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Optimization problems
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= High-dimensional and complex optimization problems in many
areas of industrial concern

— Telecommunications, Transport, Biology, ...




A taxonomy of optimization methods

Exact Algorithms Heuristics
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Exploitation-oriented Exploration-oriented

= Exact methods: optimality but exploitation on small size problem instances
= Metaheuristics: near-optimality on larger problem instances, but ...

= ... Need of massively parallel computing on very Iarge instances




Single solution-based metaheuristics
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Population-based metaheuristics 2

Evolutionary algorithms

Individuals 0 1 2 3 4 Population of solutions
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Parallel models of metaheuristics

Algorithmic-level

()
/ \ Solution-level
f,(sol,) @ ~e_-- @ f_(sol )




Previous parallel approaches 2

= Parallelization concepts of metaheuristics

S-metaheuristics: simulated annealing [Chandy et al. 1996], tabu search
[Crainic et al. 2002], GRASP [Aiex et al. 2003]

P-metaheuristics: genetic programming [André et al. 1996], ant colonies
[Gambardella et al. 1999], evolutionary algorithms [Alba et al. 2002]

Unified view of parallel metaheuristics [Talbi et al. 2009]

" Implementations on parallel and distributed architectures

Massively Parallel Processors [Chakrapani et al. 1993]

Clusters and networks of workstations [Garcia et al. 1994, Crainic et al.
1995, Braun et al. 2001]

Shared memory or SMP machines [Bevilacqua et al. 2002]

Large-scale computational grids [Tantar et al. 2007]




Graphics Processing Units (GPU)

= Used in the past for graphics and video applications ...

= ... but now popular for many other applications such as scientific
computing [Owens et al. 2008]

= Popularity due to the publication of the CUDA development
toolkit allowing ...

- ... GPU programming in a C-like language [Garland et al. 2008]




Theoretical GB/s

GPU trends
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Hardware repartition

CPU

Control

. CPU: complex instructions, flow control

. GPU: compute intensive, highly parallel computation




General GPU model

= The CPU is considered as a host and

the GPU is used as a device
/ CPU (host)
coprocessor
(" GPU (device) ) P
=  Data must be transferred between the
Allocate Device Memory > . .
different memory spaces via the PClI
Allocate Device Memory > bus express ..
C
ony > Configuration CPU -> GPU

Core 2 Duo T5H800

GeForce 8600M GT
II Kernel 1 Core 2 Quad Q6600

execution GeForce 8800 GTX

1.76 x 10™%s | 1700 MB/s

v

1.66 x 107%s | 1800 MB/s

Xeon E5450 1 ox —2 | o, __ _
CPU code GeForce GTX 280 1.25x 107" | 2400 MB/s
Xeon E5620 . —2 | o~ e
p Copy Tesla M2050 0.81 x 10~ “s 3700 BIB/S
One transfer of 30 MB
CPU code \ j
\ / = ... many data transfers might become a

bottleneck in the performance of GPU
applications




Programming model: SPMD model

= Kernel execution is invoked

by CPU over a compute grid
= Subdivided in a set of
thread blocks

= Containing a set of threads
with access to shared
memory

= All threads in the grid run
the same program

= Individual data and
individual code flow (Single
Program Multiple Data)
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Execution model: SIMD model

CPU scalar op: CPU SSE op: GPU Multiprocessor:
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3 GPU architectures are based on hyper-threading
= Single instruction executed on multiple threads (SIMD). Instructions are issued

per warp (32 threads).
3 A large number of threads are required to cover the memory access latency ...
= ... anissue is to control the generation of threads
- Context switching ...

= ... between warps when stalled (e.g. an operand is not ready)
= ... enables to minimize stalls with little overhead




Hierarchy of memories

Memory type | Access latency Size
Global Medium Big
Registers Very fast Very small
Local Medium Medium
Shared Fast Small
Constant Fast (cached) Medium
Texture Fast (cached) Medium

- Highly parallel multi-threaded

Mmany core

- High memory bandwidth

compared to CPU

- Different levels of memory
(different latencies)

CPU

B
™

<

GPU
Block O Block 1
Shared Memory Shared Memory
Registers Registers Registers Registers I
Thread 0 Thread 1 Thread 0 Thread 1
Local Local Local Local
Memory Memory Memory Memory
v v v v
N Global
Memory
N Constant
Memory
Texture
Memory
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Objective and challenging issues

