
appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
??

??
--

FR
+E

N
G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Parallel Local Search on GPU

Thé Van Luong — Nouredine Melab
— El-Ghazali Talbi

N° ????

Mai 2009

Centre de recherche INRIA Lille – Nord Europe
Parc Scientifique de la Haute Borne

40, avenue Halley, 59650 Villeneuve d’Ascq
Téléphone : +33 3 59 57 78 00 — Télécopie : +33 3 59 57 78 50

Parallel Local Search on GPU

Th Van Luong, Nouredine Melab
, El-Ghazali Talbi

Thème NUM — Systèmes numériques
Équipe-Projet Dolphin

Rapport de recherche n° ???? — Mai 2009 — 24 pages

Abstract: Local search algorithms are a class of algorithms to solve complex
optimization problems in science and industry. Even if these efficient iterative
methods allow to significantly reduce the computational time of the solution
exploration space, the iterative process remains costly when very large problem
instances are dealt with. As a solution, graphics processing units (GPUs) rep-
resent an efficient alternative for calculations instead of traditional CPU. This
paper presents a new methodology to design and implement local search algo-
rithms on GPU. Methods such as tabu search, hill climbing or iterated local
search present similar concepts that can be parallelized on GPU and then a
general cooperative model can be highlighted. In addition, this model can be
extended with a hybrid multi-core and multi-GPU approach for multiple local
search methods such as multistart. The conclusions from both GPU and multi-
GPU experiments indicate significant speed-ups compared to CPU approaches.

Key-words: graphics processing units, local search, metaheuristics, parallel
computing

Parallel Local Search on GPU

Résumé : Les algorithmes de recherche locale sont une classe d’algorithmes
pour résoudre des problèmes d’optimisation complexes en sciences et dans l’industrie.
Même si ces méthodes iteratives efficaces permettent de réduire de manière
significative le temps de calcul de l’exploration de l’espace de recherche d’une
solution, ce dernier reste coûteux lorsque de très grandes instances d’un problème
sont traitées. Pour résoudre cela, l’utilisation des cartes graphiques semble être
une intéressante alternative aux calculs utilisant les processeurs habituels. Ce
papier présente une nouvelle méthodologie pour concevoir et implémenter les
métaheuristiques à solution unique sur carte graphique tels que la recherche
tabou, la descente du gradient ou encore la recherche locale itérée. D’un point
de vue conceptuel, cette classe d’algorithmes présentent beaucoup de points
communs qui peuvent être parallélisés. On peut ainsi mettre en évidence un
certain modèle général coopératif. Ce modle peut tre aussi tendu avec une
approche hybride multi-coeur multi-GPU pour les algorithmes de recherches
locales multiple. Les conclusions des expériences montrent des accélérations
significatives lorsque la carte graphique est utilisée comme coprocesseur.

Mots-clés : processeur graphique, recherche locale, métaheuristiques, calcul
parallèle

Parallel Local Search on GPU 3

Contents

1 Introduction 4

2 Graphics Processing Unit 5
2.1 General GPU Model . 5
2.2 CUDA Threading Model . 6
2.3 Memory Management . 7
2.4 Memory Coalescing . 8

3 Designing Local Search Algorithms on GPU 8
3.1 General model . 8
3.2 The Proposed GPU Algorithm 9

4 Implementing Local Search Algorithms on GPU 11
4.1 Binary Representation . 11
4.2 Discrete Vector Representation 12
4.3 Permutation Representation . 12

4.3.1 IN× IN→ IN Bijection: 12
4.3.2 IN→ IN× IN Bijection: 13

5 Experiments 15
5.1 Configuration . 15
5.2 Memory Coalescing and Texture Memory 15
5.3 Quadratic Assignment Problem 16
5.4 Permuted Perceptron Problem 17
5.5 Traveling Salesman Problem . 17

6 Multiple Local Search Algorithms on multi-GPU 20
6.1 Design on multi-GPU . 20
6.2 The Proposed Algorithm on multi-GPU 20
6.3 Experiments . 21
6.4 Implementation on multi-GPU 22
6.5 Results . 22

7 Conclusion and Future Work 23

RR n° 0123456789

4 Luong & Melab & Talbi

1 Introduction

GPU is a dedicated graphics rendering device for manipulating and displaying
computer graphics. Recent GPU cards provide highly parallel structure with
high execution capabilities and fast memory access. Since the same program
is executed on many data elements in GPU and has high arithmetic intensity,
the memory access latency can be hidden with calculations instead of big data
caches. Some computational tasks that previously would have taken long com-
putations become interactive, because computational time can be significantly
reduced with recent graphic cards. As a consequence, the use of GPU for an
efficient implementation of metaheuristics is becoming a challenging issue. In-
deed, the main difficulty on GPU reside in managing memory transactions. In
contrast to CPU, GPUs require massively data-parallel computations with pre-
dictable memory accesses.

Previous works on population based metaheuristics on GPU has been pro-
posed as well: genetic algorithm [1], genetic programming [2], and evolutionary
programming [3, 4].

On the other hand, local search (LS) algorithms are single-solution based
metaheuristics, which show their efficiency in tackling many optimization prob-
lems in different domains [5]. LS methods move from one solution to another in
the search space of candidate solutions until a nearly-optimal solution is found.
Although the use of LS algorithms allows to reduce the computational complex-
ity of the search process, optimization problems are often NP-hard and objective
function calculations on CPU remain time-consuming, especially when the size
of the search space is huge. As a consequence, parallelism seems necessary to
speed up the search, improve the quality of the obtained solutions, improve the
robustness and solve large scale problems. Re-think the design and implemen-
tation of parallel local searches on GPU architecture might be considered in an
efficient way.

The aim of this paper is to present a new general methodology for construct-
ing local search methods on GPU. To the best of our knowledge, approaches on
local search algorithms have never been proposed in the literature. This novel
approach is based on the idea that parallelism can be done at iteration-level:
each solution of a given neighbor can be evaluated in parallel. The LS iterative
process is managed by the CPU and the evaluation function is called on GPU.
This way, this approach tends to be generic for many local search algorithms.

The organization of the paper is the following. In the next section, NVIDIA
GPUs characteristics are described. Section 3 presents a general approach for
designing LS methods on GPU. In Section 4, an implementation of LS algorithms
is depicted according to the CUDA model. For testing performances of this
approach, three NP-complete problems have been implemented on GPU and
results will be discussed in Section 5. An extension of the general approach is
made for multiple LS methods on multi-GPU in section 6. Finally, conclusions
and perspectives of this work are drawn in Section 7.

