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Optimization problems 

 High-dimensional and complex optimization problems in many 
areas of industrial concern 

– Telecommunications, Transport, Biology, … 
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 Exact methods: optimality but exploitation on small size problem instances 

 Metaheuristics: near-optimality on larger problem instances, but … 

 … Need of massively parallel computing on very large instances  

Exploitation-oriented Exploration-oriented 

Exact Algorithms Heuristics 

Branch 
and X 

Dynamic  
programming 

CP Specific heuristics Metaheuristics 

Solution-based Population-based 

Hill Climbing 
Simulated  
Annealing 

Tabu Search 
Evolutionary  
Algorithms 

Ant … 
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A taxonomy of optimization methods 



     Knapsack problem 

 

 Solution: binary encoding 

 Neighborhood example: 
Hamming distance of one 
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Population-based metaheuristics 
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Parallel models of metaheuristics 
7 

Iteration-level 

Algorithmic-level 
 

Solution-level 

 M1 
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sol1 

sol2 
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f1(soln) fm(soln) 



Previous parallel approaches 

 Massively Parallel Processors [Chakrapani et al. 1993]  

 Clusters and networks of workstations [Garcia et al. 1994, Crainic et al. 
1995, Braun et al. 2001] 

 Shared memory or SMP machines [Bevilacqua et al. 2002] 

 Large-scale computational grids [Tantar et al. 2007] 

 S-metaheuristics: simulated annealing [Chandy et al. 1996], tabu search 
[Crainic et al. 2002], GRASP [Aiex et al. 2003]  

 P-metaheuristics: genetic programming [André et al. 1996], ant colonies 
[Gambardella et al. 1999], evolutionary algorithms [Alba et al. 2002]  

 Unified view of parallel metaheuristics [Talbi et al. 2009] 

 

 Parallelization concepts of metaheuristics 

 Implementations on parallel and distributed architectures 

8 



 Used in the past for graphics and video applications … 

 … but now popular for many other applications such as scientific 
computing [Owens et al. 2008] 

 Popularity due to the publication of the CUDA development 
toolkit allowing … 

 … GPU programming in a C-like language [Garland et al. 2008] 

Graphics Processing Units (GPU) 
9 
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Hardware repartition 
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DRAM 

Cache 

Control 
ALU ALU 

ALU ALU 

DRAM 

CPU GPU 

 CPU: complex instructions, flow control 

 GPU: compute intensive, highly parallel computation 



Kernel 1 
execution 

Allocate Device Memory 
 

Mem2 
 

Mem1 
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DMem2 
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CPU code 
 

Mem2 
 

Kernel 1 call 
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12 

 The CPU is considered as a host and 
the GPU is used as a device 
coprocessor 

 Data must be transferred between the 
different memory spaces via the PCI 
bus express … 

General GPU model 

One transfer of 30 MB 

 … many data transfers might become a 
bottleneck in the performance of GPU 
applications 

 



 Kernel execution is invoked 
by CPU over a compute grid 

 

 Subdivided in a set of 
thread blocks 
 Containing a set of threads 
with access to shared 
memory 

 

 All threads in the grid run 
the same program 

 

 Individual data and 
individual code flow (Single 
Program Multiple Data) 

Grid 

Block (0,0) Block (1,0) 

Block (1,1) Block (0,1) 

Block (1,1) 

Thread (0,0) Thread (1,0) 

Thread (0,1) Thread (1,1) 

Programming model: SPMD model  
13 

Thread (2,0) 

Thread (2,1) 



CPU scalar op:  CPU SSE op:  GPU Multiprocessor: 

GPU Multiprocessor: => 32 thread process 32 data elements 

   These groups of 32 threads are called warps 
   Exposed as individual threads … 
   … but run the same instruction. 
 … large number of threads à détailler, hyperthreading, context switch 
rapide 

14 

Execution model: SIMD model  

 GPU architectures are based on hyper-threading 

 Single instruction executed on multiple threads (SIMD). Instructions are issued 
per warp (32 threads). 

 A large number of threads are required to cover the memory access latency ... 