= Re-think the parallel models of metaheuristics to take into
account the characteristics of GPU

= The focus on: iteration-level (MW) and algorithmic-level (PC)

=  Three major challenges ...
= Challengel: efficient CPU-GPU cooperation

=  Work partitioning between CPU and GPU, data transfer optimization
= Challenge2: efficient parallelism control

» Threads generation control (memory constraints)

= Efficient mapping between work units and threads Ids

= Challenge3: efficient memory management

=  Which data on which memory (latency and capacity constraints) ?
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Taxonomy of major works

Algorithms CPU-GPU Parallelism Memory 38 works
cooperation control management
Panmictic Evaluation on GPU One thread per Global memory 3
individual
2D toroidal Evaluation, full One thread per Global, shared and
Grid parallelization on GPU individual texture memory 10
Island model Evaluation, full One block per Global, shared and
parallelization on GPU population texture memory 4
Multi-start Full parallelization One thread per Global and texture
on GPU algorithm memory 3
Single Generation and One thread per Global and texture
solution-based evaluation on GPU neighbor memory 5
Hybrid Generation and evaluation, One thread per Global and texture
full parallelization on GPU individual / neighbor memory 6
Multiobjective Generation and One thread per Global and texture
optimization evaluation on GPU individual / neighbor memory 2




Optimization problems

Permuted perceptron problem (PPP) Representation

= Cryptographicidentification scheme / \
L Binary encoding Binary encoding Permutation
0 0 3

Quadratic assignment problem (QAP) 11119 2|1]0]3]4
gl <1 'ty location or data analysis Vector of discrete values Vector of real values
R €rmutation al2|5]2]4 0.3(2.2|5.1(4.8(1.4
The Weierstrass continuous function
=  Simulation of fractal surfaces Memory bound
= Vector of real values TSP
Traveling salesman problem (TSP) © QAP
= Planning and logistics O
= Permutation (large instances) S
The Golomb rulers G°'<°>mb
» Interferometer for radio astronomy WEiec")Strass
= Vector of discrete values _ Compute

bound




Hardware configurations 2

= Configuration 1: laptop Floating-point operations per second

Core 2 Duo 2 Ghz + 8600M GT 1750
(4 multiprocessors - 32 cores)

Tesla
1500 M2050 @

= Configuration 2: desktop

Core 2 Quad 2.4 Ghz + 8800 GTX L, 120 /
. SN
(16 multiprocessors - 128 cores) 8 1000 GTX 280
= Configuration 3: workstation S / —e-GPU
® 750
Intel Xeon 3 Ghz + GTX 280 g GeForce CPU
: o 8800 GTX
(30 multiprocessors - 240 cores) € 500
! . . GeForce
= Configuration 4: workstation - 8600 GT
Intel Xeon 3.2 Ghz + Tesla M2050 /
(14 multiprocessors - 448 cores) 0O r'&=——FY—~—F——F—7——
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1. Efficient CPU-GPU Cooperation

Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. GPU Computing for Parallel

Local Search Metaheuristic Algorithms. IEEE Transactions on Computers, in
press, 2011

Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. GPU-based Approaches for
Multiobjective Local Search Algorithms. A Case Study: the Flowshop
Scheduling Problem. 11th European Conference on Evolutionary Computation
in Combinatorial Optimisation (EvoCOP), Torino, ltaly, 2011




Objective and challenging issues

= Re-think the parallel models of metaheuristics to take into
account the characteristics of GPU

= The focus on: iteration-level (MW) and algorithmic-level(PC)

=  Three major challenges ...
= Challengel: efficient CPU-GPU cooperation

=  Work partitioning between CPU and GPU, data transfer optimization
= Challenge2: efficient parallelism control

» Threads generation control (memory constraints)

= Efficient mapping between work units and threads Ids

= Challenge3: efficient memory management

=  Which data on which memory (latency and capacity constraints) ?




