
❧

INRIA Lille Nord Europe

LIFL UMR CNRS 8022

PhD Thesis in Computer Science

Parallel Metaheuristics on GPU

Thé Van Luong

Directors:

Full Professor : Nouredine Melab, Lille 1

Full Professor : El-Ghazali Talbi, Lille 1

PhD Defense: 1/12/2011

Contents

Introduction 1

1 GPU Computing for Parallel Metaheuristics 5

1.1 Parallel Metaheuristics . 6

1.1.1 Optimization Context . 6

1.1.2 Principles of Metaheuristics . 7

1.1.2.1 Solution Representation . 7

1.1.2.2 Evaluation Function . 8

1.1.2.3 Principles of S-metaheuristics 8

1.1.2.4 Principles of P-metaheuristics 10

1.1.3 Parallel Models of Metaheuristics . 11

1.2 Metaheuristics and GPU Computing . 13

1.2.1 GPU Architecture . 13

1.2.2 GPU Challenges for Metaheuristics 15

1.2.3 General GPU Model: CPU-GPU Cooperation 16

1.2.4 GPU Threads Model: Parallelism Control 16

1.2.5 Kernel Management: Memory Management 17

1.3 Related Works on Parallel Metaheuristics 20

1.3.1 Metaheuristics on Parallel and Distributed Architectures 20

1.3.2 Research Works on GPU-based Metaheuristics 21

1.4 Experimental Protocol . 26

1.4.1 Optimization Problems . 26

1.4.1.1 Permuted Perceptron Problem 27

1.4.1.2 The Quadratic Assignment Problem 27

1.4.1.3 The Weierstrass Continuous Function 27

1.4.1.4 The Traveling Salesman Problem 28

1.4.1.5 The Golomb Rulers . 28

1.4.1.6 Problem Characteristics . 29

1.4.2 Machines Configuration . 30

1.4.3 Metric and Statistical Tests . 31

i

2 Efficient CPU-GPU Cooperation 35

2.1 Task Repartition for Metaheuristics on GPU 37

2.1.1 Model of Parallel Evaluation of Solutions 37

2.1.2 Parallelization Scheme on GPU . 37

2.2 Data Transfer Optimization . 38

2.2.1 Generation of the Neighborhood in S-metaheuristics 39

2.2.2 The Proposed GPU-based Algorithm 40

2.2.3 Additional Data Transfer Optimization 42

2.3 Performance Evaluation . 43

2.3.1 Analysis of the Data Transfers from CPU to GPU 43

2.3.2 Additional Data Transfer Optimization 49

2.4 Comparison with Other Parallel and Distributed Architectures 50

2.4.1 Parallelization Scheme on Parallel and Distributed Architectures . . 52

2.4.2 Configurations . 52

2.4.3 Cluster of Workstations . 54

2.4.4 Workstations in a Grid Organization 55

3 Efficient Parallelism Control 59

3.1 Thread Control for Metaheuristics on GPU 61

3.1.1 Execution Parameters at Runtime 61

3.1.2 Thread Control Heuristic . 62

3.2 Efficient Mapping of Neighborhood Structures on GPU 64

3.2.1 Binary Encoding . 64

3.2.2 Discrete Vector Representation . 65

3.2.3 Vector of Real Values . 65

3.2.4 Permutation Representation . 66

3.2.4.1 2-exchange Neighborhood 66

3.2.4.2 3-exchange Neighborhood 68

3.2.4.3 Mapping Tables for General Neighborhoods 69

3.3 First Improvement S-metaheuristics on GPU 69

3.4 Performance Evaluation . 71

3.4.1 Thread Control for Preventing Crashes 71

3.4.1.1 Application to the Traveling Salesman Problem 71

3.4.1.2 Thread Control Applied to the Traveling Salesman Problem 73

3.4.2 Thread Control for Further Optimization 74

3.4.3 Performance of User-defined Mappings 74

3.4.4 First Improvement S-metaheuristics on GPU 77

3.5 Large Neighborhoods for Improving Solutions Quality 80

3.5.1 Application to the Permuted Perceptron Problem 81

3.5.1.1 Neighborhood based on a 1-Hamming Distance 81

3.5.1.2 Neighborhood based on a 2-Hamming Distance 82

3.5.1.3 Neighborhood based on a 3-Hamming Distance 82

3.5.1.4 Performance Analysis . 83

4 Efficient Memory Management 87

4.1 Common Concepts of Memory Management 89

4.1.1 Memory Coalescing Issues . 89

4.1.2 Coalescing Transformation . 90

4.1.3 Texture Memory . 91

4.1.4 Memory Management . 92

4.2 Memory Management in Cooperative Algorithms 94

4.2.1 Parallel and Cooperative Model . 94

4.2.2 Parallelization Strategies for Cooperative Algorithms 96

4.2.2.1 Parallel Evaluation of Populations on GPU 96

4.2.2.2 Full Distribution of Cooperative Algorithms on GPU . . . 98

4.2.2.3 Full Distribution Using Shared Memory 100

4.2.3 Issues Related to the Fully Distributed Schemes 101

4.3 Performance Evaluation . 106

4.3.1 Coalescing accesses to global memory 106

4.3.2 Memory Associations of Optimization Problems 107

4.4 Performance of Cooperative Algorithms . 108

4.4.1 Configuration . 109

4.4.2 Measures in Terms of Efficiency . 109

4.4.3 Measures in Terms of Effectiveness 113

5 Extension of ParadisEO for GPU-based Metaheuristics 115

5.1 The ParadisEO Framework . 117

5.1.1 Motivations and Goals . 117

5.1.2 Presentation of the Framework . 117

5.2 GPU-enabled ParadisEO . 118

5.2.1 Architecture of ParadisEO-GPU . 119

5.2.2 ParadisEO-GPU Components . 120

5.2.3 A Case Study: Parallel Evaluation of a Neighborhood 122

5.2.4 Automatic Construction of the Mapping Function 124

5.3 Performance Evaluation . 126

5.3.1 Experimentation with ParadisEO-GPU 126

5.3.1.1 Application to the Permuted Perceptron Problem 126

5.3.1.2 Application to the Quadratic Assignment Problem 129

Conclusion and Future Works 133

Appendix 137

.1 Mapping Proofs . 137

.1.1 Two-to-one Index Transformation 137

.1.2 One-to-two Index Transformation . 138

.1.3 One-to-three Index Transformation 139

.1.4 Three-to-one index transformation 141

.2 Statistical Tests . 143

Bibliography 158

International Publications 160

Introduction

In the optimization field, both academic and industrial problems are often complex and

NP-hard. In practice, their modeling is continuously evolving in terms of constraints

and objectives. Thereby, a large number of real-life optimization problems in science,

engineering, economics, and business are complex and difficult to solve. Their resolution

cannot be performed in an exact manner within a reasonable amount of time, and their

resource requirements are ever increasing. To deal with such an issue, the design of resolu-

tion methods must be based on the joint use of advanced approaches from combinatorial

optimization, large-scale parallelism and engineering methods.

In the last decades, metaheuristics are approximate algorithms that have been successfully

applied to solve optimization problems. Indeed, this class of methods allows to produce

near-optimal solutions in a reasonable time. Metaheuristics may solve instances of prob-

lems that are believed to be hard in general, by exploring the usually large solution search

space of these instances. These algorithms achieve this by reducing the effective size of the

search space and by exploring that space efficiently. However, although metaheuristics al-

low to reduce the temporal complexity of problems resolution, they remain unsatisfactory

to tackle large problems. Experiments using large problems are often stopped without any

convergence being reached. Thereby, in designing metaheuristics, there is often a trade-off

to be found between the size of the problem instance and the computational complexity to

explore it. As a result, only the use of parallelism allows to design new methods to tackle

large problems.

Over the last decades, parallel computing has been revealed as an unavoidable way to deal

with large problem instances of difficult optimization problems. The design and imple-

mentation of parallel metaheuristics are strongly influenced by the computing platform.

Many contributions have been proposed for the design and implementation of parallel

metaheuristics using massively parallel processors [CSK93], networks or cluster of work-

stations [CTG95, BSB+01], and shared memory machines [JRG09, Bev02]. The proposed

approaches are based on three parallel models: parallel evaluation of a single solution,

parallel evaluation of solutions and parallel (cooperative or independent) execution of sev-

eral metaheuristics. These parallel approaches have been later revisited for large-scale

computational grids [TMT07]. Indeed, grid computing is an impressively powerful way to

solve challenging instances in combinatorial optimization. However, computational grids

providing a huge amount of resources are not easily available and accessible for any user.

1

Introduction

Recently, graphics processing units (GPU) have emerged as a new popular support for

massively parallel computing [RRS+08, OML+08]. Such resources supply a great com-

puting power, are energy-efficient, and unlike grids, they are highly available everywhere:

laptops, desktops, clusters, etc. During many years, the use of GPU computing was ded-

icated to graphics and video applications. Its utilization has recently been extended to

other application domains [CBM+08, GLGN+08] (e.g. scientific computing) thanks to

the publication of the CUDA (Compute Unified Device Architecture) development toolkit

that allows GPU programming in C-like language [NBGS08]. In some areas such as nu-

merical computing [TSP+08], we are now witnessing the proliferation of software libraries

such as CUBLAS for GPU. However, in other areas such as combinatorial optimization,

in particular metaheuristics, the utilization of GPU does not grow at the same pace. With

the arrival of open standard programming languages on GPU and the arrival of future

compilers for these languages, like other application areas, combinatorial optimization on

GPU will generate a growing interest.

Indeed, GPU computing has emerged in the recent years as an important challenge for

the parallel computing research area. This new emerging technology is believed to be

extremely useful to speed up many complex algorithms. One of the major issues for

metaheuristics is to rethink existing parallel models and programming paradigms to allow

their deployment on GPU accelerators. In other words, the challenge is to revisit the

parallel models and paradigms to efficiently take into account the characteristics of GPUs.

However, the exploitation of parallel models is not trivial, and many issues related to

the GPU memory hierarchical management of this architecture have to be considered.

Generally speaking, the major issues we have to deal with are: the distribution of data

processing between CPU and GPU, the thread synchronization, the optimization of data

transfer between the different memories, the memory capacity constraints, etc.

The contribution of this thesis is to deal with such issues for the redesign of parallel

models of metaheuristics to allow solving of large scale optimization problems on GPU

architectures. Our objective is to rethink the existing parallel models and to enable their

deployment on GPUs. In this purpose, we propose in this document a new generic guideline

for building efficient parallel metaheuristics on GPU. Our challenge is to come out with

the GPU-based design of the whole hierarchy of parallel models. Different contributions

and salient issues in this document are dealt with: (1) an effective cooperation between the

CPU and the GPU, which requires to optimize the data transfers between the CPU and

the GPU; (2) an efficient parallelism control to associate working units with threads, and

to meet the memory constraints; (3) efficient mappings of data structures of the different

models on the hierarchy of memories (with different access latencies) provided by the

GPU; (4) software framework-based implementations to make the GPU as transparent as

2

Introduction

possible for the user.

Very efficient approaches are proposed for CPU-GPU data transfer optimization, thread

control, mapping of solutions to GPU threads or memory management. These approaches

have been exhaustively experimented using five optimization problems and four GPU

configurations. Compared to a CPU-based execution, accelerations up to ×80 are reported

for large combinatorial problems and up to ×2000 for a continuous problem. The different

works related to this thesis have been accepted in a dozen of publications, including the

IEEE Transactions on Computers journal.

Document Organization

Chapter 1

The first chapter describes general concepts for parallel metaheuristics and GPU comput-

ing. In this purpose, we will first introduce parallel models of metaheuristics. Thereafter,

we will present the general GPU architecture, and highlight the different challenges that

appear when dealing with metaheuristics. The rest of the chapter is dedicated to all the

definitions and protocols required to the general comprehension of the document.

Chapter 2

The next chapter contributes to the efficient cooperation between the CPU and the GPU.

Thereby, we will highlight how the optimization of data transfers between the two com-

ponents has a crucial impact on the performance of metaheuristics on GPU. Furthermore,

extensive experiments demonstrate the strong potential of GPU-based metaheuristics com-

pared to cluster or grid-based parallel architectures.

Chapter 3

In the third chapter, the focus is on the efficient control of parallelism when designing

metaheuristics on GPU. On the one hand, such a step allows to establish a clear association

of the elements to be processed according to the spatial thread organization of GPUs. On

the other hand, controlling the generation of threads will introduce some robustness in

GPU applications. Therefore, it may prevent applications from crashing, and it may lead

to some performance improvements.

Chapter 4

In the fourth chapter, we will describe different memory associations of optimization struc-

tures to deal with different GPU-based metaheuristics. As an illustration, the scope of

3

Introduction

this chapter is to redefine parallel and cooperative algorithms, in which this memory man-

agement is prominent. We will investigate on how the redesign of a same algorithm using

different memory associations has an impact on the global performance.

Chapter 5

The final chapter introduces an extension of the ParadisEO framework for the transparent

deployment of metaheuristics on GPU. In this purpose, conceptual aspects are exposed

to allow the user to program GPU-based metaheuristics, while minimizing his or her

involvement in its management.

4

Chapter 1

GPU Computing for Parallel

Metaheuristics

This first chapter presents all the background and prerequisites necessary to the general

comprehension of the global document.

First, we will describe the principles of metaheuristics within the optimization context.

An overview is made on the parallel models of metaheuristics to accelerate the search

process. Thereafter, GPU computing is introduced in the context of metaheuristics. In

this purpose, we will present the different advantages and the challenges associated with

this emergent technology. Furthermore, a review of different works of the literature for

metaheuristics on parallel and GPU architectures will be made. Finally, we will emphasize

on the experimental protocol used for the experiments performed in this manuscript.

Contents

1.1 Parallel Metaheuristics . 6

1.1.1 Optimization Context . 6

1.1.2 Principles of Metaheuristics . 7

1.1.3 Parallel Models of Metaheuristics 11

1.2 Metaheuristics and GPU Computing 13

1.2.1 GPU Architecture . 13

1.2.2 GPU Challenges for Metaheuristics 15

1.2.3 General GPU Model: CPU-GPU Cooperation 16

1.2.4 GPU Threads Model: Parallelism Control 16

1.2.5 Kernel Management: Memory Management 17

1.3 Related Works on Parallel Metaheuristics 20

1.3.1 Metaheuristics on Parallel and Distributed Architectures 20

1.3.2 Research Works on GPU-based Metaheuristics 21

1.4 Experimental Protocol . 26

1.4.1 Optimization Problems . 26

1.4.2 Machines Configuration . 30

1.4.3 Metric and Statistical Tests . 31

5

Chapter 1: GPU Computing for Parallel Metaheuristics

Figure 1.1: Taxonomy of resolution methods for optimization problems.

1.1 Parallel Metaheuristics

1.1.1 Optimization Context

An optimization problem can be formulated as an optimization (minimization or max-

imization) of a cost function (monoobjective optimization) or a vector of cost functions

(multiobjective optimization). This (these) function(s) is (are) called objective function(s).

In this document, minimization problems are considered, without loss of generality. An

optimization problem (OP) can be formulated as follows:

(OP) =

{

Min F (x) = (f1(x), f2(x), . . . , fn(x))

s.t. x ∈ S

where n is the number of objectives, x = (x1, . . . , xk) is the vector representing the deci-

sion variables, and S represents the set of feasible solutions associated with equality and

inequality constraints and explicit bounds. F (x) = (f1(x), f2(x), . . . , fn(x)) is the vector

of objectives to be optimized. For n = 1 (respectively n ≥ 2), monoobjective (respectively

multiobjective) optimization is considered.

Thereby, the resolution of a monoobjective optimization problem consists in finding the

feasible solution that minimizes the objective function. In the multiobjective context, the

problem resolution aims at finding a set of Pareto optimal solutions, which is called the

Pareto front.

Following the complexity of the problem, two main families of resolution methods can

be used: exact methods and heuristics. Figure 1.1 illustrates the different methods of

resolution. Exact methods (e.g. branch-and-x, dynamic programming or constraints pro-

gramming) allow to find optimal solutions and guarantee their optimality. However, they

become impractical for large problems.

Conversely, heuristics produce high-quality solutions in a reasonable time practical use on

6

Chapter 1: GPU Computing for Parallel Metaheuristics

large-size problem instances. Heuristics can be specific i.e. designed to solve a particular

problem and/or instance. They can also be generic and applicable to different problem

types. In this case, they are called metaheuristics. These latter are based on the iterative

improvement of either a single solution (e.g. hill climbing, simulated annealing or tabu

search) or a population of solutions (e.g. evolutionary algorithms or ant colonies) of a given

optimization problem. In this document, the focus will be exclusively on metaheuristics.

1.1.2 Principles of Metaheuristics

Unlike exact methods, metaheuristics allow to tackle large-size problem instances by de-

livering satisfactory solutions in a reasonable time. There is no guarantee to find global

optimal solutions or even bounded solutions. Metaheuristics have received more and more

popularity in the past 20 years. Their use in many applications shows their efficiency and

effectiveness to solve large and complex problems. Metaheuristics fall into two categories:

single-solution based metaheuristics (S-metaheuristics) and population-based metaheuris-

tics (P-metaheuristics).

S-metaheuristics manipulate and transform a single solution during the search, while in

P-metaheuristics a whole population of solutions is evolved. These two families have

complementary characteristics: S-metaheuristics are exploitation oriented; they have the

ability to intensify the search in local regions. P-metaheuristics are exploration oriented;

they provide a better diversification in the entire search space. In the next chapters of

this document, we will mainly use this classification.

1.1.2.1 Solution Representation

Designing any iterative metaheuristic requires an encoding (representation) of a solution.

The encoding plays a major role in the efficiency and effectiveness of any metaheuristic,

so it constitutes an essential step in designing a metaheuristic. The encoding must be

suitable and relevant to the optimization problem at hand. Moreover, the quality of a

representation has a considerable influence on the efficiency of the search operators applied

on this representation. Four major encodings in the literature can be highlighted: binary

encoding (e.g. knapsack, satisfiability), vector of discrete values (e.g. location problem,

assignment problem), permutation (e.g. traveling salesman problem, scheduling problems)

and vector of real values (e.g. continuous functions). Figure 1.2 illustrates an example of

each representation.

7

Chapter 1: GPU Computing for Parallel Metaheuristics

Figure 1.2: Major encodings for optimization problems.

