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1 INTRODUCTION

In combinatorial optimization, near-optimal algorithms such as metaheuristics allow to itera-
tively solve in a reasonable time NP-hard complex problems. Two main categories of metaheuris-
tics are distinguished: population-based metaheuristics (P-metaheuristics) and solution-based
metaheuristics (S-metaheuristics). P-metaheuristics are population-oriented as they manage a
whole population of solutions, what confers them a good exploration power. Indeed, they
allow to explore a large number of promising regions in the search space. On the contrary,
S-metaheuristics such as local search algorithms work with a single solution which is iteratively
improved by exploring its neighborhood in the solution space. Therefore, they are characterized
by better local intensification capabilities.

Theoretical and experimental studies have shown that the hybridization between these two
classes of metaheuristics improves the quality of provided solutions and the robustness of the
metaheuristics [1]. Nevertheless, as it is generally CPU time-consuming it is not often fully
exploited in practice. Indeed, experiments with hybrid metaheuristics are often stopped without
convergence being reached. That is the reason why, in designing hybrid metaheuristics, there is
often a compromise between the number of solutions to use and the computational complexity
to explore it. To deal with such issues, only the use of parallelism allows to design efficient
hybrid metaheuristics.

Recently, graphics processing units (GPU) have emerged as a new popular support for mas-
sively parallel computing [2], [3]. Such resources supply a great computing power, are energy-
efficient, and unlike grids, they are highly available everywhere: laptops, desktops, clusters, etc.
During many years, the use of GPU computing was dedicated to graphics and video applications.
Its utilization has recently been extended to other application domains [4], [5] (e.g. scientific
computing) thanks to the publication of the CUDA (Compute Unified Device Architecture)
development toolkit that allows GPU programming in a C-like language [6].

With the emergence of standard programming languages on GPU and the arrival of compilers
for these languages, combinatorial optimization on GPU has generated a growing interest.
Historically, due to their embarrassingly parallel nature, P-metaheuristics such as evolutionary
algorithms have been the first subject of parallelization on GPU architectures. Hence, previous
approaches and implementations have been proposed for genetic algorithms [7], [8], particle
swarm optimization [9], [10], ant colonies [11], [12], genetic programming [13], [14] and other
evolutionary computation techniques [15], [16].

In comparison with previous works on population-based metaheuristics, the spread of solution-
based metaheuristics on GPU does not occur at the same pace. Indeed, the parallelization on
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GPU architectures is harder, due to the improvement of a single solution (and not a population
of solutions). In this purpose, we came up with the pioneering work in IEEE Transactions on
Computers [17] for the re-design of the parallel evaluation of the neighborhood on GPU. We
introduced the generation of neighbors on the GPU side to minimize the data transfers. Fur-
thermore, we proposed to manage the commonly used structures in combinatorial optimization
with the different available memories.

The main objective of this report is to deal with the re-design of hybrid metaheuristics on
GPU architectures. Indeed, parallel hybrid metaheuristics for solving combinatorial optimization
problems are significant challenges for GPU computing. To the best of our knowledge, only few
research works have been investigated on hybrid metaheuristics on GPU [18], [19]. In [20], we
proposed a parallelization scheme for hybrid evolutionary algorithms on GPU based on the
parallel evaluation of the neighborhood. In the current research report, we extend this previous
work with other parallelization approaches.

To validate the approaches presented in this paper, a metaheuristic based on fast ant systems
(FANT) introduced by Taillard [21] has been considered and implemented on GPU. Basically,
FANT incorporates a number of search strategies such as intensification (hybridization with
a local search), diversification and learning mechanisms. As an example of application, the
quadratic assignment problem (QAP) [22] has been considered.

The remainder of the paper is organized as follows: Section 2 highlights the principles of
parallel models for metaheuristics. In Section 3, parallelization concepts for designing parallel
hybrid metaheuristics on GPU are described. Section 4 reports the performance results obtained
for the FANT metaheuristic applied to the quadratic assignment problem. Finally, a discussion
and some conclusions of this work are drawn in Section 5.