Iteration-level parallel model: MW

— Set of solutions
Initialization
(master)

¢ IIII @E/\
workery; | Oo

OO0 O
O

worker: \,

yes T workers

= ... Need of massively parallel computing on very Iarge solutions set




Work partitioning

CPU

/ Initialization \ GPU

|
:
J

copy solutions

@
- =g,
M Threads Block g el
Solutions (12) - [T« > 2 8
evaluation v v 3 ! o 52
Evaluation functionie{>E 2 5
S m S
________________ <« —|—- ————___________g o <
Post-treatment copy fitnesses v L

Replacement k
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= CPU (host) controls the whole sequential part of the metaheuristic

L

= GPU evaluates the solutions set in parallel




Optimize CPU->GPU data transfer

Initial solution

Neighborhood
evaluation

Issue for S-metaheuristics

* Where the neighborhood is generated ?
 Two approaches:

= Approachl: generation on CPU and
evaluation on GPU

= Approach2: generation and evaluation on
GPU (parallelism control)

Tabu search - Hamming distance of two

* Where the neighborhood is generated ?

* Two approaches: n(n-1)/2 neighbors
=  Approachl: additional O(n3) transfers
= Approach2: additional O(n) transfers




Application to the PPP

Generation and evaluation on GPU

Speed-up

Evaluation on GPU
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Optimize GPU->CPU data transfer

Initial solution

Neighborhood
evaluation

" |ssue for S-metaheuristics
* Where the selection of the best neighbor is
done?
* Two approaches:
= Approachl: on CPU i.e. transfer of the data
structure storing the solution results
= Approach2: on GPU i.e. use of the
reduction operation to select the best
solution
|

Hill climbing - Hamming distance of two

* Two approaches: n(n-1)/2 neighbors
= Approachl: additional O(n?) transfers
= Approach2: additional O(1) transfer




GPU reduction to select the best solution

Threads Block
s51el12({2]3[7]9]|1

A
\ 4

—

o

=
Alowa | paJeys

N——/

Binary tree-based reduction mechanism to find the minimum of each block
of threads

Cooperation of threads of a same block through the shared memory
(latency: ~10 cycles)

Performing iterations on reduction kernels allows to find the minimum of all
neighbors

Complexity: O(log,(n)), n: size of the neighborhood




Application to the Golomb ruler 2

Speed-up No reduction speed-up  Reduction on GPU
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Comparison with other parallel architectures

= Emergence of heterogeneous COWs and computational grids
as standard platforms for high-performance computing.

= Application to the permuted perceptron problem
= Hybrid OpenMP/MPI implementation

Configuration 3

Architecture Machines aflops
Intel Xeon E5450
GPU GeForce GTX 280 981.12
11 Intel Xeon E5440
COWs 88 CPU cores 995.236

2 Intel Xeon E5520
2 AMD Opteron 2218
2 Intel Xeon E5520
Grid 4 Intel Xeon E5520 0979.104
Intel Xeon X5570
Intel Xeon E5520
96 CPU cores




Application to the PPP

Tabu search

Speed-up
50
40
30
B GT 280 Tex
20 B COWs 88 cores
10 @ grid 96 cores
0
\;\9 N \;b‘\/’\ \;“’Q \;q’('\ ~9<’\ »”’0
S S U R I )¢
N N
Analysis of transfers including
Percent synchronizations (COWs)
100
90
80
70 Ol process
60
50
40 B workers
30
20
10
W transfers

Iterated local search based on a Hill climbing
with first improvement (asynchronous)

Speed-up

60
50
40
30
20
10

0

B GT 280 Tex
B COWs 88 cores

@ grid 96 cores




2. Efficient Parallelism Control

= Thé Van Luong, Nouredine Melab, ElI-Ghazali Talbi. Large Neighborhood Local
Search Optimization on Graphics Processing Units. 23rd IEEE International
Parallel & Distributed Processing Symposium (IPDPS), Workshop on Large-Scale
Parallel Processing (LSPP), Atlanta, US, 2010

= Thé Van Luong, Nouredine Melab, ElI-Ghazali Talbi. Local Search Algorithms on

Graphics Processing Units. A Case Study: the Permutation Perceptron Problem.
10th European Conference on Evolutionary Computation in Combinatorial
Optimisation (EvoCOP), Istanbul, Turkey, 2010




Objective and challenging issues

= Re-think the parallel models of metaheuristics to take into
account the characteristics of GPU

= The focus on: iteration-level (MW) and algorithmic-level (PC)

=  Three major challenges ...
= Challengel: efficient CPU-GPU cooperation

=  Work partitioning between CPU and GPU, data transfer optimization
= Challenge2: efficient parallelism control

= Threads generation control (memory constraints)

= Efficient mapping between work units and threads Ids

= Challenge3: efficient memory management

=  Which data on which memory (latency and capacity constraints) ?