1.1.2.2 Evaluation Function

The objective function f formulates the goal to be achieved. It associates with each

solution of the search space a real value that gives the quality or the fitness of the solution,

f : S → IR. Then, it represents an absolute value and allows a complete ordering of all

solutions of the search space. The objective function is an essential element in designing

a metaheuristic. It guides the search toward “good” solutions of the search space. If the

objective function is improperly defined, it can lead to non-acceptable solutions whatever

is the used metaheuristic.

1.1.2.3 Principles of S-metaheuristics

S-metaheuristics are iterative techniques that have been successfully applied for solving

many real and complex problems. These methods could be viewed as “walks through

neighborhoods”meaning search trajectories through the solutions domains of the problems

at hand. The walks are performed by iterative procedures that allow to move from a

solution to another one in the solution space (see Algorithm 1).

A S-metaheuristic usually starts with a randomly generated solution. At each iteration

of the algorithm, the current solution is replaced by another one selected from the set of

its neighboring candidates, and so on. An evaluation function associates a fitness value to

each solution indicating its suitability to the problem (selection criterion). Many strategies

related to the considered S-metaheuristic can be applied in the selection of a move: best

improvement, first improvement, random selection, etc.

The simplest S-metaheuristic is the hill climbing algorithm (see Algorithm 2). It starts

with at a given solution. At each iteration, the heuristic replaces the current solution

by a neighbor that improves the objective function. The search stops when all candidate

neighbors are worse than the current solution, meaning a local optimum is reached.

Another widespread method is the tabu search algorithm [Glo89, Glo90] (see Algorithm

8

Chapter 1: GPU Computing for Parallel Metaheuristics

Algorithm 1 S-metaheuristic pseudo-code.

1: Generate(s0);
2: Specific S-metaheuristic pre-treatment
3: t := 0;
4: repeat
5: m(t) := SelectMove(s(t));
6: s(t + 1) := ApplyMove(m(t), s(t));
7: Specific S-metaheuristic post-treatment
8: t := t + 1;
9: until Termination criterion(s(t))

Algorithm 2 Hill climbing pseudo-code

1: Generate(s0);
2: t := 0;
3: repeat
4: m(t) := SelectBestMove(s(t));
5: s(t + 1) := ApplyMove(m(t), s(t));
6: t := t + 1;
7: until Local optimum(s(t))

3). In this local search, the best solution in the neighborhood is selected as the new current

solution even if it is not improving the current solution. This policy may generate cycles,

i.e. previous visited solutions could be selected again. To avoid these cycles, the algorithm

manages a memory of the moves recently applied, which is called the tabu list. This list is

a short-term memory which contains the solutions (moves) that have been visited in the

recent past.

Algorithm 3 Tabu search pseudo-code

1: Generate(s0);
2: InitTabuList(l0);
3: t := 0;
4: repeat
5: m(t) := SelectBestAdmissibleMove(s(t));
6: s(t + 1) := ApplyMove(m(t), s(t));
7: l(t + 1) := UpdateTabuList(l(t));
8: t := t + 1;
9: until Termination criterion(s(t))

Other popular examples of S-meheuristics are simulated annealing, iterative local search

and variable neighborhood search. A survey of the history and a state-of-the-art of S-

metaheuristics can be found in [DPST06, Tal09].

9

Chapter 1: GPU Computing for Parallel Metaheuristics

1.1.2.4 Principles of P-metaheuristics

P-metaheuristics are recognized as promising methods for solving complex problems in

science and industry. They start from an initial population of solutions. Then, they

iteratively apply the generation of a new population and the replacement of the current

population. In the generation phase, a new population of solutions is created. In the

replacement phase, a selection is carried out from the current and the new populations.

This process iterates until a given stopping criterion is satisfied. Popular examples of

P-metaheuristics are evolutionary algorithms, ant colony optimization, scatter search and

particle swarm optimization. A review of these methods is available in [Tal09]. Algorithm

4 illustrates the high-level template of P-metaheuristics.

Algorithm 4 P-metaheuristics pseudo-code.

1: Generate(P0);
2: t := 0;
3: repeat
4: Generate(P ′(t));
5: P (t + 1) := Replace(P (t), P ′(t));
6: t := t + 1;
7: until Termination criterion(P (t))

One of the best-known P-metaheuristics concerns evolutionary algorithms. These latter

are stochastic search techniques that have been successfully applied for solving many real

and complex problems. An evolutionary algorithm is an iterative technique that applies

stochastic operators on a pool of individuals (see Algorithm 5). Every individual in the

population is the encoded version of a tentative solution. Initially, this population is

usually generated randomly. At each generation of the algorithm, solutions are selected,

paired and recombined in order to generate new solutions that replace worse ones according

to some criteria, and so on. An evaluation function associates a fitness value to every

individual indicating its suitability to the problem (selection criterion).

Algorithm 5 Evolutionary algorithms pseudo-code.

1: Generate(P0);
2: t := 0;
3: repeat
4: P ′(t) := Selection(P (t));
5: P ′(t) := ApplyReproductionOps(P ′(t));
6: P (t + 1) := Replace(P (t), P ′(t));
7: t := t + 1;
8: until Termination criterion(P (t))

There exists several well-accepted subclasses of evolutionary algorithms depending on rep-

10

Chapter 1: GPU Computing for Parallel Metaheuristics

resentation of the individuals or how each step of the algorithm is designed. The main

subclasses of evolutionary algorithms are the genetic algorithms, genetic programming,

evolution strategies, etc. A large review of these evolutionary computation techniques is

done in [BFM97].

1.1.3 Parallel Models of Metaheuristics

Although the use of metaheuristics allows to considerably reduce the computational com-

plexity of the search process, the latter remains time-consuming for many problems in

diverse domains of application. In particular, in the case where the objective function

and the constraints associated with the problem are resource-intensive, and the size of

the search space is huge. For nontrivial problems, executing the iterative process of a

simple S-metaheuristic on large neighborhoods requires a large amount of computational

resources. The same phenomenon occurs when executing the reproductive cycle of a simple

P-metaheuristic on long individuals and/or large populations.

In general, evaluating a fitness function for each solution is frequently the most costly

operation of the metaheuristic. Consequently, a variety of algorithmic issues is being

studied to design efficient heuristics. These issues commonly consist of defining new move

operators, hybrid algorithms, parallel models, and so on. Parallelism arises naturally when

dealing with a population of solutions (or a neighborhood), since each of the solutions

belonging to it is an independent unit. Due to this, the performance of metaheuristics is

significantly improved when running in parallel.

Parallel and distributed computing can be used in the design and implementation of meta-

heuristics for the following reasons:

• Speed up the search: One of the main goals of parallelizing a metaheuristic is to

reduce the search time. This helps designing real-time and interactive optimization

methods. This is a crucial aspect for some class of problems where there are hard

requirements on the search time.

• Improve the quality of the obtained solutions: Some parallel models for metaheuris-

tics allow to improve the quality of the search. Indeed, exchanging information

between cooperative metaheuristics will alter their behavior in terms of searching in

the landscape associated with the problem. The main goal of a parallel cooperation

between metaheuristics is to improve the quality of solutions.

• Improve the robustness: A parallel metaheuristic may be more robust in terms of

solving in an effective manner different optimization problems and different instances

of a given problem. Robustness may also be measured in terms of the sensitivity of

the metaheuristic to its parameters.

11

Chapter 1: GPU Computing for Parallel Metaheuristics

Figure 1.3: Parallel models of metaheuristics.

• Solve large-scale problems: Parallel metaheuristics allow to solve large-scale instances

of complex optimization problems. An issue is to solve very large instances that

cannot be solved by a sequential machine. Another similar challenge is to solve more

accurate mathematical models associated with different optimization problems.

In this purpose, three major parallel models for metaheuristics can be distinguished:

solution-level, iteration-level and algorithmic-level (see Figure 1.3).

• Solution-level Parallel Model. The focus is on the parallel evaluation of a single

solution. Problem-dependent operations performed on solutions are parallelized.

That model is particularly interesting when the evaluation function can be itself

parallelized as it is CPU time-consuming and/or IO intensive. In that case, the

function can be viewed as an aggregation of a given number of partial functions.

• Iteration-level Parallel Model. This model is a low-level Master-Worker model that

does not alter the behavior of the heuristic. The evaluation of solutions is performed

in parallel. At the beginning of each iteration, the master duplicates the solutions to

be evaluated between parallel nodes. Each of them manages some candidates, and

the results are returned back to the master. An efficient execution is often obtained

especially when the evaluation of each solution is costly.

• Algorithmic-level Parallel Model. Several metaheuristics are simultaneously launched

for computing better and robust solutions. They may be heterogeneous or homo-

12

Chapter 1: GPU Computing for Parallel Metaheuristics

Figure 1.4: Repartition of transistors for CPU and GPU architectures.

geneous, independent or cooperative, start from the same or different solution(s),

configured with the same or different parameters.

From a parallelization point of view, the solution-level model is problem-dependent and

does not present many generic concepts. As a consequence, in this document, we will not

deal with this parallel model.

1.2 Metaheuristics and GPU Computing

Most personal computers integrated with GPUs are usually far less powerful than their

add-in counterparts. That is the reason why it would be very interesting to exploit this

enormous capacity of computing to implement parallel metaheuristics. In this section, the

focus is on the description of GPU computing. A clear understanding of GPU character-

istics is required to provide an efficient implementation of parallel metaheuristics.

1.2.1 GPU Architecture

For years, the use of graphics processors was dedicated to graphics applications. Driven

by the demand for high-definition 3D graphics on personal computers, GPUs have evolved

into a highly parallel, multithreaded and many-core environment. Indeed, this architecture

provides a tremendous computational horsepower and a very high memory bandwidth

compared to traditional CPUs. Figure 1.4 illustrates the repartition of transistors between

the two architectures.

One can see that a CPU does not have a lot of arithmetic-logic units (ALU), but a large

cache and an important control unit. As a result, the CPU is specialized to manage

multiple and different tasks in parallel that require lots of data. Thereby, data are stored

within a cache to accelerate its accesses. The control unit will handle the instructions

flow to maximize the occupation of arithmetic-logic units, and to optimize the cache

management.

13

Chapter 1: GPU Computing for Parallel Metaheuristics

Figure 1.5: General GPU architecture composed of streaming multiprocessors.

Conversely, a GPU has a large number of arithmetic units with a limited cache and few

control units. This allows the GPU to calculate in a massive and parallel way the rendering

of small and independent elements, while having a large flow of data processed. Since more

transistors are devoted to data processing rather than data caching and flow control, GPU

is specialized for compute-intensive and highly parallel computations.

Figure 1.5 depicts the general GPU architecture. It is composed of streaming multipro-

cessors (SMs), each containing a certain number of streaming processors (SPs), or pro-

cessor cores. Each core executes a single thread instruction in a SIMD (single-instruction

multiple-data) fashion, with the instruction unit distributing the current instruction to the

cores. Each core has one multiply-add arithmetic unit that can perform single-precision

floating-point operations or 32-bit integer arithmetic. In addition, each SM has special

functional units (SFUs), which execute more complex floating-point operations such as

reciprocal sine, cosine and square root with low cycle latency.

The SM contains other resources such as shared memory and the register file. Groups of

SMs belong to thread processing clusters (TPCs). The latter also contain resources (e.g.

caches and texture fetch units) that are shared among the SMs. The GPU architecture

comprises the collection of TPCs, the interconnection network, and the memory system

(DRAM memory controllers).

Figure 1.6 gives a comparison of the execution model for both CPU and GPU architectures.

Basically, a CPU thread proceeds one data element per operation. With the extension of

14

Chapter 1: GPU Computing for Parallel Metaheuristics

Figure 1.6: Comparison of CPU and GPU execution models.

SSE (streaming SIMD execution) instructions, such a CPU thread can operate between

two and four data elements. Regarding a GPU multiprocessor, 32 threads proceed 32 data

elements. These groups of 32 threads are called warps. They are exposed as individual

threads but execute the same instruction. Therefore, a divergence in the threads execution

provokes a serialization of the different instructions.

A complete review of GPU architectures can be found in [RRS+08, ND10].

1.2.2 GPU Challenges for Metaheuristics

Parallel combinatorial optimization on GPU is not straightforward and requires a huge

effort at design as well as at implementation level. Indeed, several scientific challenges

mainly related to the hierarchical memory management have to be achieved. The major

issues are the efficient distribution of data processing between CPU and GPU, the thread

synchronization, the optimization of data transfer between the different memories, the

capacity constraints of these memories, etc. Such issues must be taken into account for

the redesign of parallel metaheuristic models in order to solve large scale optimization

problems on GPU architectures.

We aim at identifying such issues for building efficient parallel metaheuristics on GPU:

1. Cooperation between the CPU and the GPU. Such a step requires defining

the task repartition in metaheuristics. In this purpose, the optimization of data

transfer between the two components is necessary to achieve the best performance.

2. Parallelism control. GPU computing is based on massively parallel multi-threading,

and the order in which the threads are executed is not known. Therefore, on the one

hand, an efficient thread control must be applied to meet the memory constraints.

On the other hand, an efficient mapping has to be defined between each candidate

solution and a thread designated by a unique identifier assigned at GPU runtime.

15

Chapter 1: GPU Computing for Parallel Metaheuristics

3. Memory management. Optimizing the performance of GPU applications often

involves optimizing data accesses which includes the appropriate use of the various

GPU memory spaces. The different optimization structures have to be placed effi-

ciently on the different memories taking into account their sizes and access latencies.

The contribution of this document is to deal with these challenges. Throughout this

manuscript, we will mainly use this classification. The next sections provide more details

about these different challenges.

1.2.3 General GPU Model: CPU-GPU Cooperation

In general-purpose computing on graphics processing units, the CPU is considered as a

host and the GPU is used as a device coprocessor. This way, each GPU has its own

memory and processing elements that are separate from the host computer. Data must

be transferred between the memory space of the host and the memory of GPU during the

execution of programs.

Each processor device on GPU supports the single program multiple data (SPMD) model,

i.e. multiple autonomous processors simultaneously execute the same program on different

data. For achieving this, the concept of kernel is defined. The kernel is a function callable

from the host and executed on the specified device simultaneously by several processors

in parallel. Figure 1.7 illustrates an example of the general GPU model.

Memory transfer from the CPU to the device memory is a synchronous operation which

is time consuming. Indeed, PCI-e bus bandwidth and latency between CPU and GPU

can significantly reduce the performance of the search. As a result, one objective when

programming GPU applications is to establish an efficient task repartition. In this purpose,

the optimization of data transfer between CPU and GPU is clearly an issue to be tackled.

1.2.4 GPU Threads Model: Parallelism Control

The kernel handling is dependent of the general-purpose language. For instance, CUDA

[NVI11] or OpenCL [Gro10] are parallel computing environments which provide an appli-

cation programming interface for GPU architectures. Indeed, these toolkits introduce a

model of threads which provides an easy abstraction for SIMD architectures. The concept

of a GPU thread does not have exactly the same meaning as a CPU thread. A thread on

GPU can be seen as an element of data to be processed. Compared to CPU threads, GPU

threads are lightweight. It means that changing the context between two threads is not a

costly operation.

Regarding their spatial organization, threads are organized within so called thread blocks

(see Figure 1.8). A kernel is executed by multiple equally threaded blocks. Blocks can be

16

Chapter 1: GPU Computing for Parallel Metaheuristics

Figure 1.7: Illustration of the general GPU model. The GPU can be seen as a coprocessor
where data transfers must be performed between the CPU and the GPU.

organized into a one-dimensional or two-dimensional grid of thread blocks, and threads

inside a block are grouped in a similar way. Each thread is provided with a unique id that

can be used to compute on different data. The advantage of grouping is that the number

of blocks processed simultaneously by the GPU is closely linked to hardware resources.

All the threads belonging to the same thread block will be assigned as a group to a single

multiprocessor, while different thread blocks can be assigned to different multiprocessors.

Hence, a major issue is to control the threads parallelism to meet the memory constraints.

1.2.5 Kernel Management: Memory Management

From a hardware point of view, graphics cards consist of streaming multiprocessors, each

with processing units, registers and on-chip memory. Since multiprocessors are organized

according to the SPMD model, threads share the same code and have access to different

memory areas. Figure 1.9 illustrates these different available memories and connections

with thread blocks.

Communication between the CPU host and its device is done through the global memory.

Since in some GPU configurations, this memory is not cached and its access is slow, one

needs to minimize accesses to global memory (read/write operations) and reuse data within

the local multiprocessor memories. Graphics cards provide also read-only texture memory

to accelerate operations such as 2D or 3D mapping. Texture memory units are provided to

17

Chapter 1: GPU Computing for Parallel Metaheuristics

Figure 1.8: GPU threads model. GPU threads are organized into block structures.

Figure 1.9: GPU memory model. Different on-chip memories and connections with thread
blocks are available.

18

Chapter 1: GPU Computing for Parallel Metaheuristics

Figure 1.10: Illustration of accesses patterns that lead to coalesced and uncoalesced ac-
cesses to the global memory.

allow faster graphic operations. This way, binding texture on global memory can provide

an alternative optimization. Indeed, it improves random accesses or uncoalesced memory

access patterns that occur in common applications. Constant memory is read only from

kernels and is hardware optimized for the case where all threads read the same location.

Shared memory is a fast memory located on the multiprocessors and shared by threads of

each thread block. This memory area provides a way for threads to communicate within

the same block. Registers among streaming processors are exclusive to an individual

thread; they constitute a fast access memory. In the kernel code, each declared variable

is automatically put into registers. Local memory is a memory abstraction and is not an

actual hardware component. In fact, local memory resides in the global memory allocated

by the compiler. Complex structures such as declared arrays will reside in local memory.

Regarding the execution model, each block of threads is split into SIMD groups of threads

called warps. At any clock cycles, each processor of the multiprocessor selects a warp that is

ready to execute the same instruction on different data. For being efficient, global memory

accesses must be coalesced. This means that a memory read by consecutive threads in a

warp is combined by the hardware into several memory reads. The requirement is that

threads of the same warp must read global memory in an order manner (see Figure 1.10).

Global memory accesses patterns that are non-coalesced may significantly decrease the

performance of a program. As a result, an efficient management of the optimization

structures with the different available memories has to be considered.