INRIA

Parallel Local Search on GPU 5

Device (GPU)Host (CPU)

Kernel 1
execution

Allocate Device Memory

Mem2

Mem3

Mem1

DMem1

DMem2

Mem4

Mem1 DMem1

Mem2

DMem3

DMem2

DMem3

CPU code

Mem3

S
eq

u
en

ti
al

o
rd

er

Kernel 1 call

Allocate Device Memory

Allocate Device Memory

Memcopy

Memcopy

Memcopy

CPU code

Device (GPU)Host (CPU)

Kernel 1
execution

Allocate Device Memory

Mem2

Mem3

Mem1

DMem1

DMem2

Mem4

Mem1 DMem1

Mem2

DMem3

DMem2

DMem3

CPU code

Mem3

S
eq

u
en

ti
al

o
rd

er

Kernel 1 call

Allocate Device Memory

Allocate Device Memory

Memcopy

Memcopy

Memcopy

CPU code

Figure 1: Illustration general GPU model

2 Graphics Processing Unit

2.1 General GPU Model

In general-purpose computing on graphics process units, CPU is considered as
a host and the GPU is exposed as a device coprocessor. This way, each GPU
has its own memory and processing elements that are separate from the host
computer, where data must be transferred between the memory space of the
host and device.

Each device processor supports the single program multiple data (SPMD)
model, i.e. multiple autonomous processors simultaneously execute the same
program on different data. For achieving this, the notion of kernel is defined.
It is a function callable from the host and executed on the specified device
simultaneously by several processors in parallel.

Figure 1 illustrates an example of this concept. One can notice that kernel
calls are asynchronous. After a kernel launch, control immediately returns to
the host CPU. It may be seen as an efficient way to overlap computation on
the host and device. Memory transfer from the CPU to the device memory is
a synchronous operation which is time consuming. Bus bandwith and latency
between CPU and GPU can significantly decrease performance of a program.
As a consequence, one has to minimize these memory copies.

RR n° 0123456789

6 Luong & Melab & Talbi

Figure 2: CUDA threads model (source from CUDA programming guide [6])

2.2 CUDA Threading Model

CUDA (Compute Unified Device Architecture) is a parallel computing environ-
ment, which provides an application programming interface for NVIDIA archi-
tectures [6]. The notion of thread in CUDA doesn’t have exactly the same
meaning as CPU thread. A thread on GPU is an element of the data to be
processed. Compared to CPU threads, CUDA threads are lightweight [7]. That
means that changing the context between two threads is not a costly operation.

Threads are organized within so called thread blocks. A kernel is executed
by multiple equally thread blocks. Figure 2 illustrates these multiple blocks
organization. Blocks can be organized into a one-dimensional or two-dimensional
grid of thread blocks, and threads inside a block are regrouped in a similar
manner. First, the advantage of grouping is that the number of blocks processed
simultaneously by the GPU are closely linked to hardware resources. Secondly,
since each thread is provided with a unique id that can be used to compute
on different data, this model of threads provides an easy abstraction for SIMD
architecture.

INRIA

Parallel Local Search on GPU 7

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

Figure 3: CUDA memory model (source from CUDA programming guide [6])

2.3 Memory Management

From a hardware point of view, graphics cards consist of streaming multiproces-
sors, each with processing units, registers and on-chip memory. Since multipro-
cessors work according to the SPMD model, they share the same code and have
access to different memory areas. Figure 3 illustrates these different available
memories and connections with thread blocks.

Communication between CPU host and its device is done through global
memory. Since this memory is not cached and access is slow, one needs to min-
imize accesses to global memory and reuse data within the local multiprocessor
memories. Graphic cards provide also read only texture memory to accelerate
operations such as 2D or 3D mapping. Texture units are provided to make
graphic operations occur relatively fast. Constant memory is read only from
kernels and is hardware optimized for the case where all threads read the same
location. Shared memory is a fast memory located on the multiprocessors and
shared by threads of each thread block. This memory area provides a way for
threads to communicate within the same block. Registers among streaming pro-
cessors are partitioned among the threads running on it, they constitute fast
memory access. Local memory is a memory abstraction and is not an actual
hardware component. In fact, local memory resides in global memory allocated
by the compiler.

RR n° 0123456789

8 Luong & Melab & Talbi

Address 188

Address 156

Address 152

Address148

Address144

Address140

Address136

Address132

Address128

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Address 188

Address 156

Address 152

Address148

Address144

Address140

Address136

Address132

Address128

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Figure 4: An example of coalesced global memory access pattern

2.4 Memory Coalescing

Each block of threads is split into SIMD groups of threads called warps. At
any clock cycles, each processor of the multiprocessor selects a warp that is
ready to execute the same instruction on different data. For being efficient,
global memory accesses must be coalesced, which means that a memory read by
consecutive threads in a warp is combined by the hardware into several memory
reads. The requirement is that threads of the same warp must read global
memory in an order manner (Fig. 4). Global memory accesses patterns that are
non-coalesced can significantly decrease the performances of a program.

3 Designing Local Search Algorithms on GPU

LS algorithms are a class of metaheuristics which have been used successfully
for many optimization problems. A LS algorithm begins with an initial solution
and then iteratively improves that solution by moving to a neighbor solution.
When incremental evaluation is possible, it provides efficient speed-up. Never-
theless, even with this technique, LS methods require long computational time
on very large instances. As a consequence, parallelization is necessary to reduce
computational time for large scale instances. Figure 5 gives a general model for
constructing a LS algorithm.

3.1 General model

LS profiling shows that the most resource-consuming part of a LS is the eval-
uation of the generated solutions. As a result, the generation and evaluation
of the neighborhood might be done in parallel in deterministic LS (e.g. hill
climbing, tabu search, variable neighborhood search). In this parallel model,
the neighborhood is divided into different partitions which are evaluated in a
parallel independant way.

INRIA

Parallel Local Search on GPU 9

Init a solution

Full evaluation

Choose a neighboor of the
solution

Incremental evaluation

Next neighboor ?

Replace the solution by the
the chosen neighboor

STOP ?

END

yes

no

yes

no

Init a solution

Full evaluation

Choose a neighboor of the
solution

Incremental evaluation

Next neighboor ?

Replace the solution by the
the chosen neighboor

STOP ?

END

yes

no

yes

no

Figure 5: General model for local search algorithms

Regarding GPUs, graphics cards have evolved into a highly parallel and mul-
tithreaded environment. By definition a GPU is organized following the SMPD
model, meaning that multiple autonomous processors simultaneously execute
the same program at independent points.