Thread control (1)

Traveling salesman problem speed-up ~ Generation and evaluation on GPU
20

= Large instances failed at 18
16

execution time due to memory
overflow (e.g. hardware register 12

14

limitation or max number of 10
8
threads exceeded) 5
Such errors are hard to predict ‘21
at compilation time since they 0
. . . . \ % ‘b b
are specific to a configuration RO NRSS AGP SL S AE
O R N LA R\

m8600M GT
m8800 GTX
BGTX 280

B Tesla M2050

Need a thread control for the generation of threads to meet the
memory constraints at execution time ...




Thread control (2)

I A A

Solution set
1 2 3 4 5 6 7 8 9 10 11 12

17 4 3 10 6 11 | 12 | 10 7 13 8 21

13 14 15 16 17 18 19 20 21 22 23 24

11 5 8 19 | 12 19 | 13 11 | 13 | 14 | 19 | 29

25 26 27 28 29 30 31 32 33 34 35 36

14 | 13 | 16 | 13 4 15 | 11 | 19 6 18 5 24

" Increase the threads granularity ...
= ... with associating each thread to MANY solutions

= ... to avoid memory overflow (e.g. hardware register limitation)




Thread control (3) -

[ n threads
lteration 1 Kernel call || Kernel execution 0.018s

-

_ = 2n threads
Ilteration 2 Kernel call || ¥ Kernel execution 0.012s
J L]

e An threads
Iteration 3 Kernel call |l Sl L 0.014s

| Kernel call |
Ilteration i Kernel call D } > |Kernel execution  ("(),004s

2m threads

lteration i+1 Kernel call J > Kernel execution crash

= Dynamic heuristic for parameters auto-tuning

" To prevent the program from crashing

» To obtain extra performance




Thread control (4)

= Application to the traveling salesman problem (tabu search)

Speed-up No thread control Speed-up Thread Control on GPU
20 20
18 18
16 16
14 14
12 B 8600M GT 12 B 8600M GT TC
10 10
m 8800 GTX 8 B 8800 GTX TC
8
6 mGTX 280 6 B GTX 280 TC
4 - 4
B Tesla M2050 ) B Tesla M2050 TC
2 _
0 - 0
D YV 6 N N O D O N VN O
Q" O M A¥” O O O N °) ™ ‘b °) OY 07 Y
D N : > 'b O °>




Mapping working unit -> thread id (1) -

4 Grid )
Block 0 .| lock1 [ " According to the threads spatial

. B N
gggg §§§§ organization ...

K ) " ... a unique id must be assigned to
' ‘ ‘ each thread to compute on different

Block (1,1) data

Thread O Thread 1 Thread 2 = For S-meta heuristicsl the
4 g challenging issue is to say ...

= ... which neighbor is assigned to
which thread id (required for the
generation of the neighborhood on
GPU)

Mappings

Set of
solutions

= Representation-dependent




Mapping working unit -> thread id (2)

A candidate solution

=  Mappings are proposed for 4 well- o e
known representations (binary, oj1]1]0]o0
discrete, permutation, real vector) ;

I/ \\

. Neighborhood based on a Hamming
distance of one

i The thread with id=i generates and
evaluates a candidate solution by
flipping the bit number i of the initial
solution

o
[
(@)
o
o
o
N

= At most, n threads are generated for a N )

——————————————

solution of size n




Mapping working unit -> thread id (3) -

A candidate solution

- Finding a mapping can be 0 1 2 3
. 11]0[0(1
challenging |
=  Neighborhood based on a S AV
Hamming distance of two ‘ToTiToT1
: A thread id is associated with

two indexes i and

o
o
=
=
[
[
=
[EEY
e~

=  Atmost, nx(n-1) /2 threads
are generated for a solution Se e Y
of size n

Its associated neighborhood




GPU computing for large neighborhoods

= Theincrease of the neighborhood size may improve the
qguality of the obtained solutions [Ahuja et al. 2007] ...

= ... but mostly CPU-time consuming. This mechanism is not
often fully exploited in practice.

= Large neighborhoods are unusable because of their high
computational cost ...