19

Chapter 1: GPU Computing for Parallel Metaheuristics

1.3 Related Works on Parallel Metaheuristics

1.3.1 Metaheuristics on Parallel and Distributed Architectures

The rapid development of technology in designing processors (e.g. multicore processors

and dedicated architectures), networks (e.g. local area networks such as Myrinet and In-

finiband or wide area networks such as optical networks), and data storage, has made the

use of parallel computing more and more popular. Such evolution raises new challenges for

the design and implementation of parallel metaheuristics. Indeed, sequential architectures

are reaching physical limitation. Nowadays, even laptops and workstations are equipped

with multicore processors, which represent a given class of parallel architectures. More-

over, the cost/performance ratio is constantly decreasing. The proliferation of powerful

workstations and fast communication networks has shown the emergence of clusters of

processors (COWs), networks of workstations, and large-scale network of machines (grids)

as platforms for high-performance computing.

During these two last decades, many parallel approaches and implementations have been

proposed for metaheuristics [ABR03, ALNT04, AT02, AK96, BHX00, CB96, CG02, CGHM04,

GÉTA99, GLMBMPMV03, HL00, LL96, RL02, PDB10, SBA97]. Some of them using mas-

sively parallel processors [CSK93], clusters of workstations [CTG95, GPR94, BSB+01] and

shared memory or SMP machines [JRG09, Bev02]. These contributions have been later

revisited for large-scale computational grids [TMT07].

These architectures often exploit the coarse-grained asynchronous parallelism based on

work-stealing. This is particularly the case for computational grids. To overcome the

problem of network latency, the grain size is often increased, limiting the degree of paral-

lelism.

Recently, GPU accelerators have emerged as a powerful support for massively parallel

computing. Indeed, these architectures offer a substantial computational horsepower and

a remarkably high memory bandwidth compared to CPU-based architectures. For in-

stance, the parallel evaluation of the solutions (iteration-level) is a Master-Worker and a

problem-independent, regular data-parallel application. Therefore, GPU computing may

be highly efficient in executing such synchronized parallel algorithms that involve regular

computations and data transfers.

In general, for distributed architectures, the global performance in metaheuristics is limited

by high communication latencies whilst it is just bounded by memory access latencies in

GPU architectures. Indeed, when evaluating solutions in parallel, the main obstacle in

distributed architectures is the communication efficiency. GPUs are not that versatile.

However, since the execution model of GPUs is purely SIMD, it may not be well-adapted

for few irregular problems in which the execution time cannot be predicted at compile time

20

Chapter 1: GPU Computing for Parallel Metaheuristics

and varies during the search. For instance, this happens when the evaluation cost of the

objective function depends on the solution. When dealing with such problems in which

the computations or the data transfers become irregular or asynchronous, parallel and

distributed architectures such as COWs or computational grids may be more appropriate.

1.3.2 Research Works on GPU-based Metaheuristics

With the emergence of standard programming languages on GPU and the arrival of com-

pilers for these languages, combinatorial optimization on GPU has generated a growing

interest. Historically, due to their embarrassingly parallel nature, P-metaheuristics such as

evolutionary algorithms have been the first subject of parallelization on GPU architectures.

One of the first pioneering works on genetic algorithms was proposed by Wong et al.

[WWF05, WW06, FWW07]. In their works, the population evaluation and a specific mu-

tation operator (Cauchy mutation) are performed on GPU. However, since replacement

and selection operators are implemented on CPU, massive data transfers are performed

between the CPU and the GPU. Such techniques limit the performance of the algorithm.

Concurrently, to deal with this drawback, Yu et al. [YCP05] were the first authors to

establish a full parallelization of the genetic process on GPU. To achieve this, the popula-

tion is organized into a 2D toroidal grid, which allows to apply selection operators similar

to those ones used for cellular genetic algorithms. However, the implementation is only

specific to a vector of real values. Later, Li et al. [LWHC07] extended this work for binary

representations, and implemented further specific genetic operators. In a similar manner,

Luo et al. [LL06] were among the first authors to implement a cellular genetic algorithm

on GPU for the 3-SAT problem. To perform this, the semantics of the original cellular

algorithm are completely modified to meet the GPU constraints.

The previous implementations quoted above are based on a transformation of evolution-

ary structures into a series of raster operations on GPU using shader libraries based on

Direct3D or OpenGL. In other words, to implement metaheuristics with such libraries,

one needs to solve the problem of texture storage of relevant information in arrays.

The following works on GPU are implemented with the CUDA development toolkit, which

allows programming on GPUs in a more accessible C-like language. In addition to this,

such a thread-based approach is easier in terms of reproducibility in comparison with

shader libraries.

Zhu suggested in [Zhu09] an evolution strategy algorithm to solve a bench of continuous

problems using the CUDA toolkit. In his implementation, multiple kernels are designed

for some evolutionary operators such as the selection, the crossover, the evaluation and

the mutation. The rest of the search process is handled by the CPU.

Later, Arora et al. presented a similar implementation in [ATD10] for genetic algorithms.

21

Chapter 1: GPU Computing for Parallel Metaheuristics

In addition, the contribution of their work is to investigate the effect of a bench of param-

eters (e.g. threads size, problem size or population size) on the acceleration of their GPU

implementation in regards with a sequential genetic algorithm.

Tsutsui et al. were among the first authors to establish memory management concepts of

combinatorial optimization problems [TF09]. In their implementation for the quadratic

assignment problem, accesses to the global memory (the population) are coalesced, the

shared memory is used to store as many individuals as possible, and matrices are associated

with the constant memory. Their approach is based on a full parallelization of the search

process to deal with data transfers. For doing that, the global genetic algorithm is di-

vided into multiple independent genetic algorithms, where each sub-population represents

a thread block. The obtained speed-ups are of course less convincing than for continuous

problems, due to the management of data structures in combinatorial problems.

In [MBL+09], Maitre et al. submitted a framework tentative for the automatic paralleliza-

tion of the evaluation function on GPU. In this purpose, the user does not need to know

about any CUDA keywords and only the evaluation function code must be specified. Such

a strategy allows to evaluate the population in a transparent way on GPU. However, this

automatic parallelization presents some drawbacks. Indeed, it lacks flexibility due to the

data transfers and non-optimized memory accesses. Moreover, the application is restricted

to problems which do not require any data structures (e.g. continuous problems).

Another framework tentative were introduced in [SBPE10] by Soca et al. for cellular

genetic algorithms. Multiple kernels are used for each evolutionary operator. The platform

offers a collection of predetermined operators (three crossovers and two mutations) that the

user must instantiate. In addition, management of problem structures in global memory

seems to be taken into account since an application to the quadratic assignment problem

is done. Unfortunately, unless the previous one, the framework seems to remain in the

design step since no link is available for downloading.

Another implementation of a cellular evolutionary algorithm is provided by Vidal et al.

in [VA10a]. It is based on a full parallelization of the search process on GPU. An applica-

tion of the approach is made for continuous and discrete problems without any problem

structures. Later, the authors submitted a multi-GPU implementation of their algorithm

in [VA10b]. Nevertheless, due to the challenging issue of the context management (e.g.

two separate GPU global memories), their multi-GPU implementation does not provide

any significant benefits in terms of performance.

Zhang et al. introduced a design of an island model on GPU in [ZH09]. The parallelization

of the entire algorithm is performed on GPU. Each sub-population is stored on the shared

memory. Regarding the topology of the different islands, they are similar to the exchange

topology present in cellular evolutionary algorithm (toroidal grid). Unfortunately, the

22

Chapter 1: GPU Computing for Parallel Metaheuristics

model only remains in the design step since the authors did not produce any experimental

results.

Pospichal et al. performed an implementation similar to the previous model for continuous

optimization problems in [PJS10]. Each sub-population is stored on the shared memory

and organized according to a ring topology. The obtained speed-ups are impressive in com-

parison with a sequential algorithm (thousands of times). However, the implementation

is only dedicated to few continuous optimization problems.

Since no general methods can be outlined from the two previous works, we investigated

the parallel island model on GPU in [6]. We addressed its redesign, implementation, and

associated issues related to the GPU execution context. In this purpose, we designed three

parallelization strategies involving different memory managements. We demonstrated the

effectiveness of the proposed approaches and their capabilities to fully exploit the GPU

architecture.

Regarding S-metaheuristics, Janiak et al. implemented a multi-start tabu search algorithm

applied to the traveling salesman problem and the flowshop scheduling problem [JJL08].

Using shader libraries, the parallelization is entirely performed on GPU, and each thread

process is associated with one tabu search. However, such a parallelization is not effective

since a large number of local search algorithms is required to cover the memory access

latency.

Concurrently, a similar approach based on the CUDA toolkit was proposed by Zhu et al.

[ZCM08]. The implementation has been applied to the quadratic assignment problem,

where the memory management of optimization structures is made on the global memory.

Nevertheless, the global performance is limited to the instance size, since each thread is

associated with one local search.

Although the multi-start model has already been applied in the context of the tabu search

on GPU, it has never been widely investigated in terms of reproducibility and memory

management. We provided in [5] a general methodology for the design of multi-start

algorithms applicable to any local search algorithms such as hill climbing, tabu search or

simulated annealing. Furthermore, we contributed with efficient associations between the

different available memories and the data commonly used for these algorithms.

However, as quote above, the application of the multi-start model on GPU is limited since

a large number of local search algorithms is required at launch time to be effective. As

a matter of fact, the parallelization of the evaluation of neighborhood on GPU might be

more valuable. In this purpose, we came up with the pioneering work in [9] on the redesign

of the parallel evaluation of the neighborhood on GPU. We introduced the generation of

neighbors on the GPU side to minimize the data transfers. Furthermore, we proposed to

manage the commonly used structures in combinatorial optimization with the different

23

Chapter 1: GPU Computing for Parallel Metaheuristics

available memories.

Munawar et al. introduced a hybrid genetic algorithm on GPU in [MWMA09a]. In

their implementation, an island model is implemented where each population represents

a cellular genetic algorithm. In addition to this, a hill climbing algorithm follows the

mutation step of the hybrid genetic algorithm. Each sub-population is associated with the

shared memory and traditional code optimization such as memory coalescing is performed.

The implementation is performed for the maximum satisfiability problem.

Since a full parallelization is investigated, the previous work requires that the hill climbing

must be combined with the island model. To perform a hybridization with a local search

in the general case, we contributed with the redesign of hybrid evolutionary algorithms on

GPU in [7]. In this purpose, the focus is on the generation of the different neighborhoods

on GPU, corresponding to each individual of the evolutionary process to be mutated. Such

a mechanism guarantees more flexibility since any local search algorithms can be broached

with any evolutionary algorithms.

Wong was the first author to introduce a multiobjective evolutionary algorithm on GPU

in [Won09]. In his implementation, most of the multiobjective algorithm (NSGA-II) is

implemented on GPU except the selection of non-dominated solutions.

In a similar manner, we contributed in [3] with the first multiobjective local search al-

gorithms on GPU. The parallelization strategy is based on the parallel evaluation of the

neighborhood on GPU using a set of non-dominated solutions to generate the neighbor-

hood.

Table 1.1 reports the major works on GPU according to the classification proposed in

Section 1.2.2. Basically, most approaches of the literature are based on either the parallel

evaluation of solutions on GPU (iteration-level) or the execution of simultaneous indepen-

dent/cooperative algorithms (algorithmic-level). Regarding the CPU-GPU cooperation,

for the first category, some implementations also consider the parallelization of other treat-

ments on GPU (e.g. selection or variation operators in evolutionary algorithms). One may

argue on the validity of these choices since an execution profiling may show that such treat-

ments are negligible in comparison with the evaluation of solutions. As quoted above, a

full parallelization of metaheuristics on GPU may be also performed to reduce the data

transfers between the CPU and the GPU. In this case, the original semantics of the meta-

heuristic are modified to fit the GPU execution model. This can explain the reason why an

important group of works only deals with concurrent independent/cooperative algorithms.

For the parallelism control, most implementations associate one thread with one solu-

tion. In addition, some cooperative algorithms may take advantage of the threads model

by associating one threads block with one sub-population. However, to the best of our

knowledge, no work has been investigated to efficiently manage the threads parallelism to

24

C
h
a
p
t
e
r
1
:
G
P
U

C
o
m
p
u
t
in
g

f
o
r
P
a
r
a
l
l
e
l
M
e
t
a
h
e
u
r
is
t
ic
s

Table 1.1: Classification of the major works of the literature.

Authors
CPU-GPU Parallelism Memory Optimization
cooperation control management problems

Wong et al. evaluation and panmictic
texture continuous

[WWF05, WW06, FWW07] mutation on GPU one thread per individual

Yu et al. [YCP05]
full parallelization 2D toroidal grid

texture continuous
on GPU one thread per individual

Li et al. [LWHC07]
full parallelization 2D toroidal grid

texture
continuous

on GPU one thread per individual and binary

Luo et al. [LL06]
full parallelization cellular

texture 3-SAT
on GPU one thread per individual

Zhu [Zhu09]
evaluation, selection 2D toroidal grid global, shared

continuous
and variation on GPU one thread per individual and texture memory

Arora et al. [ATD10]
evaluation, selection 2D toroidal grid global and continuous
and variation on GPU one thread per individual shared memory and binary

Tsutsui et al. [TF09]
full parallelization 2D toroidal grid global, constant quadratic assignment

on GPU one block per population and shared memory problem

Maitre et al. [MBL+09]
evaluation panmictic

global memory continuous
on GPU one thread per individual

Soca et al. [SBPE10]
evaluation and cellular global and quadratic assignment

variation on GPU one thread per individual shared memory problem

Vidal et al. [VA10a]
full parallelization cellular global and continuous

on GPU one thread per individual shared memory and discrete

Zhang et al. [ZH09]
full parallelization island model global and

-
on GPU one block per population shared memory

Pospichal et al. [PJS10]
full parallelization island model global and

continuous
on GPU one block per population shared memory

Luong et al. [6]
evaluation and island model global and

continuous
full parallelization on GPU one block per population shared memory

Janiak et al. [JJL08]
full parallelization multi-start

texture
traveling salesman problem

on GPU one thread per algorithm and flowshop problem

Zhu et al. [ZCM08]
full parallelization multi-start

global memory
quadratic assignment

on GPU one thread per algorithm problem

Luong et al. [5]
full parallelization multi-start global and quadratic assignment

on GPU one thread per algorithm texture memory problem

Luong et al. [9]
generation and neighborhood global and permuted perceptron

evaluation on GPU one thread per neighbor texture memory problem

Munawar et al. [MWMA09a]
full parallelization island model+cellular global and maximum satisfiability

on GPU one block per population shared memory problem

Luong et al. [7]
generation and neighborhood global and quadratic assignment

evaluation on GPU one thread per neighbor texture memory problem

Wong [Won09]
evaluation, selection panmictic global and

continuous
and variation on GPU one thread per individual shared memory

Luong et al. [3]
generation and neighborhood global and flowshop scheduling

evaluation on GPU one thread per neighbor texture memory problem

25

Chapter 1: GPU Computing for Parallel Metaheuristics

meet the memory constraints. When dealing with a large set of solutions or large problem

instances, the previous implementations might not be robust. We will show in Chapter 3

how an efficient thread control allows to introduce fault-tolerance mechanisms in GPU

applications.

Regarding the memory management, in some implementations, no explicit efforts have

been made for memory access optimizations. For instance, memory coalescing is used to

be one of the key element for speedups in CUDA, and local memories could be additionally

considered to reduce non-coalesced accesses. Some authors have just relied on the simple

way to use the shared memory to cache spatially local accesses to global memory, which

does not guarantee performance improvement. In some other implementations, explicit

efforts have been performed to handle optimization structures with the different available

memories. However, no general guideline can be outlined from the previous works. Indeed,

most of the time, these memory associations strictly depend on the target optimization

problem (e.g. small size of problems instances or no data inputs). We will try to examine

such issues for the general case in Chapter 4.

Many other works on P-metaheuristics on GPU have been proposed so far. The paral-

lelization strategies used for these implementations are similar to the prior techniques men-

tioned above. These works include particle swarm optimization [MCD09, ZT09, RK10], ant

colonies [BOL+09, SAGM10, TF11, CGU+11], genetic programming [HB07, Chi07, LB08,

Lan11] and other evolutionary computation techniques [MWMA09b, dPVK10, FKB10].

In comparison with previous works on P-metaheuristics, the spread of S-metaheuristics on

GPU does not occur at the same pace. Indeed, the parallelization on GPU architectures

is harder, due to the improvement of a single solution (and not a population of solutions).

In Chapter 2 and Chapter 3, we will fully contribute on the design and implementation of

S-metaheuristics on GPU.

1.4 Experimental Protocol

In this section, we will introduce the protocol used for the experiments presented in the

rest of the document. It corresponds to the different optimization problems implemented

for the experiments, the different hardware graphics cards and the analysis of the different

statistical tests.

1.4.1 Optimization Problems

To validate the approaches proposed in this manuscript, five optimization problems with

different encodings have been considered on GPU: the permuted perceptron problem, the

quadratic assignment problem, the continuous Weierstrass function, the traveling salesman

26

Chapter 1: GPU Computing for Parallel Metaheuristics

problem and the Golomb rulers.

1.4.1.1 Permuted Perceptron Problem

In [Poi95], Pointcheval introduced a cryptographic identification scheme based on the

perceptron problem, which seems to be suited for resource-constrained devices such as

smart cards. An ǫ-vector is a vector with all entries being either +1 or -1. Similarly, an

ǫ-matrix is a matrix in which all entries are either +1 or -1. The permuted perceptron

problem is defined as follows:

Given an ǫ-matrix A of size m × n and a multi-set S of non-negative integers of size m,

find an ǫ-vector V of size n such that {{(AV)j/j = {1, . . . , m}}} = S.

The permuted perceptron problem has been implemented using a binary encoding. Part

of the full evaluation of a solution can be seen as a matrix-vector product (quadratic time

complexity). Regarding S-metaheuristics by using a structure in a linear space complexity,

the evaluation of a neighbor (∆ evaluation) can be reduced in linear time.