Therefore, the mapping between the LS parallel model and the GPU model
is quiet straightforward. Let us divide the neighborhood into m elements (par-
titions of size equals to one) where m is the size of the neighborhood. This way,
one candidate solution is represented by one GPU process. An extended LS
construction model on GPU is proposed in Fig. 6.

This model can be seen as a cooperative model between the CPU and the
GPU. Indeed, the GPU is used as a coprocessor in a synchronous manner. The
resource-consuming part i.e. the incremental evaluation, is calculated by the
GPU and the rest is handled by the CPU. From an hardware implementation
point of view, GPUs are efficient with high intensive arithmetic instructions, and
CPUs in complex instructions.

3.2 The Proposed GPU Algorithm

Adapting traditional LS methods on GPU is not a straighforward task because
memory management on GPU have to be handled. As previously said, memory
transferts from CPU on GPU are slow and these copies have to be minimized.
Algorithm 1 proposes a methodology to adapt LS methods on GPU in a generic
way. This methodology fits well with the previous general GPU model example
mentioned in Fig. 1. First of all, at initialization stage, memory allocations on
device GPU have to be made. Inputs of the problem and candidate solution

RR n° 0123456789

10 Luong & Melab & Talbi

Init a solution

Full evaluation

Replace the solution by the
the chosen neighboor

STOP ?

END

Incremental
evaluation

0 1 2 3 … m

no

yes

Init a solution

Full evaluation

Replace the solution by the
the chosen neighboor

STOP ?

END

Incremental
evaluation

0 1 2 3 … m

Incremental
evaluation

Incremental
evaluation

0 1 2 3 … m

no

yes

Figure 6: General model for local search algorithm on GPU

Algorithm 1 Local Search Template on GPU
1: Choose an initial solution
2: Evaluate the solution
3: Specific LS initializations
4: Allocate problem data inputs on GPU device memory
5: Allocate a solution on GPU device memory
6: Allocate a neighborhood fitnesses structure on GPU device memory
7: Allocate additional solution structures on GPU device memory
8: Copy problem data inputs on GPU device memory
9: Copy the solution on GPU device memory

10: Copy additional solution structures on GPU device memory
11: repeat
12: for each neighbor in parallel do
13: Incremental evaluation of the candidate solution
14: Insert the resulting fitness into the neighborhood fitnesses structure
15: end for
16: Copy neighborhood fitnesses structure on CPU host memory
17: Specific LS solution selection strategy on the neighborhood fitnesses struc-

ture
18: Specific LS post-treatment
19: Copy the chosen solution on GPU device memory
20: Copy additional solution structures on GPU device memory
21: until a stopping criteria satisfied

INRIA

Parallel Local Search on GPU 11

must be allocated (lines 4 and 5). Since GPUs require massively computations
with predictable memory accesses, a structure has to be allocated for stocking
all the neighborhood fitnesses at different addresses (line 6). Additional solution
structures which are problem-dependent can also be allocated to facilitate the
computation of incremental evaluation (line 7). Secondly, problem data inputs,
initial candidate solution and additional structures associated to this solution
have to be copied on the GPU (lines 8 to 10). Notice that problem inputs are
copied only once during the process. Third, comes the parallel iteration-level,
in which each neighbor solution is evaluated and copied in the neighborhood
fitnesses structure (from lines 12 to 15). The order in which candidate neighbors
are evaluated is undefined. Fourth, the neighborhood fitnesses structure has to
be copied to the host CPU (line 16). Then a specific LS solution selection strat-
egy is applied to this structure (line 17): the exploration of the neighborhood
fitnesses structure is done by the CPU in a sequential way. And finally, after
a new candidate has been chosen, this latter and its additional structures are
copied to the GPU (lines 19 and 20). The process is repeated until a terminal
condition.

Since the GPU parallelization part is common to both LS methods, this
algorithm can be easily generalized for advanced LS methods such as iterated
local search or variable neighborhood search.

4 Implementing Local Search Algorithms on GPU

For LS procedures, neighborhood structures are the main part of those algo-
rithms. These structures play a crucial role in the performance of LS methods
and are problem-dependent. As previously seen in Fig. 2, CUDA model works
with thread blocks. A kernel (parallel function) is launched with a large number
of threads, which are provided with a unique id. As a consequence, the main
difficulty which remains, is to find a correct mapping between a LS neighbor
candidate solution and a GPU thread.

Neighborhood structure strongly depends on the target optimization prob-
lem representation. Three major encodings in the literature can be highlighted:
Binary encoding (e.g. Knapsack, SAT), vector of discrete values (e.g. location
problem, assignment problem) and permutation (e.g. TSP, scheduling prob-
lems).

4.1 Binary Representation

Neighborhood representation for binary problems is based on Hamming distance.
The neighborhood of a given solution consists in flipping one bit of the solution
(for a Hamming distance of one).

A mapping between LS neighborhood encoding and GPU threads is quiet
trivial. Indeed, on one side, for a binary vector of size n, the size of the neigh-
borhood is exactly n. On the other hand, threads are provided with a unique
id. That way, the incremental evaluation kernel is launched with n threads (a

RR n° 0123456789

12 Luong & Melab & Talbi

neighbor is associated with a single thread), and the size of the neighborhood
fitnesses structure allocated on GPU is n. As a result, a IN → IN mapping can
be made.

4.2 Discrete Vector Representation

Discrete vector representation is an extension of binary encodings using a given
alphabet Σ. In this way, discrete value of a vector element is replaced by any
other character of the alphabet.

Let us consider that the cardinality of the alphabet Σ is k, the size of the
neighborhood will be (k − 1) × n for a discret vector of size n. In a similar
manner, a IN→ IN mapping here can also be made. (k− 1)× n threads execute
the incremental evaluation kernel, and a neighborhood fitnesses structure of size
(k − 1)× n has to be provided.

4.3 Permutation Representation

Neighborhood built by pairwise exchanging operations (known as the 2-exchange
neighborhood) is a standard way for permutation problems. For a permutation
of size n, the size of this neighborhood is n×(n−1)

2 .
Like previous representations, the incremental evaluation kernel is executed

by n×(n−1)
2 threads, and the size of neighborhood fitnesses structure is n×(n−1)

2 .
However, for permutation encoding a mapping between a neighbor and a GPU
thread is not straightforward. Indeed, on the one hand, a neighbor is composed
by two element indexes (a swap in a permutation). On the other hand, threads
are identified by a unique id. As a result, IN → IN × IN and IN × IN → IN
bijections have to be considered.