2 PARALLEL METAHEURISTICS

2.1 Parallel Models of Metaheuristics

In general, evaluating a fitness function for each solution is frequently the most costly operation
of the metaheuristic. That is the reason why, for hybrid metaheuristics, executing the iterative
process of a S-metaheuristic (e.g. local search) on large neighborhoods requires a large amount
of computational resources.

Consequently, parallelism arises naturally when dealing with a neighborhood, since each of
the solutions belonging to it is an independent unit. Due to this, the performance of hybrid
metaheuristics is significantly improved when running in parallel.

In this purpose, three major parallel models for metaheuristics can be distinguished [23]:
solution-level, iteration-level and algorithmic-level (see Fig. 1).

• Solution-level Parallel Model. The focus is on the parallel evaluation of a single solution.
Problem-dependent operations performed on solutions are parallelized. That model is par-
ticularly interesting when the evaluation function can be itself parallelized as it is CPU time-
consuming and/or IO intensive. In that case, the function can be viewed as an aggregation
of a given number of partial functions.

• Iteration-level Parallel Model. This model is a low-level Master-Worker model that does not
alter the behavior of the heuristic. The evaluation of solutions is performed in parallel. At
the beginning of each iteration, the master duplicates the solutions to be evaluated between
parallel nodes. Each of them manages some candidates, and the results are returned back to
the master. An efficient execution is often obtained especially when the evaluation of each
solution is costly.

• Algorithmic-level Parallel Model. Several metaheuristics are simultaneously launched for com-
puting better and robust solutions. They may be heterogeneous or homogeneous, indepen-
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Fig. 1: Parallel models of metaheuristics.

dent or cooperative, start from the same or different solution(s), configured with the same
or different parameters.

From a parallelization point of view, the solution-level model is problem-dependent and does
not present many generic concepts. As a consequence, in this document, we will not deal with
this parallel model.

2.2 Metaheuristics on Parallel and Distributed Architectures
During these two last decades, many parallel approaches and implementations have been pro-
posed for metaheuristics. Some of them using massively parallel processors [24], clusters of
workstations [25], [26] and shared memory or SMP machines [27], [28]. These contributions
have been later revisited for large-scale computational grids [29].

These architectures often exploit the coarse-grained asynchronous parallelism based on work-
stealing. This is particularly the case for computational grids. To overcome the problem of
network latency, the grain size is often increased, limiting the degree of parallelism.

Recently, GPU accelerators have emerged as a powerful support for massively parallel comput-
ing. Indeed, these architectures offer a substantial computational horsepower and a remarkably
high memory bandwidth compared to CPU-based architectures. For instance, the parallel eval-
uation of the solutions (iteration-level) is a Master-Worker and a problem-independent, regular
data-parallel application. Therefore, GPU computing may be highly efficient in executing such
synchronized parallel algorithms that involve regular computations and data transfers.

In general, for distributed architectures, the global performance in metaheuristics is limited
by high communication latencies whilst it is just bounded by memory access latencies in GPU
architectures. Indeed, when evaluating solutions in parallel, the main obstacle in distributed
architectures is the communication efficiency. GPUs are not that versatile.

However, since the execution model of GPUs is purely SIMD, it may not be well-adapted for
few irregular problems in which the execution time cannot be predicted at compile time and
varies during the search. For instance, this happens when the evaluation cost of the objective
function depends on the solution. When dealing with such problems in which the computations
or the data transfers become irregular or asynchronous, parallel and distributed architectures
such as COWs or computational grids may be more appropriate.
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Fig. 2: Parallel evaluation of solutions on GPU (iteration-level). The evaluation of solutions is performed on GPU
and the CPU executes the sequential part of the search process.

3 DESIGN OF PARALLEL HYBRID METAHEURISTICS ON GPU
3.1 Parallel Evaluation of Solutions on GPU
As quoted above, the evaluation of solution candidates is often the most time-consuming part
of metaheuristics. Thereby, it must be done in parallel in regards with the iteration-level parallel
model. Hence, according to the Master-Worker paradigm, the idea is to evaluate the solutions
in parallel on GPU.