1.4.1.2 The Quadratic Assignment Problem

The quadratic assignment problem [BcRW98] arises in many applications such as facility

location or data analysis. Let A = (aij) and B = (bij) be n × n matrices of positive

integers. Finding a solution of the quadratic assignment problem is equivalent to finding

a permutation π = (1, 2, . . . , n) that minimizes the objective function:

z(π) =
n

∑

i=1

n
∑

j=1

aijbπ(i)π(j)

The problem has been implemented using a permutation representation. The evaluation

function has a O(n2) time complexity where n is the instance size. When considering a

∆ evaluation for S-metaheuristics, some moves evaluations can be calculated in constant

time, and some other has a time complexity of O(n). The requirement is a structure which

stores previous ∆ evaluations in a quadratic space complexity.

1.4.1.3 The Weierstrass Continuous Function

The Weierstrass functions belong to the class of continuous optimization problems. These

functions have been widely used for the simulation of fractal surfaces. According to [LV98],

Weierstrass-Mandelbrot functions are defined as follows:

Wb,h(x) =
∞

∑

i=1

b−ihsin(bix) with b > 1 and 0 < h < 1 (1.1)

27

Chapter 1: GPU Computing for Parallel Metaheuristics

Figure 1.11: A Golomb ruler and its associated distances.

The parameter h has an impact on the irregularity (“noisy” local perturbation of limited

amplitude) and these functions possess many local optima. The problem has been imple-

mented using a vector of real values. The domain definition has been set to −1 ≤ xk ≤ 1, h

has been fixed to 0.25, and the number of iterations to compute the approximation to 100

(instead of∞). Such parameters are in accordance with the one dealt with in [LV98]. The

complexity of the evaluation function is quadratic. Regarding S-metaheuristics, since tra-

ditional neighborhoods for continuous optimization impact on all the elements composing

a solution, no easy technique can be applied for computing a ∆ evaluation.

1.4.1.4 The Traveling Salesman Problem

Given n cities and a distance matrix dn,n, where each element dij represents the distance

between the cities i and j, the traveling salesman problem [Kru56] consists in finding a

tour which minimizes the total distance. A tour visits each city exactly once.

The chosen representation is a permutation structure. The evaluation function can be

performed in a linear time complexity. Regarding S-metaheuristics, a usual neighborhood

for the traveling salesman is a two-opt operator. In such a neighborhood, moves evaluations

can be performed in constant time.

1.4.1.5 The Golomb Rulers

Golomb rulers are numerical sequences or a class of graphs named for Solomon W. Golomb

[GB77] which have applications in a wide variety of fields including communications when

setting up an interferometer for radio astronomy.

A Golomb ruler is an ordered sequence of positive integer numbers. These numbers are

referred to as marks. The distance is the difference between two points, and all distances

must be distinct for that ruler. The last mark is referred to as the length of the Golomb

ruler. By convention, the first mark of the ruler must be placed at the position 0. Fig-

ure 1.11 shows an example for a solution with 4 marks.

More exactly, a Golomb ruler with n marks is a set a1 < a2 < ... < an of positive integer

28

Chapter 1: GPU Computing for Parallel Metaheuristics

Figure 1.12: Compute bound and memory bound applications.

positions such that the differences ai − aj (∀i 6= j) are distinct and where a1 = 0. By

convention, an is the length of the solution and this ruler has
n× (n− 1)

2
distances. A

solution with n marks is optimal if it does not exist any shorter Golomb ruler with the

same number of marks.

The problem has been implemented using a discrete vector representation. A solution

evaluation has a O(n3) time complexity. When considering a S-metaheuristic, moves

evaluations can be performed in a quadratic time involving a structure (quadratic space

complexity).

1.4.1.6 Problem Characteristics

The quadratic assignment problem and the traveling salesman problem are permutation

problems, the permuted perceptron problem is based on the binary encoding, the Weier-

strass function is represented by a vector of real values and the Golomb rulers requires a

discrete vector encoding.

The selected problems deal with the four principal encodings of the literature presented in

Section 1.1.2.1. They present different time complexities which worth being investigated.

Regarding the traveling salesman problem, it has been chosen since very large instances of

this problem are considered. Indeed, applications which require a huge number of threads

might fail at runtime, due to the hardware registers limitation.

To have an appreciation of the problems performance, one has to examine the differ-

29

Chapter 1: GPU Computing for Parallel Metaheuristics

Table 1.2: Configurations used for the experiments.

Machines CPU / GPU GFLOPS Cores Memory

Configuration 1
Core 2 Duo T5800 16 2 CPU cores 2 GB
GeForce 8600M GT 60.8 32 GPU cores 512 MB

Configuration 2
Core 2 Quad Q6600 38.4 4 CPU cores 4 GB
GeForce 8800 GTX 345.6 128 GPU cores 768 MB

Configuration 3
Intel Xeon E5450 96 8 CPU cores 4 GB
GeForce GTX 280 885.12 240 GPU cores 1 GB

Configuration 4
Intel Xeon E5620 76.8 8 CPU cores 4 GB

Tesla M2050 1029.28 448 GPU cores 3 GB

ent operations composing an application to point out the limiting factors. A program

is considered compute bound if the number of calculating operations (e.g. additions or

multiplications) dominates the total number of operations. Conversely, an application is

said memory bound if memory accesses are the leading operations. Figure 1.12 illustrates

these concepts for the evaluation functions of the different problems. Such a classification is

achieved by investigating the number of operations in the evaluation function code. Indeed,

a code profiling highlights that the evaluation function represents the time-consuming in

a metaheuristic implementation. For instance, most operations in the Weierstrass eval-

uation function are power calculations, sine functions and multiplications; while in the

traveling salesman problem, the leading operations are memory accesses. Since a GPU

is composed of lot of arithmetic-logical units, it can clearly outperform the CPU when

considering pure compute bound algorithms. Thereby, when dealing with both compute

bound and memory bound algorithms, one of the issues is to take advantage of both the

GPU execution model and the GPU local memories to achieve the best performance.

1.4.2 Machines Configuration

The different approaches proposed in this document have been experimentally validated

on the five optimization problems quoted above, using four GPU configurations (see Ta-

ble 1.2). These latter have different performance capabilities in terms of threads that can

be created simultaneously and memory caching. The GPU cards have a different number

of cores (respectively 32, 128, 240 and 448), which determines the number of active threads

being executed. The three first cards are relatively modest and old, whereas the last one

is a modern Fermi card. The number of floating point operations per second (GFLOPS)

represents a metric for a device performance. Table 1.3 reports the technical specifications

for the different graphic cards.

As previously said, each multiprocessor has a number of registers that are shared between

its processing cores. The maximum number of threads per block is essentially constrained

by the number of registers that can be distributed across all the threads running in all

30

Chapter 1: GPU Computing for Parallel Metaheuristics

Table 1.3: Technical specifications between the different cards.

Specifications 8600M GT 8800 GTX GTX 280 Tesla M2050

Maximum number of
512 1024

threads per block

Maximum number of active
512

blocs per multiprocessor

Maximum number of active
24 32 48

warps per multiprocessor

Number of registers
8K 16K 32K

per multiprocessor

Maximum amount of shared
16KB 48KB

memory per multiprocessor

Number of schedulers
1 2

per multiprocessor

Coalescing rules relaxation
no yes

on global memory

L1/L2 cache on
no yes

global memory

the blocks assigned to a multiprocessor. The warp size is the number of threads running

concurrently on a multiprocessor. These threads are running both in parallel and pipelined.

When a multiprocessor is given thread blocks to execute, it partitions them into warps

that get processed by a warp scheduler at runtime.

The shared memory is a small memory within each multiprocessor that can be read/written

by any thread in a block assigned to that multiprocessor. The thread limit constrains the

amount of cooperation between threads. Indeed, only threads within the same block

can synchronize with each other, and exchange data through the fast shared memory

in a multiprocessor. The way the threads access global memory also affects the global

performance. The execution process goes much faster if the GPU can coalesce several

global addresses into a single contiguous access over the wide data bus that goes to the

external SDRAM. Such coalescing rules are relaxed when dealing with recent architectures.

In Fermi series such that the Tesla M2050, there is L1/L2 cache structure. When threads

require more registers than the hardware can support, they will spill into L1 cache, which

is very fast. If L1 cache is full, or there are other conflicts, these registers will spill into L2

cache, which is significantly larger. Still, L2 cache is much faster than accessing memory

off chip. Texture memory in prior architectures used to be an alternative to cache global

memory.

1.4.3 Metric and Statistical Tests

To assess the performance of the proposed GPU-based algorithms in this thesis, execution

times and acceleration factors are reported in comparison with a single-core CPU. The

31

Chapter 1: GPU Computing for Parallel Metaheuristics

speed-up from GPU implementations can be given by:

Acceleration =
GPU time

CPU time

Statistical analysis must be performed to ensure that the conclusions deduced from the

experiments are meaningful. Furthermore, an objective is also to prove that a specific

algorithm outperforms another one. However, the comparison between two average values

might be not enough. Indeed, it may differ from the comparison between two distributions.

Therefore, a test has to be performed to ensure the statistical significance of the obtained

results. In other words, one has to determine whether an observation is likely to be due

to a sampling error or not.

The first test consists in checking if the data set is normally distributed from a number of

experiments above 30. This is done by applying a Kolmogorov-Smirnov’s test, which is a

powerful and accurate method.

To compare two different distributions (i.e. whether an algorithm is better than another

or not), the Student’s t-test is widely used to compare averages of normal data. The

prerequisites for such a test are to check the data normality (Kolmogorov-Smirnov) then

to examine the variances equality of the two samples. This latter can be done by the

Levene’s test, which is an inferential statistic used to assess the equality of variances in

different sample.

The statistical confidence level is fixed to 95%, and the p-values are represented for all the

statistical analysis tables.

Since lot of experiments are presented in this document, Section .2 in Appendix 5.3.1.2

only reports the results, in which statistical test cannot conclude if an algorithm is better

than another one.

32

Chapter 1: GPU Computing for Parallel Metaheuristics

Conclusion

In this chapter, we have described all the concepts necessary to the general understanding

of the document. In this purpose, we have introduced the optimization context, the prin-

ciples of metaheuristics, the different optimization problems at hand, and the individual

GPU configurations. More important, we have mainly focused on the principles of par-

allel metaheuristics for parallel and GPU architectures. Understanding the hierarchical

organization of the GPU architecture is useful to provide an efficient implementation of

parallel metaheuristics.

• Parallel models of metaheuristics. The parallel evaluation of a single solution

(solution-level) is specific to the problem at hand. Hence, it is not addressed in

the present document. Thereby, the focus is on the parallel evaluation of solutions

(iteration-level) and the cooperative parallel model (algorithmic-level). Indeed, these

two last models provide generic aspects that are independent of the addressed prob-

lem.

• GPU challenges. The goal of this thesis is to redesign the different parallel models

on GPU architectures. In this purpose, we have proposed a classification of the differ-

ent challenges involved in the design and implementation of metaheuristics on GPU

accelerators. These challenges concern the efficient cooperation between the CPU

and the GPU, the efficient parallelism control and the efficient management of the

hierarchical memory. These three challenges constitute the heart of this document.

In relation to this classification, we have shown how each work of the literature

can be classified into different categories according to these challenges. The next

three chapters will be dedicated to solving each of these challenges for the design of

GPU-based metaheuristics.

33

Chapter 1: GPU Computing for Parallel Metaheuristics

34

Chapter 2

Efficient CPU-GPU Cooperation

The scope of this chapter is to establish an efficient cooperation between the CPU and

the GPU, which requires to share the work and to optimize the data transfer between the

two components. First, we will briefly describe a parallelization scheme on GPU common

to all metaheuristics. Then, we will focus on the optimization of data transfers between

the CPU and the GPU. Indeed, this represents one of the critical issues to achieve the

best performance in GPU applications. We will show how this optimization impacts in

particular on S-metaheuristics on GPU. Finally, we will investigate the powerful potential

of GPU-based S-metaheuristics compared to cluster or grid-based parallel architectures.

Contents

2.1 Task Repartition for Metaheuristics on GPU 37

2.1.1 Model of Parallel Evaluation of Solutions 37

2.1.2 Parallelization Scheme on GPU 37

2.2 Data Transfer Optimization . 38

2.2.1 Generation of the Neighborhood in S-metaheuristics 39

2.2.2 The Proposed GPU-based Algorithm 40

2.2.3 Additional Data Transfer Optimization 42

2.3 Performance Evaluation . 43

2.3.1 Analysis of the Data Transfers from CPU to GPU 43

2.3.2 Additional Data Transfer Optimization 49

2.4 Comparison with Other Parallel and Distributed Architectures 50

2.4.1 Parallelization Scheme on Parallel and Distributed Architectures 52

2.4.2 Configurations . 52

2.4.3 Cluster of Workstations . 54

2.4.4 Workstations in a Grid Organization 55

35

Chapter 2: Efficient CPU-GPU Cooperation

Main publications related to this chapter

Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. GPU Computing for Local

Search Metaheuristic Algorithms. IEEE Transactions on Computers, in press, 2011.

Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. GPU-based Approaches for

Multiobjective Local Search Algorithms. A Case Study: the Flowshop Scheduling Prob-

lem. 11th European Conference on Evolutionary Computation in Combinatorial Optimiza-

tion, EVOCOP 2011, pages 155–166, volume 6622 of Lecture Notes in Computer Science,

Springer, 2011.

Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. Local Search Algorithms on

Graphics Processing Units. A case study: the Permutation Perceptron Problem. Evolu-

tionary Computation in Combinatorial Optimization, 10th European Conference, EvoCOP

2010, pages 264–275, volume 6022 of Lecture Notes in Computer Science, Springer, 2010.

36

Chapter 2: Efficient CPU-GPU Cooperation

Figure 2.1: The parallel evaluation of solutions (iteration-level). The solutions are decom-
posed into different partitions which are evaluated in a parallel independent way.

2.1 Task Repartition for Metaheuristics on GPU

2.1.1 Model of Parallel Evaluation of Solutions

In the iteration-level model, the focus is on the parallelization of each iteration of meta-

heuristics. The iteration-level parallel model is mainly based on the distribution of the

handled solutions. Indeed, the most time-consuming part in a metaheuristic is the evalu-

ation of the generated solutions. The parallelization concerns search mechanisms that are

problem-independent operations, such as the generation and evaluation of the neighbor-

hood in S-metaheuristics and the evaluation of successive populations in P-metaheuristics.

In other words, the iteration-level model is a low-level Master-Worker model that does not

alter the behavior of the heuristic. Figure 2.1 gives an illustration of this model.

At each iteration, the master generates the set of solutions to be evaluated. Each worker

receives from the master a partition of the solutions set. These solutions are evaluated and

returned back to the master. For S-metaheuristics, the neighbors can also be generated

by the workers. In this case, each worker receives a copy of the current solution, generates

one or several neighbor(s) to be evaluated and returned back to the master. A challenge

of this model is to determine the granularity of each partition of solutions to be allocated

to each worker according to the communication delays of the given architecture. In terms

of genericity, as the model is problem-independent, it is generic and reusable.

2.1.2 Parallelization Scheme on GPU

As quoted above, the evaluation of solution candidates is often the most time-consuming

part of metaheuristics. Thereby, it must be done in parallel in regards with the iteration-

level parallel model. Hence, according to the Master-Worker paradigm, the idea is to

37

Chapter 2: Efficient CPU-GPU Cooperation

Figure 2.2: The parallel evaluation of solutions on GPU (iteration-level). The evaluation
of solutions is performed on GPU and the CPU executes the sequential part of the search
process.

evaluate the solutions in parallel on GPU.

To achieve this, the parallel iteration-level model has to be designed according to the

data-parallel single program multiple data model of GPUs. As illustrated in Figure 2.2,

the CPU-GPU task partitioning is such that the CPU hosts and executes the whole serial

part of the handled metaheuristic. The GPU is in charge of the evaluation of the solutions

set at each iteration. In this model, a function code called kernel is sent to the GPU to

be executed by a large number of threads grouped into blocks. The granularity of each

partition is determined by the number of threads per block.

This parallelization strategy has been widely used for P-metaheuristics on GPU especially

for evolutionary algorithms due to their embarrassingly parallel workload (e.g in [WWF05,

WW06, FWW07, Zhu09, ATD10, MBL+09, SBPE10, Won09]).

2.2 Data Transfer Optimization

The GPU has its own memory and processing elements that are separate from the host

computer. Thereby, data transfer between CPU and GPU through the PCIe bus might be

a serious bottleneck in the performance of GPU applications. Table 2.1 gives an insight of

the different transfer rates for the 4 different configurations presented in Chapter 1. This

sample from the CUDA SDK [NVI11] delivers practical transfer rates by considering one

data transfer of 30 MB. By repeating the process thousands of times, a higher amount of

38

Chapter 2: Efficient CPU-GPU Cooperation

Table 2.1: External bandwidth test. The program produces the elapsed time to copy 30
MB data and it delivers bi-directional transfer rates for 4 different configurations.

Configuration CPU -> GPU GPU -> CPU

Core 2 Duo T5800
1.76 × 10−2s 1700 MB/s 6 × 10−2s 500 MB/s

GeForce 8600M GT

Core 2 Quad Q6600
1.66 × 10−2s 1800 MB/s 2 × 10−2s 1500 MB/s

GeForce 8800 GTX

Xeon E5450
1.25 × 10−2s 2400 MB/s 1.36 × 10−2s 2200 MB/s

GeForce GTX 280

Xeon E5620
0.81 × 10−2s 3700 MB/s 1 × 10−2s 3000 MB/s

Tesla M2050

data to be copied obviously has an influence on the execution time.

Therefore, one of the major issues is to optimize the data transfer between the CPU and

the GPU. For metaheuristics, these copies are essentially 1) the solutions to be evaluated

and 2) their resulting fitnesses.

Most P-metaheuristics are exploration oriented which implies that solutions at hand are

usually uncorrelated. This does not occur in S-metaheuristics since each neighboring

solution corresponds to a slight variation of the initial candidate solution. When it

comes to parallelization, the optimization of data transfers is thus more prominent for

S-metaheuristics. As a consequence, in the rest of the chapter, the focus will be exclusively

on S-metaheuristics on GPU. We will emphasize how the optimization of data transfers

is essential for the overall performance. Even if two tentatives of a tabu search algorithm

on GPU have been proposed in [JJL08, ZCM08], they just operate on the multi-start exe-

cution of independent local search algorithms. In this purpose, we have contributed with

the pionnering work on GPU-based S-metaheuristics in [1, 5, 9] for the parallel evaluation

of neighborhoods.