 … an issue is to control the generation of threads  

 Context switching  … 

 … between warps when stalled (e.g. an operand is not ready) 

 … enables to minimize stalls with little overhead 

 



GPU 

Constant 
Memory 

Texture 
Memory 

Global  
Memory 

Block 0 

Shared Memory 

Local 
Memory 

Thread 0 

Registers 

Local 
Memory 

Thread 1 

Registers 

Block 1 

Shared Memory 

Local 
Memory 

Thread 0 

Registers 

Local 
Memory 

Thread 1 

Registers 

CPU 

Memory type Access latency Size 

Global Medium Big 

Registers Very fast Very small 

Local Medium Medium 

Shared Fast Small 

Constant Fast (cached) Medium 

Texture Fast (cached) Medium 

- Highly parallel multi-threaded 
many core 

- High memory bandwidth    
compared to CPU 

- Different levels of memory 
(different latencies) 

Hierarchy of memories 
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 Re-think the parallel models of metaheuristics to take into 
account the characteristics of GPU 

 The focus on: iteration-level (MW) and algorithmic-level (PC) 

 Three major challenges … 

 Challenge1: efficient CPU-GPU cooperation 

 Work partitioning between CPU and GPU, data transfer optimization 

 Challenge2: efficient parallelism control 

 Threads generation control (memory constraints) 

 Efficient mapping between work units and threads Ids 

 Challenge3: efficient memory management 

 Which data on which memory (latency and capacity constraints) ? 

16 

Objective and challenging issues  
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Taxonomy of major works   

Algorithms CPU-GPU  
cooperation 

Parallelism  
control 

Memory  
management 

38 works 

Panmictic Evaluation on GPU One thread per 
individual 

Global memory 
8 

2D toroidal 
Grid 

Evaluation, full 
parallelization on GPU 

One thread per 
individual 

 

Global, shared and 
texture memory 10 

Island model Evaluation, full 
parallelization on GPU 

One block per 
population 

 

Global, shared and 
texture memory 4 

Multi-start Full parallelization  
on GPU 

 

One thread per 
algorithm 

 

Global and texture 
memory 3 

Single  
solution-based 

Generation and  
evaluation on GPU 

One thread per  
neighbor 

 

Global and texture 
memory 

 
5 

Hybrid Generation and evaluation, 
full parallelization on GPU 

One thread per 
individual / neighbor 

Global and texture 
memory 

 
6 

Multiobjective 
optimization 

Generation and  
evaluation on GPU 

One thread per 
individual / neighbor 

 

Global and texture 
memory 

 
2 

texture 

texture 

texture 

Evaluation 

Generation 

Island model 

Multi-start 

 Single  
solution-based 

Hybrid 

Multiobjective 
optimization 

Generation and 
evaluation on GPU 

 One thread per  
neighbor 

Global and texture 
memory 5 

neighbor 

neighbor 

Generation and evaluation 
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Optimization problems   

 Permuted perceptron problem (PPP) 

 Cryptographic identification scheme 

 Binary encoding 

 Quadratic assignment problem (QAP) 

 Facility location or data analysis 

 Permutation  

 The Weierstrass continuous function 

 Simulation of fractal surfaces 

 Vector of real values 

 Traveling salesman problem (TSP) 

 Planning and logistics 

 Permutation (large instances) 

 The Golomb rulers 

 Interferometer for radio astronomy 

 Vector of discrete values 

 

 

0 0 1 0 1 

2 4 5 4 2 

Binary encoding 

Vector of discrete values 

3 4 0 2 1 

Permutation 

4.8 1.4 5.1 0.3 2.2 

Vector of real values 

Representation 
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Memory bound 

Compute  
bound 

TSP 

QAP 

PPP 

Golomb  

Weierstrass 
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 Configuration 1: laptop 
Core 2 Duo 2 Ghz + 8600M GT              
(4 multiprocessors - 32 cores) 

 Configuration 2: desktop 
Core 2 Quad 2.4 Ghz + 8800 GTX       
(16 multiprocessors - 128 cores) 

 Configuration 3: workstation 
Intel Xeon 3 Ghz + GTX 280                 
(30 multiprocessors - 240 cores) 