To achieve this, the parallel iteration-level model has to be designed according to the data-
parallel single program multiple data model of GPUs. As illustrated in Fig. 2, the CPU-GPU
task partitioning is such that the CPU hosts and executes the whole serial part of the handled
metaheuristic. The GPU is in charge of the evaluation of the solutions set at each iteration. In
this model, a function code called kernel is sent to the GPU to be executed by a large number
of threads grouped into blocks. The granularity of each partition is determined by the number
of threads per block.

This parallelization strategy has been widely used for P-metaheuristics on GPU especially for
evolutionary algorithms due to their embarrassingly parallel workload (e.g in [7], [30], [31]).

One of the major issues is to optimize the data transfer between the CPU and the GPU. Indeed,
the GPU has its own memory and processing elements that are separate from the host computer.
Thereby, data transfer between CPU and GPU through the PCIe bus might be a serious bottleneck
in the performance of GPU applications. For metaheuristics, these copies are essentially 1) the
solutions to be evaluated and 2) their resulting fitnesses.

3.2 The Proposed Algorithm for S-metaheuristics
When it comes to parallelization, the optimization of data transfers is more prominent for S-
metaheuristics such as local search algorithms. Furthermore, as previously said, the execution
of the S-metaheuristic of the hybrid algorithm constitutes the time-consuming operation. Hence,
when designing hybrid metaheuristics, the focus is on the embedded S-metaheuristic. In this
purpose, we have contributed in [17] for the parallel evaluation of neighborhoods for local
search algorithms. Algorithm 1 sums up the different steps required for the parallelization of
S-metaheuristics on GPU.
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Algorithm 1 S-metaheuristic Template on GPU

1: Choose an initial solution
2: Evaluate the solution
3: Specific initializations
4: Allocate problem inputs on GPU memory
5: Allocate a solution on GPU memory
6: Allocate a fitnesses structure on GPU memory
7: Allocate additional structures on GPU memory
8: Copy problem inputs on GPU memory
9: Copy the initial solution on GPU memory

10: Copy additional structures on GPU memory
11: repeat
12: for each neighbor in parallel do
13: Evaluation of the candidate solution
14: Insert the resulting fitness into the fitnesses structure
15: end for
16: Copy the fitnesses structure on CPU memory
17: Specific selection strategy on the fitnesses structure
18: Specific post-treatment
19: Copy the chosen solution on GPU memory
20: Copy additional structures on GPU memory
21: until a stopping criterion satisfied

First of all, at initialization stage, memory allocations on GPU are made: data inputs and
candidate solution of the given problem (lines 4 and 5). A structure has to be allocated for storing
the results of the evaluation of each neighbor (fitnesses structure) (line 6). Additional structures,
which are problem-dependent, might be allocated to facilitate the computation of neighbor
evaluations (line 7). Second, problem data inputs, initial candidate solution and additional
structures associated with this solution have to be copied onto the GPU (lines 8 to 10). Third,
comes the parallel iteration-level on GPU, in which each neighboring solution is generated
(parallelism control), evaluated (memory management) and copied into the fitnesses structure
(from lines 12 to 15). Fourth, the order in which candidate neighbors are evaluated is undefined,
and then the fitnesses structure has to be copied to the host CPU (line 16). Then a solution
selection strategy is applied to this structure (line 17): the exploration of the neighborhood
fitnesses structure is carried out by the CPU in a sequential way. Finally, after a new candidate
has been selected, this latter and its additional structures are copied to the GPU (lines 19 and
20). The process is repeated until a stopping criterion is satisfied.

This methodology is well-adapted to any deterministic local search methods. Its applicability
does not stand on any assumption.