Let us consider a 2D abstraction. In this latter, elements of the neighborhood
are disposed in a zero-based indexing 2D representation in a similar way that a
lower triangular matrix. Let n be the size of the solution representation and let
m = n×(n−1)

2 be the size of the neighborhood. Let i and j be the indexes of two
elements to exchange in a permutation. A candidate neighbor is then identified
by both i and j indexes in the 2D abstraction. Let f(i, j) be the corresponding
index in the 1D neighborhood fitnesses structure. Figure 7 gives an illustration
of this abstraction.

In this example, n = 6,m = 14 and the neighbor identified by the coordinate
(i = 2 ; j = 3) is mapped to the corresponding 1D array element f(i, j) = 9.

4.3.1 IN× IN→ IN Bijection:

The neighboor represented by the (i ; j) coordinates is known, and its corre-
sponding index f(i, j) on the 1D structure has to be calculated. In a matrix
approach, if the 1D array size was n ∗ n, the IN× IN→ IN mapping would be:

f(i, j) = i× (n− 1) + (j − 1)

INRIA

Parallel Local Search on GPU 13

01

02

03

04

05

..

23

..

24

25

..

..

..

34

35

..

12

13

14

15

..

..

..

..

45

i

j

23

5 7 86 93 4 10 12 1311 1420 1

01

02

03

04

05

..

23

..

24

25

..

..

..

34

35

..

12

13

14

15

..

..

..

..

45

01

02

03

04

05

01

02

03

04

05

..

23

..

24

25

..

23

..

24

25

..

..

..

34

35

..

..

..

34

35

..

12

13

14

15

..

12

13

14

15

..

..

..

..

45

..

..

..

..

45

i

j

23

5 7 86 93 4 10 12 1311 1420 1

Figure 7: IN× IN→ IN bijection

Since the 1D array size m is n×(n−1)
2 , in the 2D abstraction, elements above

the diagonal preceding the neighbor must not be considered (illustrated in Fig.
7 by a triangle). The corresponding mapping is therefore:

f(i, j) = i× (n− 1) + (j − 1)− i× (i+ 1)
2

(1)

IN× IN→ IN bijection is done.

4.3.2 IN→ IN× IN Bijection:

f(i, j) is a given index of the neighborhood fitnesses array, and i and j have to
be found.

If the element corresponding to f(i, j) in the 2D abstraction has a given i
abscissa, then let k be the distance between the i + 1 and n − 2 abscissas. If k
is known, the value of i can be deduce:

i = n− 2− k (2)

Let X be the number of elements following f(i, j) in the neighborhood index-
based array numerotation:

X = m− f(i, j)− 1 (3)

Since this number can be also represented in the 2D abstraction, the main
idea is to maximize the distance k such as:

k × (k + 1)
2

≤ X (4)

Figure 8 gives an illustration of this idea (represented by a triangle).
Resolving (4) gives the greatest distance k:

k × (k + 1) ≤ 2X

RR n° 0123456789

14 Luong & Melab & Talbi

i

01

02

03

04

05

..

23

..

24

25

..

..

..

34

35

..

12

13

14

15

..

..

..

..

45

j

X next elements

X next elements

14

5 7 86 93 4 10 12 1311 1420 1

k

i

01

02

03

04

05

01

02

03

04

05

..

23

..

24

25

..

23

..

24

25

..

..

..

34

35

..

..

..

34

35

..

12

13

14

15

..

12

13

14

15

..

..

..

..

45

..

..

..

..

45

j

X next elements

X next elements

14

5 7 86 93 4 10 12 1311 1420 1

k

Figure 8: IN→ IN× IN bijection

(k +
1
2

)2 − 1
4
≤ 2X

k +
1
2
≤

√
2X +

1
4

k ≤
√

8X + 1− 1
2

k = b
√

8X + 1− 1
2

c (5)

A value of i can then be calculated according to (2). Finally, by using (1) j
can be given by:

j = f(i, j)− i× (n− 1) +
i× (i+ 1)

2
+ 1 (6)

Since IN → IN × IN bijection is also done, a mapping between a neighbor
and a GPU thread can be made. Notice that for binary-problem encodings, the
mapping for neighborhood based on Hamming distance of two can be done in a
similar manner.

From an implementation point of view, some operations on some GPU archi-
tectures suffer from simple and double float precision. For example, according
to NVIDIA programming guide, CUDA square root library function has a max-
imum ulp error of 3. For example, square root precision on GPU doesn’t have
the same precision on CPU. This problem can be fixed by adding a small value
ε to the square root argument during implementation.

INRIA

Parallel Local Search on GPU 15

5 Experiments

5.1 Configuration

To evaluate the performances of LS implementation, three problems in combi-
natorial optimization have been implemented on GPU on top of three different
configurations. Configuration one is given by a Core 2 Duo 2Ghz and a GeForce
8600M GT with 4 multiprocessors. The second one is composed by a Core 2
Quad 2.4Ghz and a GeForce 8800 GTX with 16 multiprocessors. The third
configuration is an Intel Xeon 3Ghz with a GeForce GTX 280 with 32 multipro-
cessors.

For the three problems, an iterated tabu search has been implemented. The
number of local iterations of the tabu search is 1000, and the number of global
iterations for the iterative process is 10. The experiments intend to measure
the speed-up and not the quality of solutions. Indeed, for each problem, there
are some better well-suited specific LS methods. That is the reason why for the
next results, time measurement and acceleration factor (compared to a single
CPU) are only represented. For each instance of a problem, a standalone CPU
implementation, a CPU-GPU, and a CPU-GPU version using texture memory
are measured for each configuration (average time for 10 executions).

5.2 Memory Coalescing and Texture Memory

Concerning global memory, if a memory transaction cannot be coalesced, then a
separate memory transaction will be issued for each thread in the warp (active
group of threads). The performance penalty for non-coalesced memory accesses
varies according to the size of the data structure.

For LS methods, and especially for permutation problems, memory coalescing
is difficult to realize. As a result, it can lead to a significantly performance
decrease.

A solution for this drawback is to use texture memory. Indeed, this latter is
an alternative memory access path that can be bound to regions of the global
memory. Each texture unit has some internal memory that buffers data from
global memory. Therefore, texture memory can be seen as a relaxed mechanism
for the thread processors to access global memory because the coalescing require-
ments do not apply to texture memory accesses. Since data accesses are frequent
in LS incremental evaluation methods, using texture memory can provide a large
performance increase. Optimization problem inputs such as 2D matrices or 1D
vector solution can be bound to texture memory.

