3 7 9 1

1 1 9 1 3 7 9 1

T0 T1 T2 T3

T0 T1

T0

5 6 11 2 3 7 9 1

Sh
ared

 M
em

o
ry

Threads Block

28

0%

20%

40%

60%

80%

100%

10 20 30 40 50 60 70

CPU LS
Process

data
transfers

GPU kernel

Application to the Golomb ruler

0

10

20

30

40

50

60

10 20 30 40 50 60 70

No reduction

8600M GT

8800 GTX

GTX 280

Tesla M2050

Speed-up

0

10

20

30

40

50

60

10 20 30 40 50 60 70

Reduction on GPU

8600M GT R

8800 GTX R

GTX280 R

Tesla M2050 R

Speed-up

0%

20%

40%

60%

80%

100%

10 20 30 40 50 60 70

CPU LS
process

data
transfers

GPU kernel

29

Comparison with other parallel architectures

 Emergence of heterogeneous COWs and computational grids
as standard platforms for high-performance computing.

 Application to the permuted perceptron problem

 Hybrid OpenMP/MPI implementation

30

0

10

20

30

40

50

Tabu search

GT 280 Tex

COWs 88 cores

grid 96 cores

Speed-up

Application to the PPP

0
10
20
30
40
50
60
70
80
90

100

Analysis of transfers including
synchronizations (COWs)

process

workers

transfers

Percent

0

10

20

30

40

50

60

GT 280 Tex

COWs 88 cores

grid 96 cores

Speed-up

Iterated local search based on a Hill climbing
with first improvement (asynchronous)

31

2. Efficient Parallelism Control

 Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. Large Neighborhood Local

Search Optimization on Graphics Processing Units. 23rd IEEE International
Parallel & Distributed Processing Symposium (IPDPS), Workshop on Large-Scale
Parallel Processing (LSPP), Atlanta, US, 2010

 Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. Local Search Algorithms on
Graphics Processing Units. A Case Study: the Permutation Perceptron Problem.
10th European Conference on Evolutionary Computation in Combinatorial
Optimisation (EvoCOP), Istanbul, Turkey, 2010

32

Objective and challenging issues

 Re-think the parallel models of metaheuristics to take into
account the characteristics of GPU

 The focus on: iteration-level (MW) and algorithmic-level (PC)

 Three major challenges …

 Challenge1: efficient CPU-GPU cooperation

 Work partitioning between CPU and GPU, data transfer optimization

 Challenge2: efficient parallelism control

 Threads generation control (memory constraints)

 Efficient mapping between work units and threads Ids

 Challenge3: efficient memory management

 Which data on which memory (latency and capacity constraints) ?

33

0

2

4

6

8

10

12

14

16

18

20

Generation and evaluation on GPU

8600M GT

8800 GTX

GTX 280

Tesla M2050

Thread control (1)

Speed-up  Traveling salesman problem

 Large instances failed at
execution time due to memory
overflow (e.g. hardware register
limitation or max number of
threads exceeded)

 Such errors are hard to predict
at compilation time since they
are specific to a configuration

 Need a thread control for the generation of threads to meet the

memory constraints at execution time …

34

17 12 8 4 6 13 21 11 3 10 10 7

Solution set

11 13 19 5 12 14 29 19 8 19 11 13

14 11 5 13 4 18 24 15 16 13 19 6

 1 2 3 4 5 6 7 8 9 10 11 12

 13 14 15 16 17 18 19 20 21 22 23 24

 25 26 27 28 29 30 31 32 33 34 35 36

 Increase the threads granularity …

 … with associating each thread to MANY solutions

 … to avoid memory overflow (e.g. hardware register limitation)

Thread control (2)
35

 Dynamic heuristic for parameters auto-tuning

 To prevent the program from crashing

 To obtain extra performance

Kernel execution Kernel call

…

…

…

…

Iteration 1

Iteration 2

Iteration 3

Iteration i

n threads

2n threads

4n threads

m threads

Iteration i+1
2m threads

Kernel execution Kernel call

Kernel execution Kernel call

Kernel execution Kernel call

Kernel execution Kernel call

… …

0.018s

0.012s

0.014s

0.004s

crash

Thread control (3)