3.3 Additional Data Transfer Optimization
In some S-metaheuristics such as hill climbing or variable neighborhood descent, the selection
operates on the minimal/maximal fitness for finding the best solution. Therefore, only one
value of the fitnesses structure may be merely copied from the GPU to the CPU (line 16 of
Algorithm 1). Such mechanism may lead to an increase of the obtained performance. However,
since read/write operations on memory are performed in an asynchronous manner, finding
the appropriate minimal/maximal fitnesses on GPU is not straightforward. Indeed, traditional
parallel techniques such as semaphores which imply the global synchronization (via atomic
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Fig. 3: Reduction operation to find the minimum of each block. Local synchronizations are performed between
threads of a same block via the shared memory.

operations) of thousands of threads can drastically lead to diminished performance. To deal with
this issue, adaptation of parallel reduction techniques for each thread block must be considered
(see Fig. 3).

Algorithm 2 gives a template of the parallel reduction for a thread block (partition of the
neighborhood). Basically, each thread loads one element from global to shared memory (lines 1
and 2). At each loop iteration, elements of the array are compared by pairs (lines 3 to 7). Then,
by using local synchronizations between threads in a given block via the shared memory, one
can find the minimum/maximum of a given array since threads operate at different memory
addresses. For the sake of simplicity, the template is given for dealing with a neighborhood size
which is a power of two, but adaptation of the template for the general case is straightforward.
The complexity of such an algorithm is in O(log2(n)) where n is the size of each thread block.
If several iterations are performed on reduction kernels, the minimum of all the neighbors can
be found. Thereby, the GPU reduction kernel makes it possible to get the minimum/maximum
of each block of threads.

Algorithm 2 Reduction kernel on the fitnesses structure.

Require: input fitnesses;
1: shared[thread id] := input fitnesses[id];
2: local synchronization;
3: for i := nbThreadsPerBlock/2 ; i > 0; i := i / 2 do
4: if thread id < i then
5: shared[thread id] := compare(shared[thread id], shared[thread id + i]);
6: local synchronization;
7: end if
8: end for
9: if thread id = 0 then

10: output fitnesses[blockId] := shared[0];
11: end if

Ensure: output fitnesses;
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Fig. 4: Multiple evaluations of neighborhoods on GPU. The evaluation of solutions of all S-metaheuristics is
performed on GPU and the CPU executes the sequential part of the search process.

3.4 Parallelization Schemes for Hybrid Metaheuristics
The parallelization approaches presented in Section 3.2 and 3.3 stand for one S-metaheuristic on
GPU. For designing hybrid metaheuristics that involve a population of solutions, multiple execu-
tions of S-metaheuristics on GPU have to be considered. For doing this, there are fundamentally
two parallelization schemes for hybrid metaheuristics:

• One neighborhood evaluation on GPU. This approach consists in evaluating one neighborhood
(a set of solutions) at a time on GPU. It can be seen as an acceleration model which does not
change the semantic of the original algorithm. According to Fig. 2, a possible interpretation
could be to reiterate the whole process (i.e. the execution of a single S-metaheuristic on
GPU) to deal with as many S-metaheuristics as needed. The drawback of this approach
is that the number of threads (solutions) executed on GPU might not be enough to cover
the memory access latency for few optimization problems. Furthermore, since each kernel
execution on GPU (a neighborhood evaluation) has a creation overhead, such an approach
could have a negative impact on the performance of the hybrid metaheuristic at hand.

• Many neighborhood evaluations on GPU. In the second approach, many neighborhoods are
evaluated at a time on GPU. Fig. 4 illustrates this concept for two S-metaheuristics. In this
example, the two neighborhoods are evaluated in a same time on GPU, and the results
are returned back to the CPU in a synchronous way. This could be generalized to many
neighborhoods. Such a parallelization strategy deals with the issues encountered in the first
approach i.e. there are enough calculations to keep the GPU multiprocessors busy. However,
in this second approach, homogeneous embedded S-metaheuristics are required. As a result,
such a mechanism may clearly modify the semantic of the original algorithm.
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4 PERFORMANCE EVALUATION

4.1 Fast Ant System
As an illustration of a hybrid metaheuristic, the FANT metaheuristic has been considered (see Al-
gorithm 3). Basically, the major idea of FANT is to construct each solution (ant) in a probabilistic
way from the values of the decision variables in past searches (by using a memory structure). To
accelerate the convergence process, a local search algorithm is performed each time a solution
is built. The process is repeated until a certain number of iterations is reached (i.e. a certain
number of ants has been processed). The reinforcement parameter R has an impact during the
intensification phase of the FANT metaheuristic. Details of the algorithm can be found in [21].