= ... GPU computing might allow to exploit parallelism in such
algorithms.

=  Application to the permuted perceptron problem
(configuration 3: GTX 280)




Problem 73x73 | 81x81 | 101x101 | 101 x 117
Fitness 9.8 11.3 20.7 16.8
# iterations 59891 72345 166650 260130
# solutions 11/50 4/50 0/50 0/50
CPU time 4s 6s 16s 29s
GPU time 9s 13s 33s 57s
Acceleration x 0.44 x 0.46 x 0.48 x0.51
Problem 73x73 | 81x81 | 101x101 | 101x117
Fitness 15.5 16.2 13.1 12.7
# iterations 42143 65421 133211 260130
# solutions 22/50 17/50 13/50 0/50
CPU time 81s 174 s 748 s 1947 s
GPU time 10s 16s 44 s 105 s
Acceleration x 8.2 x11.0 x17.0 x 18.5
Problem 73x73 | 81x81 | 101x101 | 101x 117
Fitness 2.5 3.2 5.8 7.1
# iterations 19341 40636 100113 214092
# solutions 39/50 33/50 22/50 3/50
CPU time 1202s | 3730s 24657 s 88151 s
GPU time 50s 146 s 955 3551s
Acceleration X 24.2 x 25.5 x 25.8 X 26.3

Neighborhood based on a
Hamming distance of one

Tabu search
n x (n-1) x (n-2) / 6 iterations

Neighborhood based on a
Hamming distance of two

Tabu search
n x (n-1) x (n-2) / 6 iterations

Neighborhood based on a
Hamming distance of three

Tabu search
n x (n-1) x (n-2) / 6 iterations



3. Efficient Memory Management

= Thé Van Luong, Nouredine Melab, ElI-Ghazali Talbi. GPU-based Island Model for

Evolutionary Algorithms. Genetic and Evolutionary Computation Conference
(GECCO), Portland, US, 2010

= Thé Van Luong, Nouredine Melab, ElI-Ghazali Talbi. GPU-based Parallel Hybrid

Evolutionary Algorithms. IEEE Congress on Evolutionary Computation (CEC),
Barcelona, Spain, 2010




Objective and challenging issues

= Re-think the parallel models of metaheuristics to take into
account the characteristics of GPU

= The focus on: iteration-level (MW) and algorithmic-level (PC)

= Three major challenges ...
= Challengel: efficient CPU-GPU cooperation

=  Work partitioning between CPU and GPU, data transfer optimization
= Challenge2: efficient parallelism control

» Threads generation control (memory constraints)

= Efficient mapping between work units and threads Ids

= Challenge3: efficient memory management

= Which data on which memory (latency and capacity constraints) ?




Memory coalescing and texture memory

Uncoalesced accesses

0O 1 213 4 516 7 819 10 113112 13 14
a|lbjc 2|3 Clx|ylz]|l{un|m
N

TOrange " Tlrange " T2range T3 range ' T4 range

Coalesced accesses
TO T1 T2 T3 T4

0 1 2 3 415 6 7 8 9110 11 12 13 14
a|ll[Afx|[I]|b|l2|Bly|[lUfc|[3|[C|[z]|ll
< 7

Tirange

Memory coalescing is not always
feasible for structures in
optimization problems ...

... use of texture memory as a data
cache

= Frequent reuse of data accesses in
evaluation functions

= 1D/2D access patterns in
optimization problems (e.g. matrices
or vectors)




Application to the QAP 2

= |terated local search with a tabu search

Global memory only Texture memory optimization
18 18
16 16
14
12
10 B 8600M GT B 8600M GT Tex
8 W 8800 GTX B 8800 GTX Tex
6 BEGTX 280 B GTX 280 Tex
4 B Tesla M2050 B Tesla M2050 Tex
2
0
2 ’é,)o’b 7 é,jo @@’b y ’gp’b @\bo’b @%o’b P \90"’




Algorithmic-level model: PC

P-metaheuristic

P-metaheuristic

= PC model:

* Emigrants selection policy

* Replacement/Integration policy
* Migration decision criterion

* Exchange topology

Migration
P-metaheuristic

P-metaheuristic




Scheme 1: Parallel evaluation of the population

-— o o —,
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(2)