…

36

0

2

4

6

8

10

12

14

16

18

20

No thread control

8600M GT

8800 GTX

GTX 280

Tesla M2050

Speed-up

Thread control (4)

0

2

4

6

8

10

12

14

16

18

20

Thread Control on GPU

8600M GT TC

8800 GTX TC

GTX 280 TC

Tesla M2050 TC

Speed-up

37

 Application to the traveling salesman problem (tabu search)

Set of
solutions

 According to the threads spatial
organization …

 … a unique id must be assigned to
each thread to compute on different
data

 For S-metaheuristics, the
challenging issue is to say …

 … which neighbor is assigned to
which thread id (required for the
generation of the neighborhood on
GPU)

 Representation-dependent

Mapping working unit -> thread id (1)
Grid

Block 0 Block 1

Block (1,1)

Thread 0 Thread 1 Thread 2

Mappings

38

 Mappings are proposed for 4 well-
known representations (binary,
discrete, permutation, real vector)

 Neighborhood based on a Hamming
distance of one

 The thread with id=i generates and
evaluates a candidate solution by
flipping the bit number i of the initial
solution

 At most, n threads are generated for a
solution of size n

3 4 2 0 1

0 0 1 0 1

0 0 1 1 1

0 0 1 0 0

0 0 0 0 1

1 0 1 0 1

0 1 1 0 1

A candidate solution

id 0

id 1

id 2

id 3

id 4

Mapping working unit -> thread id (2)
39

 Finding a mapping can be
challenging

 Neighborhood based on a
Hamming distance of two

 A thread id is associated with
two indexes i and j

 At most, n x (n-1) / 2 threads
are generated for a solution
of size n

Mapping working unit -> thread id (3)

3 2 0 1

1 0 1 0

1 0 0 1

1 1 0 0

0 0 0 0

1 1 1 1

0 0 1 1 0 1 1 0

A candidate solution

Its associated neighborhood

40

GPU computing for large neighborhoods

 The increase of the neighborhood size may improve the
quality of the obtained solutions [Ahuja et al. 2007] …

 … but mostly CPU-time consuming. This mechanism is not
often fully exploited in practice.

 Large neighborhoods are unusable because of their high
computational cost …

 … GPU computing might allow to exploit parallelism in such
algorithms.

 Application to the permuted perceptron problem
(configuration 3: GTX 280)

41

Problem 73 x 73 81 x 81 101 x 101 101 x 117

Fitness 9.8 11.3 20.7 16.8

iterations 59891 72345 166650 260130

solutions 11/50 4/50 0/50 0/50

CPU time 4 s 6 s 16 s 29 s

GPU time 9 s 13 s 33 s 57 s

Acceleration x 0.44 x 0.46 x 0.48 x 0.51

Problem 73 x 73 81 x 81 101 x 101 101 x 117

Fitness 15.5 16.2 13.1 12.7

iterations 42143 65421 133211 260130

solutions 22/50 17/50 13/50 0/50

CPU time 81 s 174 s 748 s 1947 s

GPU time 10 s 16 s 44 s 105 s

Acceleration x 8.2 x 11.0 x 17.0 x 18.5

Problem 73 x 73 81 x 81 101 x 101 101 x 117

Fitness 2.5 3.2 5.8 7.1

iterations 19341 40636 100113 214092

solutions 39/50 33/50 22/50 3/50

CPU time 1202 s 3730 s 24657 s 88151 s

GPU time 50 s 146 s 955 s 3551 s

Acceleration x 24.2 x 25.5 x 25.8 x 26.3

Neighborhood based on a

Hamming distance of one

Tabu search

n x (n-1) x (n-2) / 6 iterations

Neighborhood based on a

Hamming distance of two

Tabu search

n x (n-1) x (n-2) / 6 iterations

Neighborhood based on a

Hamming distance of three

Tabu search

n x (n-1) x (n-2) / 6 iterations

3. Efficient Memory Management

 Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. GPU-based Island Model for
Evolutionary Algorithms. Genetic and Evolutionary Computation Conference
(GECCO), Portland, US, 2010

 Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. GPU-based Parallel Hybrid
Evolutionary Algorithms. IEEE Congress on Evolutionary Computation (CEC),
Barcelona, Spain, 2010

43

Objective and challenging issues

 Re-think the parallel models of metaheuristics to take into
account the characteristics of GPU

 The focus on: iteration-level (MW) and algorithmic-level (PC)

 Three major challenges …

 Challenge1: efficient CPU-GPU cooperation

 Work partitioning between CPU and GPU, data transfer optimization

 Challenge2: efficient parallelism control

 Threads generation control (memory constraints)

 Efficient mapping between work units and threads Ids

 Challenge3: efficient memory management

 Which data on which memory (latency and capacity constraints) ?