2.2.1 Generation of the Neighborhood in S-metaheuristics

In deterministic S-metaheuristics (e.g. hill climbing, tabu search, variable neighborhood

search), the generation and evaluation of the neighborhood can be done in parallel. Indeed,

this step is the most computation intensive of a S-metaheuristic.

For optimizing the data transfers between the CPU and the GPU, one challenge is to say

where the neighborhood in S-metaheuristics must be generated. For doing that, there are

fundamentally two approaches:

• Generation of the neighborhood on CPU and its evaluation on GPU. At each iter-

ation of the search process, the neighborhood is generated on the CPU side and

its associated structure storing the solutions is copied on GPU. This approach is

39

Chapter 2: Efficient CPU-GPU Cooperation

the most straightforward since a thread is automatically associated with its physi-

cal neighbor representation. This is what it is usually done for the parallelization

of P-metaheuristics on GPU. Thereby, the data transfers are essentially the set of

neighboring solutions copied from the CPU to the GPU and the fitnesses structure

which are copied from the GPU to the CPU.

• Generation of the neighborhood and its evaluation on GPU. In the second approach,

the neighborhood is generated on GPU. This generation is performed in a dynamic

manner which implies that no explicit structure needs to be allocated. This is

achieved by considering a neighbor as a slight variation of the candidate solution

which generates the neighborhood. Thereby, only the representation of this candi-

date solution must be copied from the CPU to the GPU. The advantage of such an

approach is to reduce drastically the data transfers since the whole neighborhood

does not have to be copied. The resulting fitnesses are the only structure which has

to be copied back from the GPU to the CPU. However, such an approach raises

another issue: a mapping between a thread and a neighbor must be determined. In

some cases, it might be challenging. Such an issue will be discussed in Chapter 3.

Even if the first approach is easier, applying it on S-metaheuristics on GPU will end in a

lot of data transfers for large neighborhoods. This is the case for P-metaheuristics on GPU

since the entire population is usually copied from CPU to GPU. Such an approach will

lead to a great loss of performance due to the limitation of the external bandwidth. That

is the reason why, in the rest of the chapter, we will consider the second approach: the

generation and the evaluation of the neighborhood on GPU. An experimental comparison

of the two approaches is broached in Section 2.3.1.

2.2.2 The Proposed GPU-based Algorithm

Adapting traditional S-metaheuristics to GPU is not a straightforward task. We propose

a methodology to rethink S-metaheuristics on GPU in a generic way (see Algorithm 6).

First of all, at initialization stage, memory allocations on GPU are made: data inputs and

candidate solution of the problem must be allocated (lines 4 and 5). As previously said,

GPUs require massive computations with predictable memory accesses. Hence, a structure

has to be allocated for storing the results of the evaluation of each neighbor (neighborhood

fitnesses structure) at different addresses (line 6). Additional solution structures which

are problem-dependent can also be allocated to facilitate the computation of neighbor

evaluation (line 7). Second, problem data inputs, initial candidate solution and additional

structures associated with this solution have to be copied onto the GPU (lines 8 to 10).

It is important to notice that problem data inputs (e.g. a matrix in TSP) are a read-only

40

Chapter 2: Efficient CPU-GPU Cooperation

Algorithm 6 S-metaheuristic Template on GPU

1: Choose an initial solution
2: Evaluate the solution
3: Specific initializations
4: Allocate problem data inputs on GPU device memory
5: Allocate a solution on GPU device memory
6: Allocate a neighborhood fitnesses structure on GPU device memory
7: Allocate additional solution structures on GPU device memory
8: Copy problem data inputs on GPU device memory
9: Copy the solution on GPU device memory

10: Copy additional solution structures on GPU device memory
11: repeat
12: for each neighbor in parallel on GPU do
13: Evaluation of the candidate solution
14: Insert the resulting fitness into the neighborhood fitnesses structure
15: end for
16: Copy the neighborhood fitnesses structure on CPU host memory
17: Specific solution selection strategy on the neighborhood fitnesses structure
18: Specific post-treatment
19: Copy the chosen solution on GPU device memory
20: Copy additional solution structures on GPU device memory
21: until a stopping criterion satisfied

structure and never change during all the execution of the S-metaheuristic. Therefore,

their associated memory is copied only once during all the execution. Third, comes the

parallel iteration-level, in which each neighboring solution is generated, evaluated and

copied into the neighborhood fitnesses structure (from lines 12 to 15). Fourth, since the

order in which candidate neighbors are evaluated is undefined, the neighborhood fitnesses

structure has to be copied to the host CPU (line 16). Then, a specific solution selection

strategy is applied to this structure (line 17): the exploration of the neighborhood fitnesses

structure is carried out by the CPU in a sequential way. Finally, after a new candidate

has been selected, this latter and its additional structures are copied to the GPU (lines 19

and 20). The process is repeated until a stopping criterion is satisfied.

This parallelization can be seen as an acceleration model which does not change the se-

mantic of the S-metaheuristic. The iteration-level parallel model on GPU may be easily

extended to variable neighborhood search (VNS) metaheuristics, in which the same par-

allel exploration is applied to the various neighborhoods associated with the problem. Its

extension to iterative local search (ILS) metaheuristics is also straightforward as the par-

allelization on GPU could be used at each iteration of the ILS metaheuristic. The same

goes on when dealing with hybrid genetic algorithms.

41

Chapter 2: Efficient CPU-GPU Cooperation

Figure 2.3: Reduction operation to find the minimum of each block. Local synchronizations
are performed between threads of a same block via the shared memory.

2.2.3 Additional Data Transfer Optimization

In other S-metaheuristics such as hill climbing or variable neighborhood descent, the se-

lection operates on the minimal/maximal fitness for finding the best solution. Therefore,

only one value of the fitnesses structure may be merely copied from the GPU to the CPU.

However, since read/write operations on memory are performed in an asynchronous man-

ner, finding the appropriate minimal/maximal fitnesses is not straightforward. Indeed,

traditional parallel techniques such as semaphores which imply the global synchronization

(via atomic operations) of thousands of threads can drastically lead to diminished perfor-

mance. To deal with this issue, adaptation of parallel reduction techniques for each thread

block must be considered (see Fig. 2.3).

Algorithm 7 gives a template of the parallel reduction for a thread block (partition of the

neighborhood). Basically, each thread loads one element from global to shared memory

(lines 1 and 2). At each loop iteration, elements of the array are compared by pairs (lines

3 to 7). Then, by using local synchronizations between threads in a given block via the

shared memory, one can find the minimum/maximum of a given array since threads operate

at different memory addresses. For the sake of simplicity, the template is given for dealing

with a neighborhood size which is a power of two, but adaptation of the template for

the general case is straightforward. The complexity of such an algorithm is in O(log2(n))

where n is the size of each thread block. If several iterations are performed on reduction

kernels, the minimum of all the neighbors can be found. Thereby, the GPU reduction

kernel makes it possible to get the minimum/maximum of each block of threads. More

details of the method are given in [Har08]. The benefits of such a technique will be pointed

out in Section 2.3.2.

42

Chapter 2: Efficient CPU-GPU Cooperation

Algorithm 7 Reduction kernel on the fitnesses structure.

Require: input fitnesses;
1: shared[thread id] := input fitnesses[id];
2: local synchronization;
3: for i := nbThreadsPerBlock/2 ; i > 0; i := i / 2 do
4: if thread id < i then
5: shared[thread id] := compare(shared[thread id], shared[thread id + i]);
6: local synchronization;
7: end if
8: end for
9: if thread id = 0 then

10: output fitnesses[blockId] := shared[0];
11: end if
Ensure: output fitnesses;

2.3 Performance Evaluation

2.3.1 Analysis of the Data Transfers from CPU to GPU

As previously said, one of the major issues in obtaining the best performance resides in

optimizing the data transfer between the CPU and the GPU. To validate the performance

of our algorithms, we propose to make an analysis of the time consumed by each major

operation in two different approaches to assess the impact of such operations in terms of

efficiency: 1) the generation of the neighborhood on CPU and its evaluation on GPU; 2)

the generation of the neighborhood and its evaluation on GPU.

For the next experiments, a tabu search with 10000 iterations is considered on the GTX

280 configuration. The GPU adaptation of the tabu search is straightforward according to

the proposed GPU algorithm (see Algorithm 6 in Section 2.2.2). First, the metaheuristic

pre-treatment (line 3) is the tabu list initialization. Second, the replacement strategy (line

17) is performed by the best admissible neighbor according to its availability in the tabu

list. Finally, the post-treatment (line 18) represents the tabu list update.

A single CPU core implementation and a CPU-GPU one are considered. The number of

threads per block has been arbitrary chosen to 256 (multiple of 32), and the total number

of threads created at run time is equal to the neighborhood size.

As an application, the permuted perceptron problem has been considered. Table 2.2

reports the time spent by each operation in the two approaches by using a neighborhood

based on a Hamming distance of one (n neighbors). For the first approach, one can observe

that the time spent by the data transfer is significant. It represents almost 25% of the

total execution time for each instance. In the second approach, in comparison with the

previous one, the time spent on the data transfer is drastically reduced with the instance

43

Chapter 2: Efficient CPU-GPU Cooperation

Table 2.2: Measures of the benefits of generating the neighborhood on GPU on the GTX
280. The permuted perceptron problem using a neighborhood based on a Hamming dis-
tance of one is considered.

Instance CPU
Evaluation on GPU Gen. and eval. on GPU

GPU process transfers kernel GPU process transfers kernel

73-73 1.1 3.4×0.3 4.0% 22.7% 73.3% 3.0×0.4 1.0% 23.2% 75.8%
81-81 1.3 3.8×0.3 5.3% 25.9% 68.8% 3.3×0.4 1.1% 22.9% 75.9%

101-117 2.2 5.1×0.4 4.8% 24.5% 70.7% 4.2×0.5 1.1% 19.1% 79.8%
201-217 8.1 11×0.7 6.8% 25.3% 67.9% 7.7×1.1 1.2% 12.0% 86.8%
401-417 31 27×1.2 7.1% 25.0% 67.9% 14×2.2 1.1% 6.2% 92.7%
601-617 105 68×1.5 7.1% 26.1% 66.8% 43×2.4 1.0% 3.9% 95.1%
801-817 200 98×2.0 7.1% 24.2% 68.7% 50×4.0 0.6% 1.4% 98.0%

1001-1017 336 106×3.2 5.5% 23.5% 71.0% 58×5.8 0.3% 0.6% 99.1%
1301-1317 687 146×4.7 5.2% 22.4% 72.4% 85×8.0 0.2% 0.4% 99.4%

size increase. Indeed, for the instance m = 73 and n = 73, this time corresponds to 19%

of the total running time and it reaches the value of 1% for the last instance (m = 1301

and n = 1317).

Another observation concerns the time taken by the generation and the evaluation of the

neighborhood on GPU. Generally speaking, the algorithm in the second approach takes

advantage of resource use since most of the total running time is dedicated to the GPU

kernel execution. For example, in the fourth instance m = 201 and n = 217, the time

associated with the evaluation of the neighborhood accounts for 86% of the total execution

time. This time grows along with the instance size (more than 90% for the other larger

instances).

As a result, the second approach outperforms the first one in terms of efficiency. Indeed,

regarding the related acceleration factors for the two approaches, the reported results are

in accordance with the previous observations. This difference of performance tends to

grow with the instance size. In a general manner, the speed-up grows with the problem

size augmentation (up to ×8 for m = 1301, n = 1317). The acceleration factor for

this implementation is significant but not spectacular. Indeed, since the neighborhood is

relatively small (n threads), the number of threads per block is not enough to fully cover

the memory access latency.

To validate this point, a neighborhood based on a Hamming distance of two has been

implemented. Table 2.3 details the time spent by each operation in the two approaches

by using a neighborhood based on a Hamming distance of two.

For the first approach, most of the time is devoted to data transfer. It accounts for nearly

75% of the execution time. As a consequence, such an approach is actually inefficient

since the time spent on the data transfers dominates the whole algorithm. The produced

measures of the speed-up confirm the previous observations. Indeed, since the amount of

44

Chapter 2: Efficient CPU-GPU Cooperation

Table 2.3: Measures of the benefits of generating the neighborhood on GPU on the GTX
280. The permuted perceptron problem using a neighborhood based on a Hamming dis-
tance of two is considered.

Instance CPU
Evaluation on GPU Gen. and eval. on GPU

GP U process transfers kernel GP U process transfers kernel

73-73 2.1 0.2×3.2 4.8% 73.7% 21.5% 0.2×10.9 19.0% 11.2% 69.8%
81-81 2.7 0.8×3.3 4.9% 74.6% 20.6% 0.2×12.2 18.8% 10.7% 70.5%

101-117 7.0 2.1×3.3 5.2% 74.1% 20.7% 0.4×18.1 18.7% 10.1% 71.2%
201-217 48 23×2.1 4.7% 74.3% 21.0% 1.9×25.3 18.5% 7.3% 74.2%
401-417 403 311×1.3 4.4% 75.6% 20.0% 14×28.8 18.2% 6.3% 75.5%
601-617 2049 3047×0.6 3.5% 75.8% 20.7% 51×40.1 17.7% 4.5% 77.8%
801-817 5410 128×42.3 13.3% 2.5% 84.2%

1001-1017 11075 252×43.9 12.7% 1.5% 85.8%
1301-1317 25016 568×44.1 10.9% 1.5% 87.6%

Table 2.4: Amount of data transfers at each iteration from the CPU to the GPU for the
permuted perceptron problem.

Instance
Evaluation on GPU Gen. and eval. on GPU

CPU -> GPU transfers CPU -> GPU transfers

73-73 0.77 MB 0.58 KB
81-81 1.05 MB 0.65 KB

101-117 3.18 MB 0.94 KB
201-217 20.34 MB 1.74 KB
401-417 144.68 MB 3.34 KB
601-617 469.01 MB 4.94 KB
801-817 1089.35 MB 6.54 KB

1001-1017 2101.68 MB 8.14 KB
1301-1317 4565.18 MB 10.54 KB

data transferred tends to grow as the size increases, the acceleration factors diminish with

the instance size (from ×3.3 to ×0.6). Furthermore, the algorithm could not be executed

for larger instances since it exceeds the 1GB global memory of the GTX 280. Table 2.4

emphasizes these previous points when looking at the amount of data transfers.

Table 2.5 reports the obtained speed-ups for the 4 configurations. Considering the genera-

tion and evaluation on GPU for a neighborhood based on a Hamming distance of two, for

the first instance (m = 73, n = 73), acceleration factors are already significant (from ×3.6

to ×12.3). As long as the instance size increases, the acceleration factor grows accordingly

(from ×3.6 to ×8 for the first configuration). Since a large number of cores are available on

both 8800 and GTX 280, efficient speed-ups can be obtained (from ×10.1 to ×44.1). The

application also scales well when performing on the Tesla Fermi card (speed-ups varying

from ×11.7 to ×73.3). In comparison with the second approach, generating on CPU and

evaluating on GPU is clearly inadequate in terms of performance. A conclusion to this

45

Chapter 2: Efficient CPU-GPU Cooperation

Table 2.5: Benefits of generating the neighborhood on GPU. The acceleration factors are
reported for a tabu search on GPU on the permuted perceptron problem.

A neighborhood based on a Hamming distance of one is considered.

A neighborhood based on a Hamming distance of two is considered.

analysis highlights that the neighborhood should be always generated on GPU.

In a general manner, the same observations can be made for other optimization problems.

The obtained speed-ups for the other problems are reported in Table 2.6 and in Table 2.7

for a tabu search using the same parameters.

The obtained performances strongly depends on the characteristics of each problem (see

Table2.8). Data inputs such as matrices have a negative impact on the global performance.

Indeed, non-coalescing memory drastically reduces the performance of GPU implementa-

tions. This is due to high-misaligned accesses to global memories when dealing with

optimization problems. The time complexity represents the complexity of a neighbor eval-

uation (or ∆ evaluation). In general, GPU applications get a better global performance

when this evaluation is costly. The space complexity denotes the amount of data allocated

for the evaluation of the entire neighborhood. As quoted above, such additional accesses

via the global memory may lead to a global performance decrease.

To sum up, best GPU accelerations are obtained for problems, which are time-consuming

and memory accesses free.

46

Chapter 2: Efficient CPU-GPU Cooperation

Table 2.6: Benefits of generating the neighborhood on GPU. The acceleration factors
are reported for a tabu search on GPU on the quadratic assignement problem and the
Weierstrass continuous function.

The quadratic assignment problem. A neighborhood based on a pair-wise exchange
operator is considered.

The Weierstrass continuous function. 10000 neighbors are considered.

47

Chapter 2: Efficient CPU-GPU Cooperation

Table 2.7: Benefits of generating the neighborhood on GPU. The acceleration factors are
reported for a tabu search on GPU on the traveling salesman problem and the Golomb
Rulers.

The traveling salesman problem. A neighborhood based on a two-opt operator
is considered.

The Golomb rulers. n3 − n neighborhors are considered.

Table 2.8: Characteristics of the 5 optimization problems.

Problem Data inputs Time complexity Space complexity

Permuted perceptron One matrix linear linear
Quadratic assignment Two matrices constant / linear quadratic
Weierstrass function – quadratic –
Traveling salesman One matrix constant –

Golomb rulers – quadratic quadratic

48

Chapter 2: Efficient CPU-GPU Cooperation

Table 2.9: Measures of the benefits of using the reduction operation on the GTX 280.
The permuted perceptron problem is considered for two different neighborhoods using an
iterative local search composed of 100 hill climbing algorithms.

Instance
n neighbors

n × (n − 1)

2
neighbors

CPU GPU GPUR CPU GPU GPUR

73-73 0.08 0.22×0.4 0.25×0.3 5.29 0.42×12.6 0.35×15.1

81-81 0.13 0.29×0.4 0.32×0.4 9.47 0.65×14.6 0.52×18.2

101-117 0.27 0.42×0.6 0.47×0.6 28.4 1.2×23.7 1.1×25.9

201-217 1.5 1.4×1.1 1.5×1.0 94.7 3.1×30.5 2.8×33.8

401-417 12.1 5.4×2.2 4.8×2.5 923 27.3×33.8 25×36.9

601-617 102 32.1×3.2 29.4×3.5 4754 110×43.2 103×46.1

801-817 199 49.3×4.0 45.7×4.4 13039 270×48.3 251×51.9

1001-1017 395 67.4×5.9 62.2×6.3 29041 593×48.9 551×52.7

1301-1317 1132 141×8.0 125×9.0 74902 1512×49.5 1395×53.7

2.3.2 Additional Data Transfer Optimization

Another point concerns the data transfer from the GPU to the CPU. Indeed, in some

S-metaheuristics such as hill climbing, the selection of the best neighbor is operated by

choosing the minimal/maximal fitness at each iteration. Hence, for these algorithms, there

is no need to transfer the entire fitnesses structure, and further optimizations are possible.