 Configuration 4: workstation 
Intel Xeon 3.2 Ghz + Tesla M2050        
(14 multiprocessors - 448 cores) 

Hardware configurations   

Xeon 
Nehalem 
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1. Efficient CPU-GPU Cooperation 

 Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. GPU Computing for Parallel 
Local Search Metaheuristic Algorithms. IEEE Transactions on Computers, in 
press, 2011 
 

 Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. GPU-based Approaches for 
Multiobjective Local Search Algorithms. A Case Study: the Flowshop 
Scheduling Problem. 11th European Conference on Evolutionary Computation 
in Combinatorial Optimisation (EvoCOP), Torino, Italy, 2011 
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Objective and challenging issues  

 Re-think the parallel models of metaheuristics to take into 
account the characteristics of GPU 

 The focus on: iteration-level (MW) and algorithmic-level(PC) 

 Three major challenges … 

 Challenge1: efficient CPU-GPU cooperation 

 Work partitioning between CPU and GPU, data transfer optimization 

 Challenge2: efficient parallelism control 

 Threads generation control (memory constraints) 

 Efficient mapping between work units and threads Ids 

 Challenge3: efficient memory management 

 Which data on which memory (latency and capacity constraints) ? 

22 



 … Need of massively parallel computing on very large solutions set  

Iteration-level parallel model: MW  

Set of solutions 
(master) 

worker1 

worker2 

worker3 

Initialization 
 

Pre-treatment 
 

Solutions evaluation 
 

Replacement 
 

End ? 
no 

yes 

Post-treatment 
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 CPU (host) controls the whole sequential part of the metaheuristic 

 GPU evaluates the solutions set in parallel 
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 Issue for S-metaheuristics 

• Where the neighborhood is generated ? 

• Two approaches: 

 Approach1: generation on CPU and 
evaluation on GPU 

 Approach2: generation and evaluation on 
GPU (parallelism control) 

Neighborhood 
evaluation 

Initial solution 
 

End ? 
no 

Full evaluation 
 

Replacement 
 

yes 

Pre-treatment 
 

Post-treatment 
 

Optimize CPU–>GPU data transfer  

 Tabu search - Hamming distance of two 

• Where the neighborhood is generated ? 

• Two approaches: n(n-1)/2 neighbors 

 Approach1: additional O(n3) transfers 

 Approach2: additional O(n) transfers 
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 Issue for S-metaheuristics 

• Where the selection of the best neighbor is 
done? 

• Two approaches: 

 Approach1: on CPU i.e. transfer of the data 
structure storing the solution results 

 Approach2: on GPU i.e. use of the 
reduction operation to select the best 
solution 

Optimize GPU–>CPU data transfer  

Neighborhood 
evaluation 

Initial solution 
 

End ? 
no 

Full evaluation 
 

Replacement 
 

yes 

Pre-treatment 
 

Post-treatment 
 

 Hill climbing - Hamming distance of two 

• Two approaches: n(n-1)/2 neighbors 

 Approach1: additional O(n²) transfers 

 Approach2: additional O(1) transfer 
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 Binary tree-based reduction mechanism to find the minimum of each block 
of threads 

 Cooperation of threads of a same block through the shared memory 
(latency: ~10 cycles)  

 Performing iterations on reduction kernels allows to find the minimum of all 
neighbors 

 Complexity: O(log2(n)), n: size of the neighborhood 

GPU reduction to select the best solution  

5 6 11 2 3 7 9 1 
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Threads Block 
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Comparison with other parallel architectures 

 Emergence of heterogeneous COWs and computational grids 
as standard platforms for high-performance computing. 