44

Memory coalescing and texture memory

3 B C A x 1 2 y I II z III c a b

5 7 8 6 9 3 4 10 12 13 11 14 2 0 1

T0 T1 T2 T3

T0 range T1 range

b B y 2 II x I c C z 3 III A a 1

5 7 8 6 9 3 4 10 12 13 11 14 2 0 1

T4

T2 range T3 range T4 range

T0 T1 T2 T3 T4

Ti range

Uncoalesced accesses

Coalesced accesses

 Memory coalescing is not always
feasible for structures in
optimization problems …

 … use of texture memory as a data
cache

 Frequent reuse of data accesses in
evaluation functions

 1D/2D access patterns in
optimization problems (e.g. matrices
or vectors)

45

Application to the QAP
46

0

2

4

6

8

10

12

14

16

18

Global memory only

8600M GT

8800 GTX

GTX 280

Tesla M2050

0

2

4

6

8

10

12

14

16

18

Texture memory optimization

8600M GT Tex

8800 GTX Tex

GTX 280 Tex

Tesla M2050 Tex

 Iterated local search with a tabu search

 PC model:
• Emigrants selection policy
• Replacement/Integration policy
• Migration decision criterion
• Exchange topology

47

P-metaheuristic

P-metaheuristic

Migration
P-metaheuristic

P-metaheuristic

P-metaheuristic

Algorithmic-level model: PC
47

Scheme 1: Parallel evaluation of the population

Initialization

Solutions Evaluation

Post-treatment

Replacement

End ?

Migration ?

I0 I1 I2 In

no

yes

EA 1 CPU

Local population i

EA 2 CPU

T0 T1 T2 Tn

Evaluation function

Threads Blocks

Global Memory
global population, global fitnesses, auxiliary structures

Tn+1 Tn+2 Tn+3 Tn+m

co
p

y

GPU

(1)

(2)

Pre-treatment

Initialization

Solutions Evaluation

Post-treatment

Replacement

End ?

Migration ?

In+1 In+2 In+3 In+m

no

yes

Local population i+1

Pre-treatment

48

co
p

y

(1)

(2)

co
p

y

(2)

(1)

T0 T1 T2 Tn

Global Memory
global population, global fitnesses, auxiliary structures

T0 T1 T2 Tn

GPU

EA 1 EA 2

Threads block –> local pop i Threads block –> local pop i+1

Scheme 2: Full distribution on GPU

Initialization

Solutions Evaluation

Post-treatment

Replacement

End ?

Migration ?

no

yes

Pre-treatment

Initialization

Solutions Evaluation

Post-treatment

Replacement

End ?

Migration ?

no

yes

Pre-treatment

49

T0 T1 T2 Tn

Threads block –> local pop i

Global Memory
global population, global fitnesses, auxiliary structures

GPU

EA 1 EA 2

Shared Memory
local population, local fitnesses

T0 T1 T2 Tn

Shared Memory
local population, local fitnesses

Threads block –> local pop i+1

Scheme 3: Full distribution on GPU using shared memory

Initialization

Solutions Evaluation

Post-treatment

Replacement

End ?

Migration ?

no

yes

Pre-treatment

Initialization

Solutions Evaluation

Post-treatment

Replacement

End ?