EA1CPU

Local population i
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Initialization

copy
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copy
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copy
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Global Memory
global population, global fitnesses, auxiliary structures
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A

Threads Blocks

w (Tn)

Y

[Tn+1] [Tn+z] [Tn+3] [Tn+m]

vy

Evaluation function

GPU




Scheme 2: Full distribution on GPU

GPU
Global Memory
global population, global fitnesses, auxiliary structures
I A A I

| Threads block > Iocal pop i Threads block - Iocal pop i+1 :_
I (11) [12] (11) [12]
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Scheme 3: Full distribution on GPU using shared memory
GPU

Global Memory }

global population, global fitnesses, auxiliary structures
y N y N

A 4

Threads block —> local pop i

Shared Memory
local population, local fitnesses

A 4

Threads block —> local pop i+1

Shared Memory
local population, local fitnesses




Issues of distributed schemes

= Sort each local population on GPU (bitonic sort)

®" Find the minimum of each local population on GPU
(parallel reduction)

= Local threads synchronization for interacting solutions

= Mechanisms of global synchronization of threads if a
synchronous migration is needed

" Find efficient topologies between the different local
populations according to the threads block organization




Migration on GPU for distributed schemes

/

Global Memory
Local population i Local population i+1
em———————
I
0|11 I2 |+ [In-1| | In 0 |I1| |12]~ |In1] | In I
o) @ @6 E @ -
\_ : E E : B A I -
migration 8 migration E 8 migration 8
..................................... S S =
< < <
R : . : I I
| DO E-ME | |©EE-EE |
I TO| [T1| |T2 n-] |Tn TO| |T1| |T2 n-1f |Tn I
: A A A A A A 4 A A A 1
i |
I
. o] (1] (2] [m) [mn 0] (1] (2] [m) [mn !
I
I 2 bests 2 worsts 2 bests 2 worsts :
: I
! Shared Memory Shared Memory I
I
: Threads Block ->local pop i Threads Block ->local pop i+1 :




Application to the Weierstrass function (1)

Island model for evolutionary algorithms
(GTX 280 - 64 islands — 128 individuals per island)
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——CPU+GPU
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N —
100 i / ==

Instance size




Application to the Weierstrass function (2)

Island model for evolutionary algorithms
(GTX 280 - 64 islands — 128 individuals per island)
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4. Extension of ParadisEO for
GPU-based metaheuristics

= Nouredine Melab, Thé Van Luong, Karima Boufaras, EI-Ghazali Talbi. Towards
ParadisEO-MO-GPU: a Framework for GPU-based Local Search Metaheuristics.
11th International Work-Conference on Artificial Neural Networks, IWANN
2011, Torremolinos-Malaga, Spain, 2011

= Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. Neighborhood Structures for
GPU-based Local Search Algorithms. Parallel Processing Letters, Vol. 20, No. 4,
pp. 307-324, December 2010
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Software framework [?nroclis“eo

= EO: Design and implementation of PEO
population-based metaheuristics ! !

= MO: Design and implementation of MIO 1l MC?EO
solution-based metaheuristics EO

=  MOEO: Design and implementation of
multi-objective metaheuristics

= 14871 downloads
= 121544 visitors

= 239 user-list subscribers

=  PEO: Design and implementation of
parallel models for metaheuristics

» Conceptual objectives

= (Clear separation between resolution methods and problems at
hand, maximum code reuse, flexibility, large panels of methods
and portability

S. Cahon, N. Melab and E-G. Talbi. ParadiseO: A Framework for the Reusable Design of Parallel and
Distributed Metaheuristics. Journal of Heuristics, Vol.10(3), ISSN:1381-1231, pages 357-380, May 2004.




Parallel and distributed deployment

ParadiseO-PEO

| ———

MPI PThreads || CUDA | |Condor | Globus

» Transparent parallelization and distribution

= Clusters and networks of workstations: Communication
library MPI

= SMP and Multi-core: Multi-threading Pthreads
=  Grid computing:
e High-performance Grids: Globus, MPICH-G
* Desktop Grids: Condor (checkpointing & Recovery)

= GPU computing

N. Melab, S. Cahon and E-G. Talbi. Grid Computing for Parallel Bioinspired Algorithms. Journal of Parallel
and Distributed Computing (JPDC), Elsevier Science, Vol. 66(8), Pages 1052-1061, Aug. 2006.