 Application to the permuted perceptron problem 

 Hybrid OpenMP/MPI implementation 
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2. Efficient Parallelism Control 
 

 
 Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. Large Neighborhood Local 

Search Optimization on Graphics Processing Units. 23rd IEEE International 
Parallel & Distributed Processing Symposium (IPDPS), Workshop on Large-Scale 
Parallel Processing (LSPP), Atlanta, US, 2010 
 

 Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. Local Search Algorithms on 
Graphics Processing Units. A Case Study: the Permutation Perceptron Problem. 
10th European Conference on Evolutionary Computation in Combinatorial 
Optimisation (EvoCOP), Istanbul, Turkey, 2010 
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Objective and challenging issues  

 Re-think the parallel models of metaheuristics to take into 
account the characteristics of GPU 

 The focus on: iteration-level (MW) and algorithmic-level (PC) 

 Three major challenges … 

 Challenge1: efficient CPU-GPU cooperation 

 Work partitioning between CPU and GPU, data transfer optimization 

 Challenge2: efficient parallelism control 

 Threads generation control (memory constraints) 

 Efficient mapping between work units and threads Ids 

 Challenge3: efficient memory management 

 Which data on which memory (latency and capacity constraints) ? 
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 Need a thread control for the generation of threads to meet the 

memory constraints at execution time …  
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 Increase the threads granularity … 

 …  with associating each thread to MANY solutions 

 … to avoid memory overflow (e.g. hardware register limitation) 

Thread control (2)  
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 Dynamic heuristic for parameters auto-tuning 

 To prevent the program from crashing 

 To obtain extra performance 

Kernel execution Kernel  call 

… 

… 

… 

… 

Iteration 1 

Iteration 2 

Iteration 3 

Iteration i 

n threads 

2n threads 

4n threads 

m threads 

Iteration i+1 
2m threads 

Kernel execution Kernel  call 

Kernel execution Kernel  call 

Kernel execution Kernel  call 

Kernel execution Kernel  call 

… … 

0.018s 

0.012s 

0.014s 

0.004s 

crash 

Thread control (3)  

… 
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 Application to the traveling salesman problem (tabu search) 



Set of 
solutions 

 According to the threads spatial 
organization … 

 … a unique id must be assigned to 
each thread to compute on different 
data 

 For S-metaheuristics, the 
challenging issue is to say … 

  … which neighbor is assigned to 
which thread id (required for the 
generation of the neighborhood on 
GPU) 

 Representation-dependent 

Mapping working unit -> thread id (1) 
Grid 

Block 0 Block 1 

Block (1,1) 

Thread 0 Thread 1 Thread 2 

Mappings 
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 Mappings are proposed for 4 well-
known representations (binary, 
discrete, permutation, real vector) 

 Neighborhood based on a Hamming 
distance of one 

 The thread with id=i generates and 
evaluates a candidate solution by 
flipping the bit number i of the initial 
solution 

 At most, n threads are generated for a 
solution of size n 

3 4 2 0 1 

0 0 1 0 1 

0 0 1 1 1 

0 0 1 0 0 

0 0 0 0 1 

1 0 1 0 1 

0 1 1 0 1 

A candidate solution 

id 0 

id 1 

id 2 

id 3 

id 4 

Mapping working unit -> thread id (2) 
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 Finding a mapping can be 
challenging 

 Neighborhood based on a 
Hamming distance of two 

 A thread id is associated with 
two indexes i and j  

 At most, n x (n-1) / 2 threads 
are generated for a solution 
of size n 

Mapping working unit -> thread id (3) 

3 2 0 1 

1 0 1 0 

1 0 0 1 

1 1 0 0 

0 0 0 0 

1 1 1 1 

0 0 1 1 0 1 1 0 

A candidate solution 

Its associated neighborhood 
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GPU computing for large neighborhoods 

 The increase of the neighborhood size may improve the 
quality of the obtained solutions [Ahuja et al. 2007] … 

 … but mostly CPU-time consuming. This mechanism is not 
often fully exploited in practice. 

 Large neighborhoods are unusable because of their high 
computational cost … 

 … GPU computing might allow to exploit parallelism in such 
algorithms. 