The following experiment consists in comparing two GPU-based approaches of the hill

climbing algorithm.

In the first approach, the standard GPU-based algorithm is considered i.e. the fitnesses

structure is copied back from the GPU to the CPU. In the second one, a reduction oper-

ation is iterated on GPU to find the minimum of all the fitnesses at each iteration.

Since the hill climbing heuristic rapidly converges, an iterated local search composed of

100 hill climbing algorithms has been considered. Such an important number of methods

is in accordance with the previous running time for the tabu search.

Results for the permuted perceptron problem by considering two different neighborhoods

are reported in Table 16. Regarding the version using a reduction operation (GPUR),

significant improvements in comparison with the standard version (GPU) can be observed.

For example, for the instance m = 73 and n = 73, in the case of
n× (n− 1)

2
neighbors,

the speed-up is equal to ×15.1 for the version using reduction and ×12.6 for the other

one. Such improvement between 10% and 20% is maintained for most of the instances. A

peek performance is reached with the instance m = 1301 and n = 1317 (×53.7 for GPUR

against ×49.5 for GPU).

An analysis on the average percentage of the time consumed by each operation can clarify

this improvement. Table 2.10 highlights the analysis of the time dedicated to each major

operation for a neighborhood based on a Hamming distance of two. On the one hand,

49

Chapter 2: Efficient CPU-GPU Cooperation

Table 2.10: Analysis of the time dedicated for each operation for an iterative local search
composed of 100 hill climbing algorithms. The permuted perceptron problem using a
Hamming distance of two and the reduction operation are considered.

Instance
GPU GPUR

process transfers kernel process transfers kernel

73-73 19.0% 11.2% 69.8% 1.43% 1.46% 97.11%
81-81 18.8% 10.7% 70.5% 0.91% 0.98% 98.01%

101-117 18.7% 10.1% 71.2% 0.46% 0.44% 99.10%
201-217 18.5% 7.3% 74.2% 0.36% 0.11% 99.53%
401-417 18.2% 6.3% 75.5% 0.08% 0.04% 99.88%
601-617 17.7% 4.5% 77.8% 0.04% 0.02% 99.94%
801-817 13.3% 2.5% 84.2% 0.03% 0.02% 99.96%

1001-1017 12.7% 1.5% 85.8% 0.02% 0.01% 99.97%
1301-1317 10.9% 1.5% 87.6% 0.01% 0.01% 99.98%

for the second approach, whatever the size of the neighborhood used or the instance

size, the data transfer is nearly constant (varying between 0.01% and 1.46%). It can be

explained by the fact that only one solution is transferred from the GPU to the CPU at

each iteration. On the other hand, one can also notice that the time spent on the search

process on CPU is also minimized for the second approach. Indeed, by definition, the

reduction operation consists in finding the minimum which is performed on the GPU-

side in a logarithmic time. While for the first approach, most of the CPU search process

time corresponds to the search of the minimum in the fitnesses structure (linear time).

Therefore, both minimization of the data transfers and complexity reduction can justify

such an improvement of performance.

The same observations can be stated for the other problems where the reduction operator

provides a 10% to 20% performance improvement (see Table 2.11).

2.4 Comparison with Other Parallel and Distributed Archi-

tectures

During the last decade, cluster of workstations (COWs) and computational grids have

been largely deployed to provide standard high-performance computing platforms. Hence,

it will be interesting to compare the performance provided by GPU computing with such

multi-level architectures in regards with S-metaheuristics. For the next experiments, we

intend to compare each GPU configuration with COWs then with computational grids.

50

Chapter 2: Efficient CPU-GPU Cooperation

Table 2.11: Benefits of the reduction operator on GPU. The acceleration factors are re-
ported for an iterative local search on different optimization problems.

The permuted perceptron problem.
A neighborhood based on a Hamming A neighborhood based on a Hamming

distance of one is considered. distance of two is considered.

The quadratic assignment problem. The Weierstrass continuous function.
A neighborhood based on a pair-wise 10000 neighbors are considered.

exchange operator is considered.

The traveling salesman problem. The Golomb rulers.

A neighborhood based on a two-opt n3 − n neighbors are considered.
operator is considered.

51

Chapter 2: Efficient CPU-GPU Cooperation

2.4.1 Parallelization Scheme on Parallel and Distributed Architectures

Algorithm 8 provides the template parallelization on top of these parallel and distributed

architectures. Basically, the neighborhood is decomposed into separate partitions of equal

size, which are distributed among the cores of the different machines (line 4). The only

data which have to be copied concern the candidate solution and additional structures for

its evaluation (lines 5 and 6). Each working node (CPU core) is in charge of the evaluation

of its own neighborhood partition (lines 8 to 10). For deterministic S-metaheuristics, the

parallelization is synchronous, and one has to wait for the termination of the exploration

of all partitions (lines 11). Such a synchronous step ensures that the semantics of the

S-metaheuristic are preserved. Then, the master handles the sequential part of the S-

metaheuristic. The process is repeated until a stopping criterion is satisfied.

Algorithm 8 S-metaheuristic template on parallel and distributed architectures

1: Choose an initial solution
2: Evaluate the solution
3: Specific initializations
4: Define a partition size for each working node
5: Copy the solution on each working node
6: Copy additional solution structures on each working node
7: repeat
8: for each working node in parallel do
9: Sequential evaluation of its own neighborhood partition

10: end for
11: Copy and gather each fitnesses partition on the master
12: Specific solution selection strategy on the neighborhood fitnesses structure
13: Specific post-treatment
14: Copy the chosen solution on each working node
15: Copy additional solution structures each working node
16: until a stopping criterion satisfied

In comparison with the GPU parallelization, the iteration-level model on parallel and

distributed architectures is more flexible. Indeed, due to the asynchronous nature of these

architectures, the copy and the exploration of all partitions might also be done in an

asynchronous manner. Thereby, it ensures to deal with S-metaheuristics which explore a

partial neighborhood; or few irregular problems in which the execution time varies during

the search process.

2.4.2 Configurations

For doing a fair comparison with the previous results on GPU, the different parallel and

distributed architectures must have the same computational power. Table 2.12 presents

52

Chapter 2: Efficient CPU-GPU Cooperation

Table 2.12: Parallel and distributed machines used for the experiments on COWs and
Grid’5000.

Architecture
Configuration 1 Configuration 2

Machines GFLOPS Machines GFLOPS

GPU
Core 2 Duo T5800

76.8
Core 2 Quad Q6600

384
GeForce 8600M GT GeForce 8800 GTX

COWs
Intel Xeon E5440

90.656
4 Intel Xeon E5440

362.624
8 CPU cores 32 CPU cores

Grid 90.656 406.368

Amd Opteron 2218
Intel Xeon E5520

2 Intel Xeon E5440 2 Intel Xeon E5420
2 × 4 CPU cores Intel Xeon E5440

40 CPU cores

Architecture
Configuration 3 Configuration 4

Machines GFLOPS Machines GFLOPS

GPU
Intel Xeon E5450

981.12
Intel Xeon E5620

1106.08
GeForce GTX 280 Tesla M2050

COWs
11 Intel Xeon E5440

995.236
13 Intel Xeon E5440

1176.188
88 CPU cores 104 CPU cores

Grid

2 Intel Xeon E5520

979.104

4 Intel Xeon E5520

1160.056

2 AMD Opteron 2218 2 AMD Opteron 2218
2 Intel Xeon E5520 2 Intel Xeon E5520
4 Intel Xeon E5520 4 Intel Xeon E5520
Intel Xeon X5570 Intel Xeon X5570
Intel Xeon E5520 Intel Xeon E5520
96 CPU cores 112 CPU cores

the different machines used for the experiments. The number of potential GFLOPS is

calculated from the theoretical ones provided by constructors.

The different machines used for the experiments for COWs and grid are described in Ta-

ble 2.12. Most of them are octo-core workstations. The different computers have been

chosen accordingly to the different GPU configurations i.e. in agreement with their com-

putational power. Such a metric has been deduced from the potential GFLOPS delivered

by the different machines.

From an implementation point of view, a hybrid OpenMP/MPI version has been pro-

duced to take advantage of both multi-core and distributed environments. Such a hybrid

implementation has widely proved in the past its efficiency for multi-level architectures

[JJMH03]. The tabu search previously seen has been implemented on top of these archi-

tectures.

The permuted perceptron problem using a neighborhood based on a Hamming distance

of two is considered on the two architectures. A Myri-10G gigabit ethernet connects the

different machines of the COWs. For the workstations distributed in a grid organiza-

53

Chapter 2: Efficient CPU-GPU Cooperation

Table 2.13: Measures in terms of efficiency for a cluster of workstations. The permuted
perceptron problem using a neighborhood based on a Hamming distance of two is consid-
ered.

Instance

Intel Xeon E5440 4 Intel Xeon E5440

8 CPU cores 32 CPU cores

GPU COW GPU COW

73-73 0.8×3.6 0.9×3.5 0.2×10.1 1.4×1.6

81-81 1.1×3.8 1.2×3.6 0.3×10.4 1.6×1.8

101-117 2.5×4.4 2.9×3.8 0.6×12.4 1.9×3.8

201-217 15×4.7 18×3.9 3.3×15.4 6.2×8.2

401-417 103×5.4 139×4.1 24×18.3 39×11.3

601-617 512×6.3 966×3.3 89×28.3 258×9.8

801-817 1245×6.9 2828×3.0 212×32.8 737×9.4

1001-1017 2421×7.2 6307×2.8 409×35.2 1708×8.5

1301-1317 4903×8.0 15257×2.6 911×36.2 3968×8.4

Instance

11 Intel Xeon E5440 13 Intel Xeon E5440

88 CPU cores 104 CPU cores

GPU COW GPU COW

73-73 0.2×10.9 5.4×0.4 0.2×12.3 5.9×0.4

81-81 0.2×12.2 5.6×0.5 0.2×13.4 6.3×0.4

101-117 0.4×18.1 6.0×1.2 0.3×22.0 6.7×1.1

201-217 1.9×25.3 7.6×6.3 1.6×30.6 7.0×6.8

401-417 14×28.8 21×19.2 10×38.3 19×21.2

601-617 51×40.1 115×17.8 35×58.4 108×19.0

801-817 128×42.3 322×16.8 81×67.1 311×17.4

1001-1017 252×43.9 793×14.0 154×71.9 778×14.3

1301-1317 568×44.1 1807×13.8 342×73.3 1789×14.0

tion, experiments have been carried out on the high-performance computing Grid’50001

[BCC+06] involving two, five and seven French sites. The acceleration factors are estab-

lished from each single CPU core used for the previous experiments.

2.4.3 Cluster of Workstations

Table 2.13 presents the produced results for this architecture. Whatever the used configu-

ration, the acceleration factors keep growing up until reaching a particular instance, then

they immediately decrease with the instance size. For example, for the second configura-

tion, the acceleration factors begin from ×1.6 until reaching a peak value of ×11.3 for the

instance m = 401 and n = 417. After, the speed-ups start decreasing until reaching the

value ×8.4. This behaviour can be elucidated by the following reason: a performance im-

provement can be made as long as the part reserved to the partitions evaluation (worker)

is not too much dominated by the communication time. An analysis of the time spent to

transfers including synchronizations confirms this fact (see Table 2.14). The percentage

dedicated to the transfer operations varies accordingly with the speed-ups observed.

1http://grid5000.fr

54

Chapter 2: Efficient CPU-GPU Cooperation

Table 2.14: Analysis of the time dedicated to each operation for a cluster of workstations.
The permuted perceptron problem using a neighborhood based on a Hamming distance
of two is considered.

Instance

Intel Xeon E5440 4 Intel Xeon E5440

8 CPU cores 32 CPU cores

process transfers workers process transfers workers

73-73 4.2% 45.7% 50.1% 1.8% 93.0% 5.2%
81-81 3.3% 45.3% 51.4% 2.3% 91.9% 5.8%

101-117 2.6% 43.1% 54.3% 3.9% 83.8% 12.3%
201-217 1.9% 42.4% 55.7% 5.7% 67.8% 26.5%
401-417 1.8% 39.6% 58.6% 6.5% 57.1% 36.4%
601-617 0.9% 52.0% 47.1% 3.5% 64.9% 31.6%
801-817 0.6% 56.5% 42.9% 2.3% 67.4% 30.3%

1001-1017 0.5% 59.4% 40.1% 1.9% 70.7% 27.4%
1301-1317 0.4% 62.5% 37.1% 1.6% 71.3% 27.1%

Instance

11 Intel Xeon E5440 13 Intel Xeon E5440

88 CPU cores 104 CPU cores

process transfers workers process transfers workers

73-73 0.7% 98.8% 0.5% 0.7% 98.9% 0.4%
81-81 0.7% 98.7% 0.6% 0.7% 98.8% 0.5%

101-117 1.2% 97.4% 1.4% 1.1% 97.6% 1.3%
201-217 4.6% 88.2% 7.2% 4.5% 88.5% 7.0%
401-417 12.1% 63.8% 24.1% 11.9% 64.0% 24.1%
601-617 7.8% 71.7% 20.5% 7.9% 71.9% 20.6%
801-817 5.3% 75.4% 19.3% 5.4% 75.7% 19.5%

1001-1017 4.0% 79.9% 16.1% 3.9% 81.2% 15.9%
1301-1317 3.5% 80.6% 15.9% 3.4% 80.8% 15.8%

Furthermore, increasing the number of machines (i.e. the number of communications) has

a negative impact on the performance for small instances such as m = 73 and n = 73.

Indeed, the associated time dedicated to the transfers clearly dominates the algorithm

(93% and 98% for the second and the third configurations). Such a behaviour does not

appear as well in the first configuration since communication is based only on an inter-core

communication.

Regarding the overall performance, whatever the instance size, acceleration factors are less

salient than their GPU counterparts. For COWs, these acceleration factors diversify from

×0.4 to ×21.2 whereas for GPUs they alternate from ×3.6 to ×73.3.

2.4.4 Workstations in a Grid Organization

All the previous observations made for COWs are valid when dealing with workstations

distributed in a grid organization. In general, the overall performance is less significant

than COWs for a comparable computational horsepower. Indeed, the acceleration factors

vary from ×0.3 to ×16.1 (see Table 2.15). This performance diminution is explained by

the growth of the communication time since clusters are distributed among different sites.

55

Chapter 2: Efficient CPU-GPU Cooperation

Table 2.15: Measures in terms of efficiency for workstations distributed in a grid orga-
nization. The permuted perceptron problem using a neighborhood based on a Hamming
distance of two is considered.

Instance

2 machines 5 machines

8 CPU cores 40 CPU cores

GPU Grid GPU Grid

73-73 0.8×3.6 1.1×2.6 0.2×10.1 1.8×1.2

81-81 1.1×3.8 1.4×3.0 0.3×10.4 2.0×1.4

101-117 2.5×4.4 3.5×3.1 0.6×12.4 2.4×3.0

201-217 15×4.7 22×3.2 3.3×15.4 7.8×6.5

401-417 103×5.4 167×3.4 24×18.3 49×9.0

601-617 512×6.3 1159×2.8 89×28.3 323×7.8

801-817 1245×6.9 3394×2.5 212×32.8 922×7.5

1001-1017 2421×7.2 7568×2.3 409×35.2 2135×6.8

1301-1317 4903×8.0 18308×2.2 911×36.2 4960×6.7

Instance

12 machines 14 machines

96 CPU cores 112 CPU cores

GPU Grid GPU Grid

73-73 0.2×10.9 7.3×0.3 0.2×12.3 7.9×0.3

81-81 0.2×12.2 7.6×0.4 0.2×13.4 8.3×0.4

101-117 0.4×18.1 8.1×0.9 0.3×22.0 8.8×0.8

201-217 1.9×25.3 10×4.7 1.6×30.6 9.5×4.9

401-417 14×28.8 28×14.4 10×38.3 25×16.1

601-617 51×40.1 155×13.2 35×58.4 148×13.8

801-817 128×42.3 425×12.7 81×67.1 411×13.1

1001-1017 252×43.9 1071×10.3 154×71.9 1043×10.6

1301-1317 568×44.1 2439×10.2 342×73.3 2405×10.3

An analysis of the time dedicated to transfers in Table 2.16 confirms this observation.

In comparison with COWs, the transfer time corresponding to the partitions sending and

the synchronization is significantly more prominent whatever the instance size is. This

can be explained by the distribution of computers among the different sites (respectively

two, five and seven according to the configuration). Indeed, in COWs, such an extra inter-

sites communication does not occur since the computers are directly linked by a gigabit

ethernet.

.

56

Chapter 2: Efficient CPU-GPU Cooperation

Table 2.16: Analysis of the time dedicated to each operation for workstations distributed
in a grid organization. The permuted perceptron problem using a neighborhood based on
a Hamming distance of two is considered.

Instance

Configuration 2 machines Configuration 5 machines

8 CPU cores 40 CPU cores

process transfers workers process transfers workers

73-73 3.4% 59.5% 37.1% 2.0% 94.1% 3.9%
81-81 2.6% 54.5% 42.9% 2.0% 93.5% 4.5%

101-117 2.1% 53.6% 44.3% 3.1% 87.2% 9.7%
201-217 1.6% 52.7% 45.7% 4.5% 74.5% 21.0%
401-417 1.5% 49.9% 48.6% 5.2% 65.8% 29.0%
601-617 0.8% 59.2% 40.0% 2.8% 72.0% 25.2%
801-817 0.5% 63.8% 35.7% 1.8% 74.1% 24.1%

1001-1017 0.4% 66.7% 32.9% 1.5% 76.6% 21.9%
1301-1317 0.3% 68.3% 31.4% 1.3% 77.1% 21.6%

Instance

Configuration 12 machines Configuration 14 machines

96 CPU cores 112 CPU cores

process transfers workers process transfers workers

73-73 0.5% 99.1% 0.4% 0.4% 99.3% 0.3%
81-81 0.6% 98.9% 0.5% 0.6% 99.0% 0.4%

101-117 0.8% 98.2% 1.0% 0.7% 98.5% 0.8%
201-217 3.5% 91.2% 5.3% 3.4% 91.4% 5.2%
401-417 10.4% 70.5% 19.1% 10.2% 70.9% 18.9%
601-617 6.4% 77.1% 16.5% 6.3% 77.3% 16.4%
801-817 4.1% 80.2% 15.7% 3.9% 80.6% 15.5%

1001-1017 3.0% 83.3% 13.7% 2.9% 83.5% 13.6%
1301-1317 2.6% 86.4% 11.0% 2.4% 86.9% 10.7%

57

Chapter 2: Efficient CPU-GPU Cooperation

Conclusion

In this chapter, we have proposed an efficient cooperation between the CPU and the GPU.