Algorithm 3 FANT pseudo-code

1: InitMemory(m0);
2: t := 0;
3: repeat
4: s(t) := GenerateSolution(m(t));
5: s(t) := ApplyLocalSearch(s(t));
6: m(t + 1) := UpdateMemory(s(t), R,m(t))
7: t := t + 1;
8: until a certain number of iterations.

A profiling of a FANT implementation on CPU highlights that more than 95% of the execution
time is dedicated to the local search algorithm. Hence, the parallelization of FANT is within the
scope of the parallelization schemes on GPU presented in Section 3.

4.2 Application to the Quadratic Assignment Problem
The quadratic assignment problem [32] arises in many applications such as facility location or
data analysis. Let A = (aij) and B = (bij) be n×n matrices of positive integers. Finding a solution
of the quadratic assignment problem is equivalent to finding a permutation π = (1, 2, . . . , n) that
minimizes the objective function:

z(π) =

n∑

i=1

n∑

j=1

aijbπ(i)π(j)

The problem has been implemented using a permutation representation. The considered in-
stances are the Taillard instances proposed in [33], [34]. The evaluation function has a O(n2) time
complexity where n is the instance size. In the next implementations, a neighborhood based on

a pair-wise exchange (n×(n−1)
2

neighbors) has been considered. Hence, for each iteration of a

local search, (n−2)×(n−3)
2

neighbors can be evaluated in O(1) (∆ evaluations) and 2× (n− 3) can
be evaluated in O(n). The requirement is a structure which stores previous ∆ evaluations in a
quadratic space complexity.

From an implementation point of view, a natural approach would be to consider a GPU
kernel execution of n×(n−1)

2
threads (i.e. one thread per neighbor). However, for this problem

such a mechanism is not appropriate since calculations may be irregular according to the given
neighbor. To deal with this drawback, threads are reorganized in such a way that threads
belonging to a same group of 32 threads (a.k.a. a warp) perform the same computation. In other
words, groups of threads which perform O(1) and O(n) calculations are clearly separated. Such
a mechanism allows to reduce threads divergence due to conditional branches. Furthermore, to
minimize the idle time due to irregular computations, we have proposed to take 2n threads to
perform O(n) calculations and (n−1)

2
threads to execute n× O(1) calculations per local search.
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TABLE 1: Comparison of parallelization schemes for hybridization in terms of efficiency for the QAP using a
pair-wise-exchange neighborhood.

± represents the standard deviation regarding the execution time, and × is the acceleration factor in comparison
with a CPU version using one single core.

Instance
FANT + hill climbing FANT + hill climbing FANT + hill climbing

CPU sequential
One neighborhood Many neighborhood
evaluation on GPU evaluations on GPU

tai50a 161.5
±1.4

193.3
±1.8

×0.8
18.7

±0.3

×8.6

tai60a 272.1
±2.6

204.5
±2.4

×1.3
29.4

±0.7

×9.2

tai80a 658.7
±7.3

348.9
±1.6

×1.9
58.2

±1.1

×11.3

tai100a 1294.4
±63.2

530.2
±5.2

×2.4
117.2

±6.3

×11.0

tai100b 1802.3
±81.4

815.8
±8.8

×2.2
174.3

±6.2

×10.3

tai150b 7088.3
±612.2

1987.5
±48.1

×3.6
859.4

±54.7

×8.2

tai64c 111.7
±2.7

40.0
±1.1

×2.8
7.8

±0.6

×14.3

tai256c 9185.7
±210.1

803.9
±36.2

×11.4
789.8

±39.3

×11.6

4.3 Experimentation

Experiments have been carried out on top of an Intel Core i7 930 2.8 Ghz using a NVIDIA GTX
480 graphic card (480 GPU cores cadenced at 700 Mhz). Since this card provides on-chip memory
for L1 cache memory, techniques to cache input data using the texture memory have not been
applied. For each produced implementation, the nvcc compiler of the CUDA toolkit version 4.0
and the Intel icc compiler version 12.1 have been used. The average time has been measured
in seconds for 30 runs including the associated standard deviation, and acceleration factors are
reported in comparison with a single CPU core.