Notice that in the 200-series, global memory is easier to access due to the
relaxation of the coalescing rules. It means that applications developped in
CUDA get better global memory performance.

RR n° 0123456789

16 Luong & Melab & Talbi

Table 1: Quadratic assignment problem pairwise-exchange neighborhood

Instance
Configuration 1 Configuration 2 Configuration 3

CPU GPU GPUTex CPU GPU GPUTex CPU GPU GPUTex

tai12a 0.1 1.1×0.1 0.8×0.2 0.1 0.6×0.1 0.5×0.1 0.1 0.5×0.2 0.5×0.2

tai15a 0.3 1.4×0.2 0.9×0.3 0.1 0.8×0.2 0.6×0.2 0.2 0.6×0.3 0.6×0.3

tai17a 0.4 1.6×0.2 1.0×0.4 0.2 0.9×0.2 0.6×0.3 0.3 0.7×0.4 0.6×0.5

tai20a 0.6 2.1×0.3 1.0×0.6 0.3 1.2×0.2 0.7×0.4 0.4 0.8×0.5 0.7×0.7

tai25a 1.3 2.8×0.5 1.2×1.1 0.5 1.9×0.3 0.9×0.6 0.8 1.0×0.9 0.7×1.1

tai30a 2.2 4.3×0.5 1.3×1.7 0.9 2.2×0.4 1.0×0.9 1.5 1.1×1.3 0.8×1.8

tai35a 3.4 6.6×0.5 1.5×2.3 1.4 2.9×0.5 1.2×1.2 2.3 1.2×1.9 0.9×2.5

tai40a 4.9 9.8×0.5 1.9×2.5 2.1 3.8×0.6 1.4×1.5 3.5 1.4×2.6 1.1×3.3

tai50a 9.7 18×0.5 3.1×3.1 4.1 5.7×0.7 1.7×2.4 6.8 1.7×4.1 1.3×5.3

tai60a 16 30×0.6 4.9×3.4 7.0 8.5×0.8 1.9×3.6 11 2.0×6.0 1.6×7.7

tai64c 27 37×0.7 5.3×5.2 8.7 10×0.8 2.1×4.1 14 2.1×6.8 1.6×8.9

tai80a 43 72×0.6 10×4.2 18 20×0.9 4.6×4.0 29 3.3×9.0 2.7×10.9

tai100a 111 143×0.8 20×5.5 38 37×1.0 9.6×4.0 61 5.5×11.1 3.5×17.5

tai150b 349 521×0.7 86×4.0 158 108×1.5 36×4.4 228 18×12.6 12×18.8

tai256c 1879 2959×0.6 824×2.3 899 467×1.9 189×4.7 1186 158×7.5 56×20.8

5.3 Quadratic Assignment Problem

The quadratic assignment problem (QAP) arises in many applications such as
facility location or data analysis. Let A = (aij) and B = (bij) be n×n matrices
of positive integers. Then finding a solution of the QAP is equivalent to find a
permutation π = (1, 2, . . . , n) that minimizes the objective function:

z(π) =
n∑
i=1

n∑
j=1

aijbπ(i)π(j)

The incremental evaluation function has a time complexity of O(n), and the
number of threads executed is equals to n×(n−1)

2 . Results are shown in Table 1
for the three configurations. Time measurement is represented in seconds, and
for both GPU implementation and GPU version using texture memory, acceler-
ation factors compared to a standalone CPU are represented in subindexes. Due
to high misaligned accesses to global memories (flows and distances in QAP),
memory non-coalescing reduces seriously the performance of the GPU imple-
mentation on both G80 cards. Binding texture on global memory can overcome
the problem. Indeed, from the instance tai35a, using texture memory starts
giving positive acceleration factors for both configurations (from ×1.2 to ×2.5).
GPU keeps accelerating the LS process as long as the size grows. Concerning
GTX 280, this card provides twice more multiprocessors and registers. As a
consequence, hardware capability and coalescing rules relaxation lead to a very
significant speed-up (from ×7.5 to ×20.8 for the biggest instance tai256c) .

INRIA

Parallel Local Search on GPU 17

5.4 Permuted Perceptron Problem

In [8], Pointcheval introduced a cryptographic identification scheme based on the
perceptron problem, which seems to be suited for resource constrained devices
such as smart cards. An ε-vector is a vector with all entries being either +1 or
-1. Similarly an ε-matrix is a matrix in which all entries are either +1 or -1.
The permuted perceptron problem (PPP) is as follows:

Definition Given an ε-matrix A of size m×n, find an ε-vector V of size n such
that AV ≥ 0

The permuted perceptron problem (PPP) is a harder variant of the PP:

Definition Given an ε-matrix A of size m×n and a multiset S of non-negative
integers of size m, find an ε-vector V of size n such that {{(AV)j/j = {1, . . . ,m}}} =
S.

PPP has been implemented using a binary encoding. Part of the full evaluation
of a solution can be seen as a matrix-vector product. Then the incremental
evaluation of a neighbor can be done in linear time. Results for a Hamming
neighborhood of distance one is depicted in Table 2 (m-n instances). From
m = 301 and n = 317, GPU version using texture memory starts to be faster
than CPU version for both configurations (from ×1.4 to ×1.6). Since accesses to
global memory in the incremental evaluation are minimized, GPU implementa-
tion is not much affected from non-coalescing memory operations. Indeed, from
m = 601 and n = 617, GPU version without any texture memory use starts to
give better results (from ×1.1 to ×2.2). The speed-up grows as long as the size
increase (up to ×8 for m = 1301, n = 1317).

Acceleration factor for this implementation is significant but not huge. This
can be explained by the fact that since the neighborhood is relatively small
(n threads), the number of threads per block is not enough to fully cover the
memory access latency.

For confirming this point, Hamming neighborhood of distance two on GPU
has also been implemented. Incremental evaluation is executed by n×(n−1)

2
threads. Then the results figure in Table 3. For the first instance (m = 73,
n = 73), acceleration factors of the texture version are already important (from
×3.6 to ×10.9). As long as the instance size grows, acceleration factor becomes
efficient (from ×3.6 to ×8.1 for the first configuration). Since a large number
multiprocessors are available on both 8800 and GTX 280, high speed-ups can
be highlighted (from ×9.6 ×42.6). As a consequence, parallelization on GPU
provides an efficient way for handling large neighborhoods.