 Application to the permuted perceptron problem 
(configuration 3: GTX 280) 
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Problem 73 x 73 81 x 81 101 x 101 101 x 117 

Fitness 9.8  11.3 20.7 16.8 

# iterations 59891 72345 166650 260130 

# solutions 11/50 4/50 0/50 0/50 

CPU time 4 s 6 s 16 s 29 s 

GPU time 9 s 13 s 33 s 57 s 

Acceleration x 0.44 x 0.46 x 0.48 x 0.51 

Problem 73 x 73 81 x 81 101 x 101 101 x 117 

Fitness 15.5  16.2 13.1 12.7  

# iterations 42143 65421 133211 260130 

# solutions 22/50 17/50 13/50 0/50 

CPU time 81 s 174 s 748 s 1947 s 

GPU time 10 s 16 s 44 s 105 s 

Acceleration x 8.2 x 11.0 x 17.0 x 18.5 

Problem 73 x 73 81 x 81 101 x 101 101 x 117 

Fitness 2.5  3.2 5.8 7.1  

# iterations 19341 40636 100113 214092 

# solutions 39/50 33/50 22/50 3/50 

CPU time 1202 s 3730 s 24657 s 88151 s 

GPU time 50 s 146 s 955 s 3551 s 

Acceleration x 24.2 x 25.5 x 25.8 x 26.3 

Neighborhood based on a 

Hamming distance of one 

 

Tabu search 

n x (n-1) x (n-2) / 6 iterations 

Neighborhood based on a 

Hamming distance of two 

 

Tabu search 

n x (n-1) x (n-2) / 6 iterations 

 

Neighborhood based on a 

Hamming distance of three 

 

Tabu search 

n x (n-1) x (n-2) / 6 iterations 

 



3. Efficient Memory Management 

 Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. GPU-based Island Model for 
Evolutionary Algorithms. Genetic and Evolutionary Computation Conference 
(GECCO), Portland, US, 2010 
 

 Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. GPU-based Parallel Hybrid 
Evolutionary Algorithms. IEEE Congress on Evolutionary Computation (CEC), 
Barcelona, Spain, 2010 
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Objective and challenging issues  

 Re-think the parallel models of metaheuristics to take into 
account the characteristics of GPU 

 The focus on: iteration-level (MW) and algorithmic-level (PC) 

 Three major challenges … 

 Challenge1: efficient CPU-GPU cooperation 

 Work partitioning between CPU and GPU, data transfer optimization 

 Challenge2: efficient parallelism control 

 Threads generation control (memory constraints) 

 Efficient mapping between work units and threads Ids 

 Challenge3: efficient memory management 

 Which data on which memory (latency and capacity constraints) ? 
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Memory coalescing and texture memory 

3 B C A x 1 2 y I II z III c a b 

5 7 8 6 9 3 4 10 12 13 11 14 2 0 1 

T0 T1 T2 T3 

T0 range T1 range 

b B y 2 II x I c C z 3 III A a 1 

5 7 8 6 9 3 4 10 12 13 11 14 2 0 1 

T4 

T2 range T3 range T4 range 

T0 T1 T2 T3 T4 

Ti range 

Uncoalesced accesses 

Coalesced accesses 

 Memory coalescing is not always 
feasible for structures in 
optimization problems … 

 … use of texture memory as a data 
cache  

 Frequent reuse of data accesses in 
evaluation functions 

 1D/2D access patterns in 
optimization problems (e.g. matrices 
or vectors) 
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Application to the QAP  
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 Iterated local search with a tabu search 



 PC model: 
• Emigrants selection policy 
• Replacement/Integration policy 
• Migration decision criterion 
• Exchange topology 
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P-metaheuristic 

P-metaheuristic 

Migration 
P-metaheuristic 

P-metaheuristic 

P-metaheuristic 

Algorithmic-level model: PC  
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Scheme 1: Parallel evaluation of the population 

Initialization 
 

Solutions Evaluation 
 

Post-treatment 
 

Replacement 
 

End ? 

Migration ? 

I0 I1 I2 In 

no 

yes 

EA 1 CPU 

Local population i 

EA 2 CPU 
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Evaluation function 
 

Threads Blocks 

Global Memory 
global population, global fitnesses, auxiliary structures 
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GPU 
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T0 T1 T2 Tn 

Global Memory 
global population, global fitnesses, auxiliary structures 

T0 T1 T2 Tn 

GPU 

EA 1 EA 2 

Threads block –> local pop i Threads block –> local pop i+1 

Scheme 2: Full distribution on GPU 

Initialization 
 

Solutions Evaluation 
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End ? 
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Pre-treatment 
 

Initialization 
 

Solutions Evaluation 
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T0 T1 T2 Tn 

Threads block –> local pop i 

Global Memory 
global population, global fitnesses, auxiliary structures 

GPU 

EA 1 EA 2 

Shared Memory 
local population, local fitnesses 

T0 T1 T2 Tn 

Shared Memory 
local population, local fitnesses 

Threads block –> local pop i+1 

Scheme 3: Full distribution on GPU using shared memory 

Initialization 
 

Solutions Evaluation 
 

Post-treatment 
 

Replacement 
 

End ? 