Migration ?

no

yes

Pre-treatment

50

Issues of distributed schemes

 Sort each local population on GPU (bitonic sort)

 Find the minimum of each local population on GPU
(parallel reduction)

 Local threads synchronization for interacting solutions

 Mechanisms of global synchronization of threads if a
synchronous migration is needed

 Find efficient topologies between the different local
populations according to the threads block organization

51

T0 T1 Tn Tn-1 T2

Shared Memory

I0 I1 In In-1 I2

Threads Block -> local pop i

I0 I1 In In-1 I2 I0 I1 In In-1 I2

2 bests 2 worsts

T0 T1 Tn Tn-1 T2

Shared Memory

I0 I1 In In-1 I2

Threads Block -> local pop i+1

2 bests 2 worsts

Global Memory

Local population i Local population i+1

migration migration migration

co
p

y

co
p

y

co
p

y

Migration on GPU for distributed schemes
52

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11

S
p

ee
d

-u
p

Instance size

Island model for evolutionary algorithms

(GTX 280 - 64 islands – 128 individuals per island)

CPU+GPU

SGPU

AGPU

Application to the Weierstrass function (1)
53

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11

S
p

ee
d

-u
p

Instance size

Island model for evolutionary algorithms
(GTX 280 - 64 islands – 128 individuals per island)

CPU+ GPU

SGPU

AGPU

SGPUShared

AGPUShared

Application to the Weierstrass function (2)
54

55

 Nouredine Melab, Thé Van Luong, Karima Boufaras, El-Ghazali Talbi. Towards
ParadisEO-MO-GPU: a Framework for GPU-based Local Search Metaheuristics.
11th International Work-Conference on Artificial Neural Networks, IWANN
2011, Torremolinos-Málaga, Spain, 2011

 Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. Neighborhood Structures for
GPU-based Local Search Algorithms. Parallel Processing Letters, Vol. 20, No. 4,
pp. 307-324, December 2010

4. Extension of ParadisEO for
 GPU-based metaheuristics

PEO

MO MOEO

EO

S. Cahon, N. Melab and E-G. Talbi. ParadisEO: A Framework for the Reusable Design of Parallel and
Distributed Metaheuristics. Journal of Heuristics, Vol.10(3), ISSN:1381-1231, pages 357-380, May 2004.

 14871 downloads

 121544 visitors

 239 user-list subscribers

Software framework

 EO: Design and implementation of
population-based metaheuristics

 MO: Design and implementation of
solution-based metaheuristics

 MOEO: Design and implementation of
multi-objective metaheuristics

 PEO: Design and implementation of
parallel models for metaheuristics

 Conceptual objectives

 Clear separation between resolution methods and problems at
hand, maximum code reuse, flexibility, large panels of methods
and portability

56

 Transparent parallelization and distribution
 Clusters and networks of workstations: Communication

library MPI

 SMP and Multi-core: Multi-threading Pthreads

 Grid computing:

• High-performance Grids: Globus, MPICH-G

• Desktop Grids: Condor (checkpointing & Recovery)

 GPU computing

ParadisEO-PEO

MPI PThreads Condor Globus CUDA

N. Melab, S. Cahon and E-G. Talbi. Grid Computing for Parallel Bioinspired Algorithms. Journal of Parallel
and Distributed Computing (JPDC), Elsevier Science, Vol. 66(8), Pages 1052-1061, Aug. 2006.

Parallel and distributed deployment
57

CPU

Solutions
evaluation

0 1 2 … m

Initialization

End ?
no

Pre-treatment

Replacement

yes

T0 T1 T2 Tm

Evaluation

GPU

Threads Block

G
lo

b
al M

em
o

ry
fitn

esses, d
ata in

p
u

ts

copy solutions

copy fitnesses Post-treatment

Iteration-level implementation

 Parallel model which
provides generic concepts …

 … transparent and parallel
evaluation of solutions on
GPU

 MW model which does not
change the original
semantics of algorithms

58

Software

Hardware

<<host>>

CPU

<<device>>

GPU

ParadisEO ParadisEO
GPU

<<actor>>

User

Representations

Evaluation

Specific data

(1)

(2)

(3)

(1) Allocate and copy of data
(2) Parallel evaluation
(3) Copy of evaluation results

CUDA

Layered architecture of ParadisEO-GPU
59

Solution
representation

Solution
evaluation

Population or
Neighborhood

Problem data
inputs

ParadisEO
User-defined
components

ParadisEO-GPU
User modifications

• Keywords

• Keywords
• Explicit calls to
 allocation wrapper
• Linearizing
 multidimensional
 arrays