This challenge represents one of the critical issues when dealing with the parallel evaluation

of solutions on GPU (iteration-level model). Indeed, since the evaluation of solutions is

often the time-consuming part of metaheuristics, it has to be done in parallel on GPU.

• Optimization of data transfers from CPU to GPU. One of the crucial issues is

to minimize the data transfer between the CPU and the GPU. For S-metaheuristics,

the generation of the neighborhood constitutes a must to achieve the best perfor-

mance. In this purpose, we have proposed an efficient algorithm which performs the

generation and evaluation of the neighborhood in parallel on GPU, while optimizing

the associated data transfers. In Chapter 3, we will show how to accomplish this

generation on the GPU side.

• Additional optimization from GPU to CPU. In addition, when dealing with

S-metaheuristics which operates on minimal/maximum fitness, a reduction operator

can be performed to reduce the data transfers from GPU to CPU. As a result, when

doing such a mechanism, a further performance improvement can be obtained.

• Comparison with COWs and grids. For a same computational power, imple-

mentations on GPU architectures are much more efficient than COWs and grids

for dealing with data-parallel regular applications. Indeed, the main issue in such

distributed architectures concern the communication cost. This is also due to the

synchronous nature of the parallel iteration-level model (tabu search). However,

since GPUs execute threads in a SIMD fashion, they could not be adapted for few

irregular problems (e.g. [MCT06]), in which the computations become asynchronous.

58

Chapter 3

Efficient Parallelism Control

In this chapter, the focus is on the efficient control of parallelism for the iteration-level on

GPU. Indeed, GPU computing is based on hyper-threading, and the order in which the

threads are executed is unknown.

First, an efficient thread control must be applied to meet the memory constraints. It

allows to add some robustness in the developed metaheuritics on GPU, and to improve

the overall performance. Second, regarding S-metaheuristics on GPU, an efficient mapping

has to be defined between each neighboring candidate solution and a thread designated by

a unique identifier. Then, we will examine the design on GPU of S-metaheuristics which

explore a partial neighborhood. We will show why they are not well-adapted to GPU

architectures. Finally, having in hand new tools to design new S-metaheuristics, we will

assess the impact on how the increase of the neighborhood size can improve the quality of

the obtained solutions.

Contents

3.1 Thread Control for Metaheuristics on GPU 61

3.1.1 Execution Parameters at Runtime 61

3.1.2 Thread Control Heuristic . 62

3.2 Efficient Mapping of Neighborhood Structures on GPU 64

3.2.1 Binary Encoding . 64

3.2.2 Discrete Vector Representation 65

3.2.3 Vector of Real Values . 65

3.2.4 Permutation Representation . 66

3.3 First Improvement S-metaheuristics on GPU 69

3.4 Performance Evaluation . 71

3.4.1 Thread Control for Preventing Crashes 71

3.4.2 Thread Control for Further Optimization 74

3.4.3 Performance of User-defined Mappings 74

3.4.4 First Improvement S-metaheuristics on GPU 77

3.5 Large Neighborhoods for Improving Solutions Quality 80

3.5.1 Application to the Permuted Perceptron Problem 81

59

Chapter 3: Efficient Parallelism Control

Main publications related to this chapter

Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. GPU Computing for Local

Search Metaheuristic Algorithms. IEEE Transactions on Computers, in press, 2011.

Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. Neighborhood Structures for

GPU-based Local Search Algorithms. Parallel Processing Letters, 20(4):307–324, 2010.

Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. Large Neighborhood Local

Search Optimization on Graphics Processing Units. 24th IEEE International Symposium

on Parallel and Distributed Processing, IPDPS 2010, pages 1–8, Workshop Proceedings,

IEEE, 2010.

60

Chapter 3: Efficient Parallelism Control

Figure 3.1: Illustration of the operation of the warp-based thread scheduling scheme.

3.1 Thread Control for Metaheuristics on GPU

3.1.1 Execution Parameters at Runtime

GPU multiprocessor is based on thread-level parallelism to maximize the exploitation of

its functional units. The multiprocessor executes threads by groups of 32 threads called

warps. Thread blocks are partitioned into warps that are organized by a scheduler at

runtime (see Figure 3.1). At each instruction issue time, the scheduler selects a warp that

is ready to execute and sets the next instruction to the active threads of the warp. Full

utilization is achieved when the scheduler always has some instructions to process at every

clock cycle. In other words, best performance is reached when the latency of each warp is

completely hidden by other warps [ND10, OML+08].

Hence, one of the key points to obtain high performance is to keep the GPU multipro-

cessors as busy as possible. Latency hiding depends on the number of active warps per

multiprocessor, which is implicitly determined by the execution parameters along with

register constraints. That is the reason why, it is necessary to use threads and blocks in

a way that maximizes hardware utilization. To achieve this, a GPU application can be

tuned by two leading parameters: the number of threads per block and the total number

of threads. There are many different factors involved in selecting these parameters and

some experimentation are inevitably required.

In the approach presented in the previous chapter, the execution of a metaheuristic on

GPU consists in launching a kernel with a large number of threads where one thread is

associated with one solution. In general, threads per block should be a multiple of the warp

size (i.e. 32 threads) to avoid wasting computation on under-populated warps. Thereby,

61

Chapter 3: Efficient Parallelism Control

good performances for applications such as metaheuristics are usually reached for 64, 128,

256 and 512 threads per block.

However, for a very large solutions set, some experiments might not be conducted. The

major issue is then to control the number of threads to meet the memory constraints like

the limited size and number of registers to be allocated to each thread. Unlike the previous

approach, one thread might not be associated with one neighbor but several neighbors. As

a result, on the one hand, having an efficient thread control will prevent GPU programs for

crashing. On the other hand, it will allow to find an optimal number of threads required

at runtime to get the best multiprocessor occupancy, leading to a better performance.

3.1.2 Thread Control Heuristic

Different works [CSV10, NM09] have been investigated for parameters auto-tuning. The

heuristics are a priori approaches which are based on enumerating all the different values

of the two parameters (threads per block and the total number of threads). However, such

approaches are too much time-consuming and may be not well-adapted for metaheuristics

due to their a priori natures. For dealing with this issue, we have proposed in [1] a

dynamic heuristic for parameters auto-tuning at runtime. To the best of our knowledge,

such approach has never been investigated regarding the different works on GPU-based

metaheuristics. Algorithm 9 gives the general template for this heuristic. Such a method

is common to all metaheuristics on GPU (i.e. P-metaheuristics and S-metaheuristics).

The main idea of this approach is to send threads by “waves” to the GPU kernel to

perform the parameters tuning during the first metaheuristic iterations. Thereby, the

time measurement for each selected configuration according to a certain number of trials

(lines 5 to 14) will yield the best configuration parameters. Regarding the number of

threads per block, as quoted above, it is set to a multiple of the warp size (see line 19).

The starting total number of threads is set as the nearest power of two of the solution

size to be in accordance with the previous point. For decreasing the total number of

configurations, the algorithm terminates when the logarithm of the neighborhood size is

reached. In some cases, when a thread block allocates more registers than are available

on a multiprocessor, the kernel execution will fail since too many threads are requested.

Therefore, a fault-tolerance mechanism is provided to detect such a situation (from lines 8

to 12). In this case, the heuristic terminates and returns the best configuration parameters

previously found.

The only parameter to determine is the number of trials per configuration. The more this

value is, the more will be accurate the final tuning at the expense of an extra computational

time. The benefits of the thread control will be presented in Section 3.4.1 and 3.4.2.

62

Chapter 3: Efficient Parallelism Control

Algorithm 9 Dynamic parameters tuning heuristic

Require: nb trials;
1: nb threads := nearest power of 2 (solution size);
2: while nb threads <= neighborhood size do
3: nb threads block := 32;
4: while nb threads block <= 512 do
5: repeat
6: Metaheuristic iteration pre-treatment on host side
7: Evaluation kernel on GPU
8: if GPU kernel failure then
9: Restore (best nb threads);

10: Restore (best nb threads block);
11: Exit procedure
12: end if
13: Metaheuristic iteration post-treatment on host side
14: until Time measurements of nb trials
15: if Best time improvement then
16: best nb threads := nb threads;
17: best nb threads block := nb threads block;
18: end if
19: nb threads block := nb threads + 32;
20: end while
21: nb threads := nb threads * 2;
22: end while
23: Exit procedure
Ensure: best nb threads and best nb threads block;

63

Chapter 3: Efficient Parallelism Control

3.2 Efficient Mapping of Neighborhood Structures on GPU

In Chapter 2, we have defined a parallelization scheme of S-metaheuristics on GPU. The

key success is based on the generation and evaluation of the neighborhood on GPU to

reduce the data transfers and thus achieve the best performance. In this section, the focus

is on the neighborhood generation to control the threads parallelism. This generation step

of the iteration-level parallel model is not generic and must be handled efficiently.

The neighborhood structures play a crucial role in the performance of S-metaheuristics

and are problem-dependent. For a GPU application, a kernel is launched with a large

number of threads which are provided with a unique id. Regarding the generation and

evaluation kernel on GPU (see Algorithm 10), according to the thread control, it just

consists in associating one thread to many neighbors (also called kernel persistence). This

association is legitimate in S-metaheuristics since each solution evaluation is independent.

Algorithm 10 Generation and evaluation kernel on GPU

Require: offset := nb threads;
1: id := get thread id();
2: while id < neighborhood size do
3: neighbor := mapping (id,solution);
4: fitness[id] := evaluate (neighbor);
5: id := id + offset;
6: end while

The main difficulty which remains, is to find an efficient mapping between a GPU thread

and neighbor candidate solutions. In other words, the issue is to say which solution must

be handled by which thread. The answer is dependent of the solution representation.

Indeed, the neighborhood structure strongly depends on the target optimization prob-

lem representation. In the following, we provide a methodology to deal with the main

structures of the literature.

3.2.1 Binary Encoding

In a binary representation, a solution is coded as a vector (string) of bits. The neighbor-

hood representation for binary problems is based on Hamming distance (see Fig. 3.2). A

neighbor of a given solution is obtained by flipping one bit of the solution (for a Hamming

distance of one).

Mapping between LS neighborhood encoding and GPU threads is rather trivial. Indeed,

on the one hand, for a binary vector of size n, the size of the neighborhood is exactly n.

On the other hand, threads are provided with a unique id. That way, a thread is directly

associated with at least one neighbor. Hence, such a mapping is straightforward. This case

64

Chapter 3: Efficient Parallelism Control

Figure 3.2: Binary representation. For a Hamming distance of one, the neighborhood of
a solution consists in flipping one bit of the solution.

has been investigated for the permuted perceptron problem [Poi95] with a neighborhood

based on Hamming distance of one.

3.2.2 Discrete Vector Representation

Discrete vector representation is an extension of binary encoding using a given alphabet

Σ. In this representation, each variable acquires its value from the alphabet Σ. Assuming

that the cardinality of the alphabet Σ is k, the size of the neighborhood is (k− 1)× n for

a discrete vector of size n. Fig. 3.3 illustrates an example of discrete representation with

n = 3 and k = 5.

Let id be the identity of the thread corresponding to a given candidate solution of the

neighborhood. Compared to the initial solution which allowed to generate the neighbor-

hood, id/(k−1) represents the position which differs from the initial solution and id%(k−1)

is the available value from the ordered alphabet Σ (both using zero-index based number-

ing). Therefore, such a mapping is possible. An application of this neighborhood has been

investigated for the Golomb rulers [GB77].

3.2.3 Vector of Real Values

For continuous optimization, a solution is coded as a vector of real values. A usual neigh-

borhood for such a representation consists in discretizing the solution space. The neigh-

borhood is defined in [CS00] by using the concept of “ball”. A ball B(s, r) is centered on

s with radius r; it contains all points s′ such that ||s′ − s|| ≤ r. To obtain a homogeneous

exploration of the space, a set of balls centered on the current solution s is considered with

radius h0, h1, . . . , hm.

65

Chapter 3: Efficient Parallelism Control

Figure 3.3: Discrete vector representation. The neighborhood of a solution consists in
replacing the discrete value of a vector element by any other character of a given alphabet.

Thus, the space is partitioned into “crowns” Ci(s, hi−1, hi) such that Ci(s, hi−1, hi) =

s′|hi−1 ≤ ||s′ − s|| ≤ hi. The m neighbors of s are chosen by random selection of one point

inside each crown Ci for i varying from 1 to m (see Fig. 3.4). This can be easily done by

geometrical construction. The mapping consists in associating one thread with at least one

neighbor corresponding to one point inside each crown. Thus, such a mapping is feasible.

An application of this mapping is done for the Weierstrass function [LV98].

3.2.4 Permutation Representation

3.2.4.1 2-exchange Neighborhood

Building a neighborhood by pair-wise exchange operations is a standard way for permu-

tation problems. For a permutation of size n, the size of the neighborhood is
n× (n− 1)

2
.

Fig. 3.5 illustrates a permutation representation and its associated neighborhood.

Unlike the previous representations, in the case of a permutation encoding, the mapping

between a neighbor and a GPU thread is not straightforward. Indeed, on the one hand,

a neighbor is composed of two element indexes (a swap in a permutation). On the other

hand, threads are identified by a unique id. Consequently, one mapping has to be con-

sidered to transform one index into two ones. In a similar way, another one is required

to transform two indexes into one. Finding a nearly constant time mapping is clearly a

challenging issue for permutation representation.

66

Chapter 3: Efficient Parallelism Control

Figure 3.4: A neighborhood for a continuous problem with two dimensions. The neighbors
are taken by random selection of one point inside each crown.

Figure 3.5: Permutation representation. A usual neighborhood is based on the swap oper-
ator which consists in exchanging the location of two elements of the candidate solution.

67

Chapter 3: Efficient Parallelism Control

Proposition 3.2.1 Two-to-one index transformation

Given i and j the indexes of two elements to be exchanged in the permutation repre-

sentation, the corresponding index f(i, j) in the neighborhood representation is equal to

i× (n− 1) + (j − 1)− i× (i + 1)

2
, where n is the permutation size.

Proposition 3.2.2 One-to-two index transformation

Given f(i, j) the index of the element in the neighborhood representation, the correspond-

ing index i is equal to n− 2− ⌊
√

8× (m− f(i, j)− 1) + 1− 1

2
⌋ and j is equal to f(i, j)−

i× (n− 1) +
i× (i + 1)

2
+ 1 in the permutation representation, where n is the permutation

size and m the neighborhood size.

The proofs of two-to-one and one-to-two index transformations can be found in Appendix

.1.1 and Appendix .1.2. The complexity of such mappings is nearly in constant time i.e.

it depends on the calculation of the square root on GPU (solving quadratic equation).

Application of this mapping is done for the quadratic assignment problem. In a similar

way, a mapping for a neighborhood based on a 2-opt operator has been applied to the

traveling salesman problem. Moreover, a slight modification of the mapping has been

applied to the permuted perceptron problem for a neighborhood based on a Hamming

distance of two.

3.2.4.2 3-exchange Neighborhood

An instance of a large neighborhood is a neighborhood built by exchanging three values.

Variants of this neighborhood such as 3-opt have been used for permutation problems

[DG97].

For an array of size n, the size of this neighborhood is
n× (n− 1)× (n− 2)

6
. A mapping

here between a neighbor and a GPU thread is also particularly challenging. One-to-three

and three-to-one index transformations must be handled efficiently.

The mapping for this neighborhood is a generalization of the 2-exchange with a third

index (see Appendix .1.3 and Appendix .1.4). The complexity of the mappings is logarith-

mic in practice i.e. it depends on the numerical Newton-Raphson method (solving cubic

equation).

68

Chapter 3: Efficient Parallelism Control

Figure 3.6: Construction of mapping tables.

3.2.4.3 Mapping Tables for General Neighborhoods

For dealing with more complex neighborhoods, finding a mapping might be more difficult.

To release from such constraints, a common solution is to construct mapping tables on

CPU, and to copy them once to the GPU global memory. In this manner, each thread just

needs to retrieve its corresponding indexes in the mapping tables. Figure 3.6 illustrates

this idea with a neighborhood based on 3-exchange operator.

The construction of mapping tables allows to deal with any neighborhoods. The drawback

of this method is the extra cost due to additional global memory accesses. A study on

how it impacts the global performance of S-metaheuristics on GPU will be investigated in

Section 3.4.3.

3.3 First Improvement S-metaheuristics on GPU

The thread control heuristic and the efficient mapping of neighborhood structures are

the key components of the parallelism control. Having these tools at hand, new S-

metaheuristics on GPU can be designed. Therefore, we propose to investigate S-metaheuristics

based on first improvement. These latter explore a partial neighborhood (e.g. simulated

annealing). To achieve this, the parallelization scheme presented in Chapter 2 needs to be

adapted when dealing with such S-metaheuristics. The difficulty essentially comes from

the sequential nature of first improvement-based metaheuristics.

When it comes to the parallelization on traditional architectures, the neighborhood is

decomposed into separate partitions that are generally of equal size. The partitions are

generated and then evaluated in a parallel independent way. The exploration stops when

an improving neighbor is found. This parallel model is asynchronous, and there is no need

to explore the whole neighborhood.

Since the execution model of GPUs is purely SIMD, GPU computing is clearly inefficient

in executing such algorithms in which the computations become asynchronous. In addition

to this, since the execution order of threads in undefined, there is no inherent mechanism

to stop the kernel during its execution.