Migration ? 

no 

yes 

Pre-treatment 
 

Initialization 
 

Solutions Evaluation 
 

Post-treatment 
 

Replacement 
 

End ? 

Migration ? 

no 

yes 

Pre-treatment 
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Issues of distributed schemes 

 Sort each local population on GPU (bitonic sort) 

 Find the minimum of each local population on GPU 
(parallel reduction) 

 Local threads synchronization for interacting solutions 

 Mechanisms of global synchronization of threads if a 
synchronous migration is needed 

 Find efficient topologies between the different local 
populations according to the threads block organization 
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Shared Memory 
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Threads Block -> local pop i 

I0 I1 In In-1 I2 I0 I1 In In-1 I2 
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T0 T1 Tn Tn-1 T2 

 
 
 

Shared Memory 
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Global Memory 
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Migration on GPU for distributed schemes 
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53 



0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11

S
p

ee
d

-u
p

 

Instance size 

Island model for evolutionary algorithms 
(GTX 280 - 64 islands – 128 individuals per island) 

 

CPU+ GPU

SGPU

AGPU

SGPUShared

AGPUShared

Application to the Weierstrass function (2) 
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 Nouredine Melab, Thé Van Luong, Karima Boufaras, El-Ghazali Talbi. Towards 
ParadisEO-MO-GPU: a Framework for GPU-based Local Search Metaheuristics. 
11th International Work-Conference on Artificial Neural Networks, IWANN 
2011, Torremolinos-Málaga, Spain, 2011 
 

 Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. Neighborhood Structures for 
GPU-based Local Search Algorithms. Parallel Processing Letters, Vol. 20, No. 4, 
pp. 307-324, December 2010 
 
 

4. Extension of ParadisEO for       
         GPU-based metaheuristics 



PEO 

MO MOEO 

EO 

S. Cahon, N. Melab and E-G. Talbi. ParadisEO: A Framework for the Reusable Design of Parallel and  
Distributed Metaheuristics. Journal of Heuristics, Vol.10(3), ISSN:1381-1231, pages 357-380, May 2004.  

 14871 downloads 

 121544 visitors 

 239 user-list subscribers 

Software framework 

 EO: Design and implementation of 
population-based metaheuristics 

 MO: Design and implementation of 
solution-based metaheuristics 

 MOEO: Design and implementation of 
multi-objective metaheuristics 

 PEO: Design and implementation of 
parallel models for metaheuristics 

 Conceptual objectives 

 Clear separation between resolution methods and problems at 
hand, maximum code reuse, flexibility, large panels of methods 
and portability 
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 Transparent parallelization and distribution  
 Clusters and networks of workstations: Communication 

library MPI 

 SMP and Multi-core: Multi-threading Pthreads  

 Grid computing: 

• High-performance Grids: Globus, MPICH-G 

• Desktop Grids: Condor (checkpointing & Recovery) 

 GPU computing 

 

ParadisEO-PEO 

MPI PThreads Condor Globus CUDA 

N. Melab, S. Cahon and E-G. Talbi. Grid Computing for Parallel Bioinspired Algorithms. Journal of Parallel  
and Distributed Computing (JPDC), Elsevier Science, Vol. 66(8), Pages 1052-1061, Aug. 2006.  