• Explicit call to
 mapping function

• Keywords
• Explicit calls to
 allocation wrapper

ParadisEO-GPU
Generic and transparent components

provided by the framework

Memory allocation
and deallocation

Data transfers
Parallel evaluation

of solutions

Solution
results

Mapping
functions

Memory
management

Problem-dependent Problem-independent

0

2

4

6

8

10

12

14

16

tai30a tai40a tai50a tai60a tai80a tai100a tai150b

ParadisEO-GPU

Opt GPU

 Application to the quadratic assignment problem

 Tabu search using a neighborhood based on pairwise-exchange operator

 Intel Core i7 3.2 Ghz + GTX 480

Sp
ee

d
-u

p

Performance of ParadisEO-GPU (1)
61

0

5

10

15

20

25

30

35

40

45

73-73 81-81 101-117 121-137 151-167 171-187 201-217

ParadisEO-GPU

Opt GPU

 Application to the permuted perceptron problem

 Tabu search using a neighborhood based on a Hamming distance of two

 Intel Core i7 3.2 Ghz + GTX 480

Sp
ee

d
-u

p

Performance of ParadisEO-GPU (2)
62

Outline

I. Scientific Context

1. Parallel Metaheuristics

2. GPU Computing

II. Contributions

1. Efficient CPU-GPU Cooperation

2. Efficient Parallelism Control

3. Efficient Memory Management

4. Extension of ParadisEO for GPU-based metaheuristics

III. Conclusion and Future Works

63

Conclusion

 GPU-based metaheuristics require to re-design existing parallel
models: iteration-level (MW) and algorithmic-level (PC)

 Efficient CPU-GPU cooperation

 Task repartition, optimization of data transfers for S-metaheuristics
(generation of the neighborhood on GPU and reduction)

 Efficient parallelism control

 Mapping between work units and threads Ids, thread control for the
threads generation (parameters tuning, fault-tolerance)

 Efficient memory management

 Use of texture memory for optimization structures, parallelization
schemes for parallel cooperative P-metaheuristics (global and shared
memory)

64

Perspectives

 Heterogeneous computing for metaheuristics

 Efficient exploitation of all available resources at disposal (CPU cores
and many GPU cards)

 Arrival of GPU resources in COWs and grids …

 … conjunction of GPU computing and distributed computing to fully
exploit the hierarchy of parallel model of metaheuristics

 Multiobjective optimization

 Parallel archiving of non-dominated solutions represents a prominent
issue in the design of multiobjective metaheuristics …

 … SIMD parallel archiving on GPU with additional synchronizations, non-
concurrent writing operations and dynamic allocations on GPU

65

 2 international journals: IEEE Transactions on Computers, parallel
processing letters

 9 international conference proceedings: GECCO, EVOCOP, IPDPS …

 1 national conference proceeding.

 2 conference abstracts

 8 workshops and talks.

 1 research report.

Publications

THANK YOU FOR YOUR ATTENTION

66

Additional slides

Problem
Data

inputs

Evaluation

Time
complexity

∆-evaluation

Performance
Time

complexity

Space
complexity

Permuted
perceptron

One
matrix

O(n²) O(n) O(n) ++

Quadratic
assignment

Two
matrices

O(n²)

O(1) / O(n) O(n²) +

Weierstrass
function

-

O(n²)

O(n²) - ++++

Traveling
salesman

One
matrix

O(n) O(1) - +

Golomb
rulers

- O(n3) O(n²) O(n²) +++

Performances of optimization problems (1)

Memory bound

Compute bound

Traveling salesman
problem

Quadratic assignment
problem

Permuted perceptron
problem

Golomb rulers

Weierstrass function

Performances of optimization problems (2)

Memory
bound

Compute
bound

TSP

QAP

PPP

Golomb

Weierstrass

Compute
bound

IM for EAs

EAs

Tabu Search

Hill Climbing

Memory
bound

For the Weierstrass
function

Performances of optimization problems (3)

Instruction1 Instruction2

Instruction3

Instruction4

Instruction5

Instruction6 Instruction7

Instruction1 Instruction2 Instruction3 Instruction4 Instruction5

Instruction1 Instruction2 Instruction3 Instruction4 Instruction5 Instruction6 Instruction7
Cache

hit

Cache
miss

Performances of optimization problems (4)