Iteration-level implementation

CPU
——————\ GPU = Parallel model which
Initialization d )
== 4 —\ provides generic concepts ...
Pre-treatment luti
______________ ~ |1 copysolutions _f_ = ... transparent and parallel
012 .. m g ) | . f | 3
>>>>>>>>>> Threads Block 2 0 evaluation ot solutions on
Solutions T2 T« "3 o GPU
evaluation ¢ ¢ i o <
Evaluation < (gb .
B = MW model which does not
______________ -+ -
Post-treatment copy fitnesses & change the original
e | \ / semantics of algorithms




Layered architecture of ParadisEO-GPU -

Software
<<actor>> 5
User ParadisEO .| ParadistO
GPU
Representations $
Evaluation CUDA
Specific data
Hardware
I ) IS :
(1) Allocate and copy of data Y
(2) Parallel evaluation <<host>> ()| <<device>>
(3) Copy of evaluation results CPU GPU
S ) '




ParadiseO ParadisEO-GPU ParadisEO-GPU

User-defined User modifications Generic and transparent components
components provided by the framework
Solution _1l, *Keywords

Memory allocation

representation .
P and deallocation

Population or ., Explicit call to
Neighborhood mapping function Parallel evaluation
Data transfers :
of solutions
Problem data ) Key\{vgrds
. —T> - Explicitcallsto
inputs _
allocation wrapper .
Solution
. results
Solution Keyv.vc.)rds
: —— * Explicit calls to
evaluation _
allocation wrapper
* Linearizing M . v
multidimensional applng emory
functions management
arrays

Problem-dependent Problem-independent




Performance of ParadisEO-GPU (1)

. Application to the quadratic assignment problem
. Tabu search using a neighborhood based on pairwise-exchange operator
. Intel Core i7 3.2 Ghz + GTX 480
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2 1l
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B ParadisEO-GPU
B Opt GPU

Speed-up




Performance of ParadisEO-GPU (2) -

. Application to the permuted perceptron problem
= Tabu search using a neighborhood based on a Hamming distance of two
. Intel Core i7 3.2 Ghz + GTX 480

B ParadisEO-GPU
i B Opt GPU

73-73  81-81 101-117 121-137 151-167 171-187 201-217

45

40




Outline -

lll. Conclusion and Future Works




Conclusion o

= GPU-based metaheuristics require to re-design existing parallel
models: iteration-level (MW) and algorithmic-level (PC)

= Efficient CPU-GPU cooperation

= Task repartition, optimization of data transfers for S-metaheuristics
(generation of the neighborhood on GPU and reduction)

= Efficient parallelism control

= Mapping between work units and threads Ids, thread control for the
threads generation (parameters tuning, fault-tolerance)

= Efficient memory management

=  Use of texture memory for optimization structures, parallelization
schemes for parallel cooperative P-metaheuristics (global and shared
memory)




Perspectives

= Heterogeneous computing for metaheuristics

= Efficient exploitation of all available resources at disposal (CPU cores
and many GPU cards)

= Arrival of GPU resources in COWs and grids ...

= ... conjunction of GPU computing and distributed computing to fully
exploit the hierarchy of parallel model of metaheuristics

= Multiobjective optimization

= Parallel archiving of non-dominated solutions represents a prominent
issue in the design of multiobjective metaheuristics ...

= .. SIMD parallel archiving on GPU with additional synchronizations, non-
concurrent writing operations and dynamic allocations on GPU




Publications

= 2 international journals: IEEE Transactions on Computers, parallel
processing letters

= 9international conference proceedings: GECCO, EVOCOP, IPDPS ...
= 1 national conference proceeding.

= 2 conference abstracts

= 8 workshops and talks.

= 1 research report.