4.3.1 Comparison of Parallelization Schemes for Hybridization
A first set of experiments consists in comparing the performance of the two parallelization
schemes presented in Section 3.4. For doing this, three FANT implementations using a hill
climbing algorithm have been implemented for the quadratic assignment problem. A CPU im-
plementation using one single core, a GPU implementation using one neighborhood evaluation
on GPU per local search iteration, and another one using 50 neighborhood evaluations (i.e. 50
ants are evolving in parallel) at a time have been considered. The parallelization scheme used
for the first GPU implementation does not change the semantic of the CPU sequential version
(i.e. both produced outputs are identical). The number of FANT iterations has been fixed to
75000, which corresponds to a realistic scenario in accordance with the algorithm convergence.
Experimental results are reported in Table 1.

For the first GPU version (n×(n−1)
2

neighbors), the obtained acceleration factors are rather low
for most instances. They vary from ×0.8 to ×3.6 for taixxa and taixxb instances. Indeed, since the
neighborhood size is relatively small and most calculations can be performed in O(1), the number
of threads per block is not enough to fully cover the memory access latency. Such a phenomenon
less occurs for the tai256c since the neighborhood size is more important (acceleration factor of
×11.4).

It also less appears in the second parallelization scheme, in which many neighborhood eval-
uations are considered. Indeed, in the second GPU implementation, multiple ants are evaluated
at the same time (50× n×(n−1)

2
neighbors per iteration). Thereby, the amount of computations per



10

TABLE 2: Measures in terms of efficiency for different local search algorithms using a pair-wise-exchange
neighborhood. The quadratic assignment problem is considered.

± represents the standard deviation regarding the execution time, and × is the acceleration factor in comparison
with a CPU version using one single core.

Instance
FANT + hill climbing FANT + best neighbor FANT + tabu search

CPU GPU GPUR CPU GPU GPUR CPU GPU

tai50a 161.5
±1.4

18.7
±0.3

×8.6
23.4

±0.2

×6.9
159.5 15.3×10.4 23.2×6.9 140.1 32.4×4.3

tai60a 272.1
±2.6

29.4
±0.7

×9.2
31.5

±0.3

×8.6
275.9 25.1×11.0 31.7×8.7 199.7 43.3×4.6

tai80a 658.7
±7.3

58.2
±1.1

×11.3
49.8

±0.6

×13.2
683.7 54.6×12.5 49.7×13.7 362.4 69.2×5.2

tai100a 1294.4
±63.2

117.2
±6.3

×11.0
90.5

±3.1

×14.3
1401.9 121.8×11.5 105.6×13.3 587.8 108.4×5.4

tai100b 1802.3
±81.4

174.3
±6.2

×10.3
127.1

±4.6

×14.1
1397.5 120.6×11.6 105.2×13.3 577.6 104.2×5.5

tai150b 7088.3
±612.2

859.4
±54.7

×8.2
654.1

±51.3

×10.8
5127.2 586.7×8.7 490.5×10.4 1375.5 286.2×4.8

tai64c 111.7
±2.7

7.8
±0.6

×14.3
6.6

±0.4

×16.9
331.7 27.8×11.9 29.2×11.3 217.1 38.3×5.7

tai256c 9185.7
±210.1

789.8
±39.3

×11.6
733.7

±21.1

×12.5
29044.6 2528.6×11.5 2039.8×14.2 4537.5 762.5×5.9

GPU kernel is more prominent in this implementation. As a result, in comparison with the first
version, the obtained results are significantly better (speed-ups varying between ×8.2 to ×14.3).