5.5 Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most popular combinatorial
optimization problems. Given n cities and a distance matrix dn,n, where each
element dij represents the distance between the cities i and j, find a tour which

RR n° 0123456789

18 Luong & Melab & Talbi

Table 2: Permuted perceptron problem 1-Hamming distance neighborhood

Instance
Configuration 1 Configuration 2 Configuration 3

CPU GPU GPUTex CPU GPU GPUTex CPU GPU GPUTex

73-73 1.5 6.2×0.2 5.0×0.3 1.1 3.4×0.3 3.0×0.4 1.1 3.5×0.3 3.0×0.4

81-81 1.9 6.8×0.3 5.3×0.3 1.4 3.8×0.4 3.4×0.4 1.3 3.8×0.3 3.3×0.4

101-101 2.8 8.3×0.3 6.4×0.4 2.1 4.5×0.5 4.1×0.5 2.0 4.5×0.4 4.0×0.5

101-117 3.3 8.9×0.4 6.6×0.5 2.5 4.8×0.5 4.3×0.6 2.2 4.9×0.4 4.2×0.5

201-217 11 20×0.6 12×0.9 8.8 10×0.8 8.1×1.1 8.1 8.8×0.9 7.7×1.1

301-317 24 34×0.7 18×1.4 19 16×1.1 13×1.5 17 12×1.4 11×1.6

401-417 43 54×0.8 24×1.7 34 28×1.2 20×1.7 31 16×1.9 14×2.2

501-517 116 140×0.8 99×1.2 65 52×1.3 42×1.6 55 43×1.3 40×1.4

601-617 189 169×1.1 98×1.9 134 96×1.4 77×1.7 105 47×2.2 43×2.4

701-717 288 198×1.4 126×2.3 202 119×1.7 98×2.1 148 51×2.9 47×3.1

801-817 375 248×1.5 122×3.1 269 125×2.1 100×2.7 200 55×3.6 50×4.0

901-917 499 287×1.7 134×3.7 337 132×2.5 103×3.2 262 59×4.4 54×4.8

1001-1017 596 348×1.7 146×4.1 436 145×3.0 107×4.0 336 63×5.3 58×5.8

1101-1117 698 430×1.6 200×3.5 546 210×2.6 173×3.2 427 85×5.0 78×5.4

1201-1217 981 510×1.9 241×4.1 658 225×2.9 177×3.7 539 88×6.1 82×6.6

1301-1317 1176 573×2.1 288×4.1 784 228×3.4 180×4.3 687 93×7.4 85×8.0

Table 3: Permuted perceptron problem 2-Hamming distance neighborhood

Instance
Configuration 1 Configuration 2 Configuration 3

CPU GPU GPUTex CPU GPU GPUTex CPU GPU GPUTex

73-73 2.9 3.9×0.7 0.8×3.6 2.2 1.3×1.7 0.2×9.6 2.1 0.2×9.9 0.2×10.9

81-81 3.9 5.2×0.8 1.0×4.0 2.8 1.7×1.7 0.3×10.4 2.7 0.3×10.3 0.2×12.2

101-101 7.6 9.7×0.8 1.7×4.4 5.1 2.9×1.7 0.4×12.0 5.2 0.4×12.8 0.3×18.1

101-117 10 13×0.7 2.5×4.0 7.3 4.1×1.8 0.6×13.0 7.0 0.6×12.8 0.4×19.0

201-217 68 82×0.8 15×4.3 51 25×2.0 3.3×15.3 49 3.0×16.4 1.9×25.7

301-317 232 251×0.9 58×4.0 174 61×2.8 10×16.0 169 9.5×17.8 6.2×27.4

401-417 573 570×1.0 147×3.9 443 125×3.5 24×17.8 405 21×19.3 14×28.6

501-517 1235 1105×1.1 294×4.2 901 220×4.1 51×17.4 804 40×19.7 29×27.5

601-617 3208 1881×1.7 512×6.3 2526 355×7.1 88×28.5 2056 67×30.5 51×40.2

701-717 5592 3002×1.9 824×6.8 4538 546×8.3 142×31.9 3590 105×34.2 84×42.3

801-817 8611 4396×2.0 1245×6.9 6922 815×8.5 210×32.9 5405 152×35.4 128×42.2

901-917 12398 6245×2.0 1788×6.9 9952 1088×9.1 300×33.2 7900 215×36.7 187×42.1

1001-1017 17507 8474×2.1 2502×7.0 14445 1469×9.8 416×34.7 11083 291×38.1 262×42.2

1101-1117 26079 11175×2.3 3336×7.8 19227 1878×10.2 551×34.9 14974 401×37.3 357×41.9

1201-1217 34553 14108×2.4 4348×7.9 25664 2407×10.7 705×36.4 19532 512×38.1 460×42.4

1301-1317 39484 17910×2.2 4903×8.1 33170 3050×10.9 912×36.4 25026 647×38.7 587×42.6

INRIA

Parallel Local Search on GPU 19

Table 4: Traveling salesman problem pairwise-exchange neighborhood

Instance
Configuration 1 Configuration 2 Configuration 3

CPU GPU GPUTex CPU GPU GPUTex CPU GPU GPUTex

eil101 2.3 3.7×0.6 1.8×1.3 1.7 1.8×1.0 1.0×1.7 1.4 0.6×2.3 0.6×2.4

d198 10 13×0.8 7.1×1.4 7.3 5.4×1.3 3.2×2.2 5.6 1.5×3.7 1.4×4.0

lin318 27 39×0.7 19×1.4 14 13×1.1 8.1×1.8 14 3.5×4.1 3.3×4.4

rd400 33 65×0.5 26×1.3 23 19×1.2 12×1.8 23 5.8×4.1 5.6×4.2

pcb442 57 89×0.6 37×1.5 29 23×1.3 14×2.1 29 7.0×4.2 6.5×4.5

att532 63 137×0.5 59×1.1 44 39×1.1 23×1.9 40 10×3.9 9.8×4.2

rat783 196 321×0.6 152×1.3 107 78×1.4 47×2.3 93 26×3.5 23×4.0

pcb1173 583 744×0.8 391×1.5 333 181×1.8 106×3.1 270 67×4.0 57×4.7

d1291 692 892×0.8 509×1.4 492 231×2.1 142×3.5 365 83×4.4 73×5.0

pr2392 3389 – – 2318 876×2.6 528×4.4 2389 303×7.9 285×8.4

fnl4461 14817 – – 11710 – – 11274 1073×10.5 1123×10.0

rl5915 27946 – – 20935 – – 20710 – –

minimizes the total distance. A tour visits each city exactly once (Hamiltonian
cycle).