Clock cycles

Memory load

Performances of optimization problems (5)

 CPU implementation

 Valgrind + cachegrind

 L1 cache misses: 84% (around
10 clock cycles per miss)

 L2 cache misses: 71% (around
200 clock cycles per miss)

Analysis of data cache
Island model for evolutionary algorithms

GTX 280 – Instance 10 – 64 islands – 128 individuals

 AGPUShared implementation

 CUDA profiler

 Shared memory (around 10
clock cycles per access)

 16KB per multiprocessor (30
multiprocessors)

 Population fit into the shared
memory: 128 x 10 x 4 ≈ 5 KB
per island

Memory bound Compute bound

Irregular application (1)

 Evaluation function of the quadratic assignment
 Weakly irregular

 S-metaheuristics based on a pair-wise exchange operator
 2n-3 neighbors can be evaluated in O(n)

 (n-2) x (n-3) / 2 neighbors can be evaluated in O(1)

O(1)

O(n)

O(n)

O(1)

O(1)

O(1)

O(1)

…

0

1

2

3

…

29

30

31

iddle time

T0 T1 T2 T3 T4

5 7 6 3 4 2 0 1

(2,3) (2,4) (2,5) (2,6) (2,7)

T0 T1 T2 T3 T4

(1,4) (0,5) (3,6) (2,3) (2,7)

8 5 7 6 3 4 2 0 1 8

T0 T1 T2 T3 T4

T0

T1

T3

T2

T4

Irregular application (2)

Local search based on
best improvement

Local search based on
first improvement

Cryptanalysis techniques PPP
5 7 6 3 4 2 0 1

-1 1 1 1 -1 1 1 -1 1

8

-1 1 -1 1 -1 1 1 1 1

-1 -1 1 1 1 1 1 -1 1

-1 1 1 1 1 -1 1 1 1

-1 1 -1 1 -1 1 1 -1 1

-1 1 -1 1 -1 -1 1 1 1

-1 1 1 1

0 0,83 0,5 1 0,33 0,66 1 0,5 1

Majority vector

Probabilistic vector
(EDAs)

sum[id] = 0;
for (int i = 0; i < m; i++) {
 sum[id] += A[i * n + id] * B[id];
}

sum[0] = A[i * n + 0] * B[0]
sum[1] = A[i * n + 1] * B[1]
sum[2] = A[i * n + 2] * B[2]
sum[3] = A[i * n + 3] * B[3]
sum[4] = A[i * n + 4] * B[4]
sum[5] = A[i * n + 5] * B[5]

SIMD: 1 memory transaction

Address148

Address144

Address140

Address136

Address132

Address128

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Memory access pattern

Coalescing accesses to global memory (matrix vector product)

Memory coalescing (1)

sum[id] = 0;
for (int i = 0; i < m; i++) {
 sum[id] += A[i * n + id] * B[p[id]];
}

5 3 4 2 0 1

0 5 4 1 3 2 p

Uncoalesced accesses to global memory for evaluation functions

6 memory transactions

Address148

Address144

Address140

Address136

Address132

Address128

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Memory access pattern

GPUcomputing

TheuseofGPU-basedparallelcomputingisrequiredasa

complementarywaytospeedupthesearch.

Combinatorialexplosion

Problemsofincreasingsize:Gettingnear-optimalsolutionsina

tractabletime

Combinatorialexplosion

Problemsofincreasingsize:Gettingnear-optimalsolutionsina

tractabletime

Because of LS methods structures,
memory coalescing is difficult to realize

 it can lead to a significantly
performance decrease.

Memory coalescing (2)

Algorithm Parameters Limitation
of the local
population

size

Limitation
of the

instance
 size

Limitation
of the total
population

size

Speed

CPU Heterogeneous Not limited Very Low

Very Low

Slow

CPU+GPU Heterogeneous

Not limited Low Low Fast

GPU Homogeneous Size of a
threads

block

Low

Medium Very Fast

GPU
Shared

Memory

Homogeneous Limited to
shared

memory

Limited to
shared

memory

Medium Lightning Fast

Pros and cons of parallel (memory management)