As a conclusion, for the quadratic assignment problem in which most neighboring solutions
can be evaluated in O(1), the second parallelization scheme for the hybrid metaheuristic may be
more appropriate than the first one in terms of performance. Nevertheless, as previously said,
such a mechanism totally modifies the semantic of the original FANT algorithm.

4.3.2 Performance of Embedded Local Search Algorithms
A second set of experiments consists in assessing the performance of different local search algo-
rithms used in FANT. In the following implementations, three embedded local search algorithms
have been considered on CPU and GPU. The first one is the hill climbing previously seen. The
second algorithm is a local search based on the selection of the best neighbor at each iteration,
and the last one is a tabu search. For the two first methods, one variant using the reduction
mechanism (GPUR) to find the minimal fitness (see Section 3.3) has also been considered. The
number of FANT iterations has been fixed to 75000 for the two first versions and to 1000 for the
tabu search. The number of local iterations for the second algorithm has been set to n/2 and to
2000 for the tabu search. The standard deviation is not represented for the two last algorithms
since its value is near 0. The obtained results for the different implementations are reported in
Table 2.

Regarding the performance for the second algorithm (FANT + best neighbor), the acceleration
factors of the first version are similar to those obtained for the hill climbing (speed-ups alternate
from ×8.7 and ×12.5). This is not the case for the tabu search since additional post-treatments
(e.g. tabu list management on CPU) are performed (acceleration factors varying from ×4.3 to
×5.9).

Regarding the variant for the two first algorithms using a reduction mechanism (GPUR), from
the instance tai80a, finding the minimal fitness on GPU provides a performance improvement
between 15% and 30%. Indeed, such an approach reduces the data transfers from the GPU to
the CPU to one fitness.

Another observation from these results comes from the instance taixxc. In a general manner,
the best performance of the different algorithms are obtained for these instances (e.g. a speed-
up of ×16.9 for the instance tai64c for the first algorithm using GPUR). Such a performance
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difference can be explained by the nature of these instances, which are mainly two matrices
constituted by 0 and 1 values.

5 CONCLUSION

Hybrid metaheuristics having complementary behaviors allow to improve the effectiveness and
robustness in combinatorial optimization. Their exploitation for solving real-world problems is
possible only by using a great computational power. High-performance computing based on the
use of computational GPUs is recently revealed as an efficient way to use the huge amount of
resources at disposal. However, the exploitation of parallel models is not trivial and many issues
related to the GPU hierarchical management of this architecture have to be considered.

In this research report, we have investigated on different parallelization approaches for hybrid
metaheuristics on GPU. In the proposed parallelization strategies, the CPU manages the meta-
heuristic process and let the GPU be used as a coprocessor dedicated to intensive calculations.
The designed and implemented approaches have been experimentally validated on the quadratic
assignment problem using the FANT metaheuristic. In particular, we showed that our methodol-
ogy enables to gain up to a factor between ×10 and ×15 in terms of acceleration compared with
a single core architecture. Such an improvement is quite significant but not really impressive.
This is mainly due to the evaluation of a neighboring solution in the quadratic assignment
problem, which can be often performed in constant time. A perspective of this work will be to
implement the proposed approaches for other combinatorial optimization problems, in which
the evaluation of solutions is more prominent.

Furthermore, GPU-accelerated algorithms designed in this report only exploit a single CPU
core. With the arrival of GPU resources in COWs and grids, the next objective is to examine the
conjunction of GPU computing and distributed computing to fully and efficiently exploit the
hierarchy of parallel models of metaheuristics. Indeed, all processors are nowadays multi-core
and when coupled with GPU devices hybrid or heterogeneous computing, which is definitely
a new trend of parallel computing, performance of GPU-based algorithms might be drastically
improved. The challenge will be to find the best mapping in terms of efficiency of the hierarchy
of parallel models on the hierarchy of CPU-GPU resources provided by multi-level architectures.
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