A swap operator for the TSP has been implemented on GPU (2-opt could
be implemented in a similar manner). Table 4 shows the results for TSP im-
plementation. On the one hand, even if lots of threads are executed (n×(n−1)

2
neighbors), results for the first configuration are modest (acceleration factor
from ×1.1 to ×1.5 for the texture version). Indeed, the incremental evaluation
function consists of replacing two to four edges of a solution. As a result, com-
putation of incremental evaluation can be given in constant time, which is not
enough to hide the memory latency. Concerning the other configurations, using
more multiprocessors overcomes the issue and gives significant results. Indeed,
for the GeForce 8800, accelerations starts from ×1.7 with the eil101 instance
until ×4.4 for pr2392. In a similar manner, GTX 280 starts from ×2.4 until an
acceleration factor of ×10 for the fnl4461 instance.

For larger instances such as pr2392, fnl4461 or rl5915, GPU failed to execute
the program because of the hardware register limitation. Another issue concerns
the instances of more than 15000 cities (not depicted in the results). For these
instances, the number of bytes allocated for the neighborhood fitnesses structure
exceeds the memory capacity of the graphics cards. As a consequence, splitting
incremental evaluation kernel into several sequential smaller kernels might be
considered.

RR n° 0123456789

20 Luong & Melab & Talbi

Figure 9: Independent and cooperative walks

6 Multiple Local Search Algorithms on multi-
GPU

An extension of the previous approach is to consider the algorithmic-level parallel
model for LS algorithms on GPU such as a multistart LS.

6.1 Design on multi-GPU

In the algorithmic-level parallel model, since independent or cooperative self-
constained metaheuristics are used (Fig. 9), a multi-GPU approach is well-
suited. In the previous design of LS methods on GPU, CPU handled the main
process of LS algorithm and GPU operated on the intensive computation part.
For multiple LS algorithms, the idea is similar, it consists on associating one
LS method per GPU. For a given time, the number of LS algorithms simulta-
neously executed in parallel is equal to the number of available graphics cards.
For achieving this in an efficient way, a mixed multi-core approach must be con-
sidered. Indeed, recent multi-core architectures offer an opportunity to make a
transition to parallel programming and give more performance in a transparent
manner.

As a consequence, since the previous LS design on GPU uses the CPU to
manage the LS process and the GPU as a coprocessor, the idea for a multi-
GPU approach is to consider one CPU core and one GPU card per LS method.
Each CPU process associated to one core executes in parallel the cooperative LS
algorithm on GPU previously seen before. Figure 10 illustrates this idea with
two cores and two graphics cards. First, the number of process (CPU threads)
created is equal to the number of GPU cards. Secondly, each core is associated
with a cooperative LS algorithm on GPU (previously designed). Finally, each
LS method is executed in parallel, and the results are collected by the CPU for
possibly performing operations between the solutions found.

6.2 The Proposed Algorithm on multi-GPU

Algorithm 2 gives a template for multiple LS algorithms on multi-GPU. This
template can be seen as an iterative process over an existing LS algorithm on

INRIA

Parallel Local Search on GPU 21

Create

Join

CPU thread 1

Local
search

on GPU 1

CPU thread 2

Local
search

on GPU 2

Create

Join

CPU thread 1

Local
search

on GPU 1

CPU thread 2

Local
search

on GPU 2

Figure 10: An example of multi-GPU Local Search

GPU. First of all, specific multiple LS treatment has to be made (line 3). Threads

Algorithm 2 Multiple Local Search Template on GPU
1: Specific multiple local search initializations
2: repeat
3: Specific multiple local search pre-treatment
4: Create as many threads as GPU cards
5: for each thread in parallel do
6: Execute existing local search template on GPU
7: end for
8: Wait all threads to finish
9: Specific multiple local search post-treatment

10: until a stopping criteria satisfied

creation associates one CPU thread (process) to one GPU context (line 4). For
doing this, problem specific common structures might be designed for all threads.
Secondly, each CPU thread mapped to one graphic card launchs a previously
designed single-solution based LS on GPU (lines 5 to 7). Finally, a synchroniza-
tion barrier must be used for collecting all the results and do some additional
post-treatment (lines 8 to 9). The process is repeated until a terminal condition
(e.g. a given number of executions).

6.3 Experiments

In order to test the validity of this approach, a multistart local search algorithm
has been implemented on the quadratic assignment problem. The well-known

RR n° 0123456789

22 Luong & Melab & Talbi

multistart LS is an instantiation of the algorithm-level model, in which different
local search algorithms are launched using diverse initial solutions.

The embedded LS algorithm is an iterated tabu search with the same pa-
rameters used as before. The configuration used is an Intel Xeon 3Ghz 8 cores
with 2 GeForce GTX 280 cards.

6.4 Implementation on multi-GPU

From an implementation point of view, the existing embedded LS algorithm on
GPU part remains unchanged. The only thing which remains is to manage CPU
cores.

Thread pools (posix and win32 threads) and OpenMP both propose a solu-
tion to take full advantage of the use of multi-cores. The basic idea for multi-core
programming is to create a set of threads once and for all at the beginning of the
program. Indeed, there is a direct mapping between one thread and one CPU
core. When a task is created, it executes on a thread in the pool, returning the
thread to the pool when the task is done. According to the previous algorithm,
the implementation with thread pools or OpenMP is straighforward.

6.5 Results

In the following tables, computational time (in seconds) for different multistart
LS algorithms implementations are compared. The sequential version of multi-
start LS on CPU is used as a reference for the comparaison (acceleration fac-
tors). The other implementations are CPU multi-core version, sequential GPU
and GPU using texture implementations, and their parallel versions (both multi-
core and GPU).

Table 5 gives results for a multistart local search algorithms using 20 sub-
sidiary LS. Since the Intel Xeon is a 8 cores machines, the multiCPU version
takes full advantage of all the cores. For smaller instances, overhead creation is
more important than computational time. But as long as the size increases, the
acceleration factor converges to the expected value ×8.0. Both sequential multi-
start GPU and GPU texture versions have nearly the same performance than for
single-solution based LS algorithm in the previous Tab 1. These implementations
become also faster than the CPU version from the instance tai30a (from ×1.3 to
×1.8). Concerning single GPU and multi-GPU versions, the theorical speed-up
expected by using two GPU cards instead of one should be ×2. By comparing
GPU and MultiGPU columns (respectively GPUTex and MultiGPUTex), from
instance tai12a to tai17a, speed-up by using two GPUs is not the one expected
due to overhead creation. As the size of the instance grows, speed-up tends to
be twice more efficient than a single GPU version. But in practice, the theorical
value of acceleration factor is never reached due to thread synchronization, GPU
context creation and destruction for each time a process runs a LS algorithm on
a GPU card. From the instance tai60a, it becomes efficient to use multi-GPU
versions instead of 8 cores stand-alone version (acceleration factors from ×11.1
to ×41.3).