Parallel and distributed deployment 
57 



CPU 

Solutions 
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copy fitnesses Post-treatment 
 

Iteration-level implementation 

 Parallel model which 
provides generic concepts … 

 … transparent and parallel 
evaluation of solutions on 
GPU 

 MW model which does not 
change the original 
semantics of algorithms 
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Software 

Hardware 

<<host>> 
 

CPU 

<<device>> 
 

GPU 

ParadisEO ParadisEO 
GPU 

<<actor>> 
 

User 

Representations 

Evaluation 

Specific data 

(1) 

(2) 

(3) 

(1) Allocate and copy of data 
(2) Parallel evaluation 
(3) Copy of evaluation results 

CUDA 

Layered architecture of ParadisEO-GPU 
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Solution 
representation 

Solution 
evaluation 

Population or 
Neighborhood 

Problem data 
inputs 

ParadisEO 
User-defined 
components 

ParadisEO-GPU 
User modifications 

• Keywords 
 
 

  

• Keywords 
• Explicit calls to  
  allocation wrapper 
• Linearizing 
  multidimensional 
  arrays 

• Explicit call to 
  mapping function 

• Keywords 
• Explicit calls to  
  allocation wrapper 
 

  

ParadisEO-GPU 
Generic and transparent components 

provided by the framework 

Memory allocation 
and deallocation 

Data transfers  
Parallel evaluation 

of solutions 

Solution  
results 

Mapping 
functions 

Memory 
management 

Problem-dependent Problem-independent 
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Performance of ParadisEO-GPU (1) 
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Performance of ParadisEO-GPU (2) 
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Outline 

I. Scientific Context 

1. Parallel Metaheuristics  

2. GPU Computing 

II. Contributions 

1. Efficient CPU-GPU Cooperation 

2. Efficient Parallelism Control 

3. Efficient Memory Management 

4. Extension of ParadisEO for GPU-based metaheuristics 

III. Conclusion and Future Works 
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Conclusion 

 GPU-based metaheuristics require to re-design existing parallel 
models: iteration-level (MW) and algorithmic-level (PC) 

 Efficient CPU-GPU cooperation 

 Task repartition, optimization of data transfers for S-metaheuristics 
(generation of the neighborhood on GPU and reduction) 

 Efficient parallelism control 

 Mapping between work units and threads Ids, thread control for the 
threads generation (parameters tuning, fault-tolerance) 

 Efficient memory management 

 Use of texture memory for optimization structures, parallelization 
schemes for parallel cooperative P-metaheuristics (global and shared 
memory) 
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Perspectives 

 Heterogeneous computing for metaheuristics 

 Efficient exploitation of all available resources at disposal (CPU cores 
and many GPU cards) 

 Arrival of GPU resources in COWs and grids … 

 … conjunction of GPU computing and distributed computing to fully 
exploit the hierarchy of parallel model of metaheuristics 

 

 Multiobjective optimization 

 Parallel archiving of non-dominated solutions represents a prominent 
issue in the design of multiobjective metaheuristics … 

 … SIMD parallel archiving on GPU with additional synchronizations, non-
concurrent writing operations and dynamic allocations on GPU 
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 2 international journals: IEEE Transactions on Computers, parallel 
processing letters 

 9 international conference proceedings: GECCO, EVOCOP, IPDPS … 

 1 national conference proceeding. 

 2 conference abstracts 

 8 workshops and talks. 

 1 research report. 

 

 

 

 

 

 

Publications 

THANK YOU FOR YOUR ATTENTION 
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Additional slides 





Problem 
Data 

inputs 

Evaluation 
 

Time 
complexity 

∆-evaluation 
 

Performance 
Time  

complexity 
 

Space  
complexity 

 

Permuted 
perceptron 

One 
matrix 

O(n²) O(n) O(n) ++ 

Quadratic 
assignment 

Two 
matrices 

 
O(n²) 

 
O(1) / O(n) O(n²) + 

Weierstrass 
function 

- 
 

O(n²) 
 

O(n²) - ++++ 

Traveling 
salesman 

One 
matrix 

O(n) O(1) - + 

Golomb 
rulers 

- O(n3) O(n²) O(n²) +++ 

Performances of optimization problems (1) 



Memory bound 

Compute bound 

Traveling salesman 
problem 

Quadratic assignment 
problem 

Permuted perceptron 
problem 

Golomb rulers 

Weierstrass function 

Performances of optimization problems (2) 



Memory  
bound 

Compute  
bound 

TSP 

QAP 

PPP 

Golomb  

Weierstrass 

Compute  
bound 

IM for EAs  

EAs 

Tabu Search 

Hill Climbing 

Memory  
bound 

For the Weierstrass 
function 

Performances of optimization problems (3) 