THANK YOU FOR YOUR ATTENTION
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Performances of optimization problems (1)

A-evaluation

Evaluation
Problem Data Performance
inputs Time Time Space
complexity | complexity | complexity
Permuted Ong o(n?) o(n) o(n) .
perceptron matrix
Quadratic Two 5 5
+
assignment | matrices O(n’) Ol /o) O(n’)
Welersjcrass ] o(n?) o(n?) ) P
function
Traveling Ong o(n) 0(1) _ N
salesman matrix
Golomb i 0(n?) 0(n2) 0(n?) 4+

rulers




Performances of optimization problems (2)

Memory bound

Traveling salesman
problem

@)

Quadratic assignment
problem

@)

Permuted perceptron
problem

@)

Golomb rulers

@)

Weierstrass function

@)

Compute bound




Performances of optimization problems (3)

Memory Memory
bound bound
= IM for EA
O oA
QAP
© EAs
PPP )
Golomb Tabu Search
@, @,
Weierstrass Hill Climbing
@, @,
- Compute Compute
bound bound

For the Weierstrass
function




Performances of optimization problems (4)

Instructionl Instruction2

~_

Instruction3| Memory load

Instruction5

>

Instruction6 Instruction?
Clock cycles
_ . N _ . Cache
Instructionl|Instruction2 |Instruction3 Instruction4|Instruction5 o
Cache
Instructionl|Instruction2 |Instruction3|Instruction4|Instruction5|Instruction6|Instruction? hit




Performances of optimization problems (5)

Analysis of data cache
Island model for evolutionary algorithms
GTX 280 — Instance 10 — 64 islands — 128 individuals

= CPU implementation

Valgrind + cachegrind

L1 cache misses: 84% (around
10 clock cycles per miss)

L2 cache misses: 71% (around
200 clock cycles per miss)

Memory bound

= AGPUShared implementation

CUDA profiler

Shared memory (around 10
clock cycles per access)

16KB per multiprocessor (30
multiprocessors)

Population fit into the shared
memory: 128 x 10 x4 =~ 5 KB
per island

Compute bound




Irregular application (1)

= Evaluation function of the quadratic assignment
" Weakly irregular

= S-metaheuristics based on a pair-wise exchange operator
® 2n-3 neighbors can be evaluated in O(n)
" (n-2) x (n-3) / 2 neighbors can be evaluated in O(1)

iddle time
oo | ]
1 O(n)
2 o) |
3 o) |
o | ow | ]
30 O
31 O(n)




Irregular application (2)

Local search based on
best improvement

To T1 T2 T3 T4

bbb

(2,3) (2,4) (2,5) (2,6) (2,7)

0O 1 2 3 4 5 6 7

8

Local search based on
first improvement

0 T1 T2 T3 T4

bbb

(1,4) (0,5) (3,6) (2,3) (2,7)

T0

pd

01x<45678

T1

\

\

T0 T1 T2 T3 T4




Cryptanalysis techniques PPP

1 1 -1 1 Majority vector

1 (o5(0,66] 1 10,33 0 |[0,5(0,83] 1 Probabilistic vector
(EDASs)







Memory coalescing (1)

Coalescing accesses to global memory (matrix vector product)

sum[id] = 0;
for (inti=0;i<m;i++){

suml[id] += A[i * n +id] * B[id];
}

sum[0] = A[i * n+ 0] * B[O]
sum[1l] = A[i * n+ 1] * B[1]
sum[2] = A[i * n + 2] * B[2]
sum[3] = A[i * n + 3] * B[3]
sum[4] = A[i * n + 4] * B[4]
sum[5] = A[i * n + 5] * B[5]

SIMD: 1 memory transaction

Thread O
Thread 1
Thread 2

Thread 3
Thread 4
Thread 5

Address128
Address132
Address136
Address140
Address144
Address148

Memory access pattern



Memory coalescing (2)

Uncoalesced accesses to global memory for evaluation functions

O 1 2 3 4 5

P 3121115140 Thread 0 Address128
Thread 1 Address132

sum[id] = 0; Thread 2 Address136
for (inti=0;i<m;i++){ Thread 3 Address140
sum[id] += A[i * n +id ] * B[p[id]]; Thread 4 Address144
} Thread 5 Address148

6 memory transactions Memory access pattern

Because of LS methods structures,
memory coalescing is difficult to realize

=» it can lead to a significantly
performance decrease.




Pros and cons of parallel (memory management)

Algorithm Parameters Limitation | Limitation | Limitation Speed
of the local of the of the total
population instance | population
size size size
CPU Heterogeneous | Not limited | Very Low Very Low Slow
CPU+GPU | Heterogeneous | Not limited Low Low Fast
GPU Homogeneous Size of a Low Medium Very Fast
threads
block
GPU Homogeneous | Limited to Limited to Medium | Lightning Fast
Shared shared shared
Memory memory memory