INRIA

Parallel Local Search on GPU 23

Table 5: Multistart LS Algorithm on QAP (20 embedded LS)

Instance Intel Xeon 3Ghz 8 cores 20 embedded LS
CPU MultiCPU GPU MultiGPU GPUTex MultiGPUTex

tai12a 2.0 0.4×4.5 10×0.2 7.1×0.3 9.8×0.2 6.6×0.3

tai15a 3.6 0.6×6.3 12×0.3 8.0×0.4 11×0.3 7.1×0.5

tai17a 5.4 0.7×7.2 14×0.4 8.7×0.6 11×0.5 7.5×0.7

tai20a 8.8 1.2×7.5 16×0.5 9.7×0.9 13×0.7 8.1×1.1

tai25a 17 2.2×7.7 19×0.9 11×1.5 14×1.1 9.1×1.9

tai30a 29 3.8×7.7 22×1.3 12×2.3 16×1.7 10×2.9

tai35a 46 6.0×7.9 24×1.9 13×3.4 19×2.5 11×4.2

tai40a 70 8.9×7.9 27×2.6 15×4.6 21×3.3 12×5.8

tai50a 136 17×8.0 33×4.1 18×7.5 25×5.3 14×9.4

tai60a 238 29×8.0 39×6.0 21×11.1 31×7.7 17×13.9

tai64c 292 36×8.0 43×6.8 23×12.6 32×8.9 18×16.1

tai80a 593 74×8.0 66×9.0 35×17.0 54×10.9 28×20.5

tai100a 1220 153×8.0 110×11.1 57×21.3 69×17.5 36×33.2

tai256c 23738 2970×8.0 3169×7.5 1690×14.0 1139×20.8 574×41.3

7 Conclusion and Future Work

A new methodology for LS algorithms on GPU has been made in this paper. To
the best of our knowledge, approaches on LS methods have never been proposed
before. The idea of this approach is to let the CPU manages the whole LS process
and let the GPU be used as a coprocessor for high calculations. This way, the LS
parallelism is done at iteration-level: each candidate solution from a given neigh-
borhood is evaluated in parallel in the GPU, and post-treatment can be made
on CPU. This model fits well for LS methods such as hill climbing, tabu search,
iterated local search, variable neighborhood search . . . For large scale instances,
intensive computation of evaluation function, and for a large neighborhood set,
speed-ups can really become efficient (up to ×40). In a similar manner, a mixed
multi-core and multi-GPU approach allows to handle algorithmic-level methods
such as a multistart LS algorithm. The fact of combining iteration-level and
algorithmic-level of parallelism gives a complete methodology for designing any
LS method on GPU.

A next perspective is to use multi-GPU approach in the iteration-level, es-
pecially for designing LS methods for tackling larger instances. It will consist of
partitioning the neighborhood set, where each partition is executed on a single
GPU. That way, multi-GPU approach will allow to increase the speed-up of the
exploration space of a given solution. But since each GPU has its own private
memory, managing context execution of different GPUs in an efficient way is not
a straighforward task.

In the future, all the GPU concepts will be also integrated in the ParadisEO
platform. This framework was developped for the design of parallel hybrid meta-

RR n° 0123456789

24 Luong & Melab & Talbi

heuristics dedicated to the mono and multiobjective resolution [9]. ParadisEO is
a framework based on a clear conceptual separation of metaheuristics concepts,
and can be seen as a white-box object-oriented with some reusable concepts.
The Parallel Evolving Objects (PEO) module includes well-known parallel and
distributed models for metaheuristics such as LS methods. This module will be
extended in the future with multi-core and GPU programming techniques.

References

[1] Li, J.M., Wang, X.J., He, R.S., Chi, Z.X.: An efficient fine-grained parallel
genetic algorithm based on gpu-accelerated. In: Network and Parallel Com-
puting Workshops, 2007. NPC Workshops. IFIP International Conference
on. (2007) 855–862

[2] Chitty, D.M.: A data parallel approach to genetic programming using pro-
grammable graphics hardware. In: GECCO. (2007) 1566–1573

[3] Wong, T.T., Wong, M.L.: Parallel evolutionary algorithms on consumer-level
graphics processing unit. In: Parallel Evolutionary Computations. (2006)
133–155

[4] Fok, K.L., Wong, T.T., Wong, M.L.: Evolutionary computing on consumer
graphics hardware. IEEE Intelligent Systems 22(2) (2007) 69–78

[5] Talbi, E.G.: From design to implementation. Wiley (2009)

[6] NVIDIA: CUDA Programming Guide Version 2.1

[7] Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B., mei
W. Hwu, W.: Optimization principles and application performance evalua-
tion of a multithreaded gpu using cuda. In: PPOPP. (2008) 73–82

[8] Pointcheval, D.: A new identification scheme based on the perceptrons prob-
lem. In: EUROCRYPT. (1995) 319–328

[9] Cahon, S., Melab, N., Talbi, E.G.: Paradiseo: A framework for the reusable
design of parallel and distributed metaheuristics. J. Heuristics 10(3) (2004)
357–380

INRIA

Centre de recherche INRIA Lille – Nord Europe
Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

	Introduction
	Graphics Processing Unit
	General GPU Model
	CUDA Threading Model
	Memory Management
	Memory Coalescing

	Designing Local Search Algorithms on GPU
	General model
	The Proposed GPU Algorithm

	Implementing Local Search Algorithms on GPU
	Binary Representation
	Discrete Vector Representation
	Permutation Representation
	 I-NI-NI-N Bijection:
	I-NI-NI-N Bijection:

	Experiments
	Configuration
	Memory Coalescing and Texture Memory
	Quadratic Assignment Problem
	Permuted Perceptron Problem
	Traveling Salesman Problem

	Multiple Local Search Algorithms on multi-GPU
	Design on multi-GPU
	The Proposed Algorithm on multi-GPU
	Experiments
	Implementation on multi-GPU
	Results

	Conclusion and Future Work