Instruction1 Instruction2 

Instruction3 

Instruction4 

Instruction5 

Instruction6 Instruction7 

Instruction1 Instruction2 Instruction3 Instruction4 Instruction5 

Instruction1 Instruction2 Instruction3 Instruction4 Instruction5 Instruction6 Instruction7 
Cache 

hit 

Cache 
miss 

Performances of optimization problems (4) 

Clock cycles 

Memory load 



Performances of optimization problems (5) 

 CPU implementation 

 Valgrind + cachegrind 

 L1 cache misses: 84% (around 
10 clock cycles per miss) 

 L2 cache misses: 71% (around 
200 clock cycles per miss) 

 

 

Analysis of data cache 
Island model for evolutionary algorithms 

GTX 280 – Instance 10 – 64 islands – 128 individuals 

 AGPUShared implementation 

 CUDA profiler 

 Shared memory (around 10 
clock cycles per access) 

 16KB per multiprocessor (30 
multiprocessors) 

 Population fit into the shared 
memory: 128 x 10 x 4 ≈ 5 KB 
per island 

 
Memory bound Compute bound 



Irregular application (1) 

 Evaluation function of the quadratic assignment 
 Weakly irregular 

 S-metaheuristics based on a pair-wise exchange operator 
 2n-3 neighbors can be evaluated in O(n) 

 (n-2) x (n-3) / 2 neighbors can be evaluated in O(1) 
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Irregular application (2) 

Local search based on  
best improvement 

Local search based on  
first improvement 



Cryptanalysis techniques PPP 
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sum[id] = 0; 
for (int i = 0; i < m; i++) { 
    sum[id] += A[i * n + id] * B[id]; 
} 

sum[0] = A[i * n + 0] * B[0] 
sum[1] = A[i * n + 1] * B[1] 
sum[2] = A[i * n + 2] * B[2] 
sum[3] = A[i * n + 3] * B[3] 
sum[4] = A[i * n + 4] * B[4] 
sum[5] = A[i * n + 5] * B[5] 
 
 
 
 
 

SIMD: 1 memory transaction 
 

Address148 

Address144 

Address140 

Address136 

Address132 

Address128 

Thread 5 

Thread 4 

Thread 3 

Thread 2 

Thread 1 

Thread 0 

Memory access pattern 

Coalescing accesses to global memory (matrix vector product)  

Memory coalescing (1) 



sum[id] = 0; 
for (int i = 0; i < m; i++) { 
  sum[id] += A[i * n + id ] * B[p[id]]; 
} 

5 3 4 2 0 1 

0 5 4 1 3 2 p 

Uncoalesced accesses to global memory for evaluation functions 

6 memory transactions 

Address148 

Address144 

Address140 

Address136 

Address132 

Address128 

Thread 5 

Thread 4 

Thread 3 

Thread 2 

Thread 1 

Thread 0 

Memory access pattern 

GPUcomputing

TheuseofGPU-basedparallelcomputingisrequiredasa

complementarywaytospeedupthesearch.

Combinatorialexplosion

Problemsofincreasingsize:Gettingnear-optimalsolutionsina

tractabletime

Combinatorialexplosion

Problemsofincreasingsize:Gettingnear-optimalsolutionsina

tractabletime

Because of LS methods structures,  
memory coalescing is difficult to realize 

 it can lead to a significantly 
performance decrease. 

Memory coalescing (2) 



Algorithm Parameters Limitation 
of the local  
population 

size 

Limitation 
of the 

instance 
 size 

Limitation 
of the total 
population 

size 

Speed 

CPU Heterogeneous Not limited Very Low 
 

Very Low 
 

Slow 

CPU+GPU Heterogeneous 
 

Not limited Low Low Fast 

GPU Homogeneous Size of a 
threads  

block 

Low 
 

Medium Very Fast 

GPU 
Shared 

Memory 

Homogeneous Limited to  
shared 

memory 
 

Limited to 
shared 

memory 

Medium Lightning Fast 

Pros and cons of parallel (memory management)  