69

Chapter 3: Efficient Parallelism Control

Figure 3.7: Full exploration and partial exploration of neighborhoods.

A way to deal with such asynchronous parallelization is to transform these algorithms into a

data-parallel regular application. Thereby, one has to consider the previous parallelization

scheme of the iteration-level on GPU, not applied to the whole neighborhood, but to a

partial set of solutions. In other words, another approach is to generate and evaluate a

partial set of solutions on GPU (see Figure 3.7). After this parallel evaluation, according

to the S-metaheuristic, a specific post-treatment is performed on CPU on this partial set

of solutions. Such a mechanism can be seen as a way to simulate a first improvement-based

S-metaheuristic in a parallel way. From an implementation point of view, it is similar to

the Algorithm 6 proposed in the previous chapter. The only difference concerns the partial

set that has to be handled in which the neighbors are randomly chosen from the entire

neighborhood. Once the number of neighbors has been set, the thread control heuristic

presented in Section 3.1 can automatically adjust the remaining parameters.

Even if this approach to deal with such an asynchronous algorithm may be normal, it may

be not efficient in comparison with a S-metaheuristic in which a full exploration of the

neighborhood is performed on GPU. Indeed, to get a better global memory performance,

memory accesses must constitute a contiguous range of addresses to be coalesced. This is

not achieved for the exploration of a partial neighborhood since neighbors are randomly

chosen.

Figure 3.8 illustrates a memory access pattern for the two different neighborhoods ex-

plorations. In the full exploration of the neighborhood (left case), all the neighbors are

generated. Hence, the elements of the structures are dispatched such that many thread

accesses will be coalesced into a single memory transaction. This does not happen in the

partial exploration of the neighborhood (right case) since there is no connection between

the elements to be accessed. Indeed, the different moves to be performed from the partial

70

Chapter 3: Efficient Parallelism Control

Figure 3.8: Illustration of a memory access pattern for two different neighborhoods explo-
rations.

set of solutions are randomly chosen from the whole neighborhood. In this case, the dif-

ferent memory accesses have to be serialized, increasing the total number of instructions

executed for this warp.

In Section 3.4.4, we will examine how such uncoalesced accesses to the global memory

have an impact on the overall performance of S-metaheuristics.

3.4 Performance Evaluation

3.4.1 Thread Control for Preventing Crashes

As previously said, when dealing with a large solutions set, some experiments might fail

at execution time. This is typically the case when too many threads are requested. This

is due to the fact that a thread block allocates more registers than are available on a

multiprocessor. Hence, the main issue is then to control the number of threads to meet

the memory constraints. In the next section, we will feature an application which provokes

errors at runtime. Thereafter, we will show how the thread control heuristic allows to

prevent such errors.

3.4.1.1 Application to the Traveling Salesman Problem

For the next experiments, a tabu search with 10000 iterations is considered on the GTX

280 configuration. The number of threads per block has been arbitrary chosen to 256, and

the total number of threads created at run time is equal to the neighborhood size. A 2-opt

71

Chapter 3: Efficient Parallelism Control

Table 3.1: Measures in terms of efficiency for the traveling salesman problem using a
pair-wise-exchange neighborhood (permutation representation).

Instance

Core 2 Duo T5800 Core 2 Quad Q6600
GeForce 8600M GT GeForce 8800 GTX

32 GPU cores 128 GPU cores
CPU GPU CPU GPU

eil101 2.3 1.8×1.2 1.7 1.1×1.5

d198 10 6.9×1.4 7.3 3.2×2.3

pcb442 57 36×1.5 29 14×2.2

rat783 196 144×1.4 107 42×2.8

d1291 692 503×1.4 492 140×3.5

pr2392 3389 . 2318 531×4.4

fnl4461 14817 . 11710 .
rl5915 27946 . 20935 .

Instance

Xeon E5450 Xeon E5620
GeForce GTX 280 Tesla M2050
240 GPU cores 448 GPU cores

CPU GPU CPU GPU
eil101 1.4 0.6×2.3 1.7 0.4×4.2

d198 5.6 1.3×4.4 6.1 0.8×7.5

pcb442 29 6.0×4.5 27 3.5×7.6

rat783 93 20×4.7 86 11×7.8

d1291 365 71×5.1 364 43×8.5

pr2392 2389 286×8.4 2399 161×14.9

fnl4461 11274 1125×11.0 11642 616×18.9

rl5915 20710 . 16499 837×19.7

operator for the TSP has been implemented on GPU. The considered instances have been

selected among the TSPLIB instances presented in [DG97].

Table 10 presents the results for the traveling salesman problem. On the one hand, even

if a large number of threads are executed (
n× (n− 1)

2
neighbors), the values for the first

configuration are not significant (acceleration factor from ×1.2 to ×1.5). Indeed, the

neighbor evaluation function consists of replacing two edges of a solution. As a result,

this computation can be given in constant time, which is not enough to hide the memory

latency. Regarding the other configurations, using more cores overcomes the issue and

results in a better global performance. Indeed, for the GeForce 8800, accelerations start

from ×1.5 with the eil101 instance and grows up to ×4.4 for pr2392. In a similar manner,

the GTX 280 starts from ×2.3 and goes up to an acceleration factor of ×11 for the

fnl4461 instance. Nevertheless, for the three first configurations, for larger instances such

as pr2392, fnl4461 or rl5915, the program has provoked an execution error because of the

hardware register limitation. Such a problem does not exist for the Tesla M2050 since

more registers are available on this card.

72

Chapter 3: Efficient Parallelism Control

Table 3.2: Measures of the benefits of applying thread control. The traveling salesman
problem using a neighborhood based on a 2-opt operator is considered.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600
GeForce 8600M GT GeForce 8800 GTX

32 GPU cores 128 GPU cores
CPU GPU GPUTC CPU GPU GPUTC

eil101 2.3 1.8×1.2 1.7×1.3 1.7 1.1×1.5 0.9×1.8

d198 10 6.9×1.4 6.8×1.5 7.3 3.2×2.3 3.0×2.4

pcb442 57 36×1.5 34×1.6 29 14×2.2 13×2.4

rat783 196 144×1.4 141×1.4 107 42×2.8 39×3.0

d1291 692 503×1.4 498×1.4 492 140×3.5 133×3.7

pr2392 3389 . 1946×1.7 2318 531×4.4 519×4.5

fnl4461 14817 . 7133×2.1 11710 . 1789×6.6

rl5915 27946 . 9142×3.1 20935 . 2471×8.5

Instance

Xeon E5450 Xeon E5620
GeForce GTX 280 Tesla M2050
240 GPU cores 448 GPU cores

CPU GPU GPUTC CPU GPU GPUTC
eil101 1.4 0.6×2.3 0.6×2.4 1.7 0.4×4.2 0.4×4.3

d198 5.6 1.3×4.4 1.3×4.5 6.1 0.8×7.5 0.8×7.6

pcb442 29 6.0×4.5 5.8×4.7 27 3.5×7.6 3.4×7.8

rat783 93 20×4.7 19×4.9 86 11×7.8 10×8.3

d1291 365 71×5.1 68×5.4 364 43×8.5 41×8.9

pr2392 2389 286×8.4 278×8.6 2399 161×14.9 157×15.3

fnl4461 11274 1125×11.0 1110×11.2 11642 616×18.9 609×19.1

rl5915 20710 . 1461×14.2 16499 837×19.7 828×19.9

3.4.1.2 Thread Control Applied to the Traveling Salesman Problem

Since the GPU may fail to execute large neighborhoods on large instances, the next exper-

iment consists in highlighting the benefits of thread control presented in Section 3.1. The

associated heuristic based on thread “waves” has been applied for the traveling salesman

problem previously seen. The only required parameter is the number of trials which defines

the accuracy of each parameter configuration (i.e. the number of threads per block and

the total number of threads). The value of this parameter has been fixed to 10. Table 13

presents the obtained results for the traveling salesman problem.

The first observation concerns the robustness provided by the thread control version for

large instances pr2392, fnl4461 and rl5915. Indeed, one can clearly see the great benefits

of such control since the execution of these instances on GPU has been successfully termi-

nated whatever the used card. Indeed, according to some execution logs, the heuristic is

fault-tolerant since it is able to detect kernel errors at run time (e.g. the number of reg-

isters, a bad configuration of the parameters, etc.), and to restore the previous functional

state of the algorithm. Regarding the acceleration factors using the thread control, they

73

Chapter 3: Efficient Parallelism Control

alternate between ×1.3 and ×19.9 according to the instance size (GPUTC). Performance

improvement in comparison with the standard version varies between 1% and 5%, which

is not uncommonly significant. Furthermore, statistical analysis for some instances cannot

determine if the distribution of the averages between the two algorithms is different. This

can be explained by the fact that the instances are really large thus the neighborhood

size is also impacted. Indeed, since the number of iterations for tuning is directly linked

to the neighborhood size, the algorithm may take too much iterations to get a suitable

parameters tuning.

3.4.2 Thread Control for Further Optimization

The thread control prevents the application from crashing and may improve the algorithm

performance rather than a parameters tuning made at compile time. The following exper-

iment intends to highlight the benefits of applying thread control in terms of performance

optimization. The considered problem is the permuted perceptron problem using a neigh-

borhood based on a hamming distance of two. Table 3.3 reports the obtained results.

In a general manner, performance results obtained for the thread control (GPUTC) are

significantly improved in comparison with its counterpart without control. Indeed, the

acceleration factors alternate from ×3.8 to ×81.4 for GPUTC against ×3.6 to ×73.3. This

is significant since the results correspond to a performance enhancement from 5% to 20%.

In comparison with the traveling salesman problem, such an improvement is explained by

the fact that the neighborhood is smaller. That is the reason why, the dynamic heuristic

spends less time to find a suitable parameters auto-tuning.

In a general manner, the same observations can be made for other optimization problems.

A thread control can provide a performance improvement from 3% to 20%. The obtained

speed-ups for the other problems are reported in Table 3.4 for a tabu search using the

same parameters.

3.4.3 Performance of User-defined Mappings

As previously said, for generating the neighborhood on GPU, one of the critical issues is

to find efficient mappings between a GPU thread and a particular neighbor. Indeed, this

step is crucial in the design of S-metaheuristics on GPU since it is clearly identified as

the gateway between a GPU process and a candidate neighbor. On the one hand, the

thread id is represented by a single index. On the other hand, the move representation of

a neighbor varies according to the neighborhood.

A simple way to overcome this issue is to build mapping tables. In this way, each thread

just needs to access to its corresponding value via the global memory (see Section 3.2.4.3).

However, even if this approach undoubtedly simplifies the mapping between a thread

74

Chapter 3: Efficient Parallelism Control

Table 3.3: Measures of the benefits of applying thread control. The permuted perceptron
problem using a neighborhood based on a Hamming distance of two is considered.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600
GeForce 8600M GT GeForce 8800 GTX
GPU GPUTC GPU GPUTC

73-73 0.8×3.6 0.8×3.8 0.2×10.1 0.2×10.3

81-81 1.1×3.8 1.0×4.2 0.3×10.4 0.3×10.9

101-117 2.5×4.4 2.4×4.6 0.6×12.4 0.6×13.7

201-217 15×4.7 13×5.4 3.3×15.4 2.9×17.6

401-417 103×5.4 92×6.2 24×18.3 21×21.0

601-617 512×6.3 446×7.2 89×28.3 78×32.3

801-817 1245×6.9 1064×8.1 212×32.8 182×38.1

1001-1017 2421×7.2 2087×8.4 409×35.2 350×41.3

1301-1317 4903×8.0 4265×9.2 911×36.2 779×42.5

Instance

Xeon E5450 Xeon E5620
GeForce GTX 280 Tesla M2050
GPU GPUTC GPU GPUTC

73-73 0.2×10.9 0.2×11.6 0.2×12.3 0.2×12.8

81-81 0.2×12.2 0.2×12.8 0.2×13.4 0.2×13.7

101-117 0.4×18.1 0.4×19.9 0.3×22.0 0.3×23.2

201-217 1.9×25.3 1.6×30.1 1.6×30.6 1.4×34.9

401-417 14×28.8 13×31.2 10×38.3 8.9×43.0

601-617 51×40.1 45×45.3 35×58.4 31×65.9

801-817 128×42.3 109×49.6 81×67.1 72×75.5

1001-1017 252×43.9 216×51.3 154×71.9 138×80.2

1301-1317 568×44.1 485×51.7 342×73.3 308×81.4

75

Chapter 3: Efficient Parallelism Control

Table 3.4: Benefits of the thread control on GPU. The acceleration factors are reported
for a tabu search on GPU on different optimization problems.

The permuted perceptron problem. The quadratic assignment problem.
A neighborhood based on a Hamming A neighborhood based on a pair-wise

distance of one is considered. exchange operator is considered.

The Weierstrass continuous function. The Golomb rulers.

10000 neighbors are considered. n3 − n neighbors are considered.

76

Chapter 3: Efficient Parallelism Control

Table 3.5: Measures of the benefits of using user-defined mappings instead of constructed
mapping tables on the GTX 280. The permuted perceptron problem is considered for two
different neighborhoods using a tabu search.

Instance
n neighbors

n × (n − 1)

2
neighbors

CPU GPU GPUMT CPU GPU GPUMT

73-73 1.1 3.0×0.4 3.2×0.4 2.1 0.2×10.9 0.2×9.5

81-81 1.3 3.3×0.4 3.5×0.4 2.7 0.2×12.2 0.3×10.6

101-117 2.2 4.2×0.5 4.5×0.5 7.0 0.4×18.1 0.4×15.6

201-217 8.1 7.7×1.1 8.3×1.0 48 1.9×25.3 2.2×21.5

401-417 31 14×2.2 16×2.0 403 14×28.8 16×24.8

601-617 105 43×2.4 48×2.2 2049 51×40.1 61×33.7

801-817 200 50×4.0 54×3.8 5410 128×42.3 149×36.0

1001-1017 336 58×5.8 66×5.1 11075 252×43.9 297×37.3

1301-1317 687 85×8.0 94×7.3 25016 568×44.1 661×37.9

and neighboring solutions, it implies additional accesses to the global memory. Table 3.5

reports the obtained results with user-defined mappings and constructed mapping tables

for the permuted perceptron problem.

Regarding the neighborhood based on a Hamming distance of one (n neighbors), the ob-

tained acceleration factors from the version using a mapping table (GPUMT) are quite

close to the original version. Indeed, they alternate from ×0.4 to ×7.3 (against from

×0.4 to ×8.0). This can be clarified by the fact the number of accesses is not majorly

important (i.e. mapping table of n elements). However, when considering a bigger neigh-

borhood based on a Hamming distance of two, the performance gap which occurs is quite

remarkable. The new obtained speed-ups vary from ×9.5 to ×37.9 for GPUMT (against

from ×10.9 to ×44.1 for the original version). Such performance difference alternates from

5% to 15% according to the instance. As a consequence, such a performance diminution

is fairly significant, and it justifies the use of user-defined mapping when increasing the

neighborhood size.

In a similar way, the same observations can be stated for the other problems where the

use of mapping tables generates a 5% to 20% performance degradation (see Table 3.6).

3.4.4 First Improvement S-metaheuristics on GPU

S-metaheuristics which explore a partial neighborhood may look difficult to parallelize on

GPU due to their sequential natures. One solution resides in changing the original semantic

of the algorithm. It consists in generating and evaluating a partial set of solutions of the

neighborhood. Then according to the S-metaheuristic, a post-treatment is performed on

the CPU side.

However, as previously said in Section 3.3, since moves to be performed are randomly

77

Chapter 3: Efficient Parallelism Control

Table 3.6: Benefits of the use of user-defined mappings in comparison with constructed
mapping tables. The acceleration factors are reported for a tabu search on GPU on
different optimization problems.

The permuted perceptron problem.
A neighborhood based on a Hamming A neighborhood based on a Hamming

distance of one is considered. distance of two is considered.

The quadratic assignment problem. The Weierstrass continuous function.
A neighborhood based on a pair-wise 10000 neighbors are considered.

exchange operator is considered.

The traveling salesman problem. The Golomb rulers.

A neighborhood based on a two-opt n3 − n neighbors are considered.
operator is considered.

78

Chapter 3: Efficient Parallelism Control

Table 3.7: Measures in terms of efficiency of two different exploration strategies. The
quadratic assignment problem using a 3-exchange neighborhood is considered.

Instance

Intel Xeon E5450

GeForce GTX 280

240 GPU cores

CPU GPUILSHCFE GPUILSHCPE

tai30a 14 1.5×9.5 4.8×3.8

tai35a 26 2.5×10.2 6.3×4.1

tai40a 45 4.1×11.1 8.5×5.3

tai50a 112 8.2×13.7 17×6.5

tai60a 217 14×15.4 29×7.4

tai80a 757 43×17.8 91×8.3

tai100a 1978 93×21.2 206×9.6

chosen, accesses to data structures via the global memory may be serialized, leading to a

performance decrease. A next experiment consists in evaluating this performance degra-

dation for a S-metaheuristic which explores a partial neighborhood. To measure this, this

latter algorithm is directly compared with another one which operates a full exploration

of the neighborhood.

For doing this, an iterated local search is considered for the quadratic assignment problem

is considered on the GTX 280 configuration. The embedded algorithm is a hill climbing

heuristic. The first version concerns a full exploration of the neighborhood whereas the

second one considers a partial exploration. The neighborhood is based on a 3-exchange

operator. Such a large neighborhood ensures that the number of threads is enough to

cover the access latency for not introducing any bias into the current experiment.

The stopping criterion is fixed to a certain number of evaluations which is equivalent to

10000 iterations for a full exploration. Regarding the strategy of a partial exploration,

experiments have been performed with a number of neighbors per iteration fixed to 1024,

2048 and 4096. The thread control heuristic is in charge of tuning the parameters. There-

after, only the average of the best of the three configurations is reported in the next

results. Furthermore, since there is no way to detect the convergence to a local optima

in the partial exploration strategy, the number of iterations is fixed to 50 before applying

the perturbation. All the obtained acceleration factors are made in comparison with an

iterated local search with a full exploration strategy made on a single CPU core. Table 3.7

reports the obtained results for the two algorithms.

In a general manner, for the iterative local search based on a full exploration (GPUILSHCFE),

speed-ups grow with the instance size. They vary from×9.5 to×21.2. One can also observe

that these acceleration factors are more salient than those provided with a neighborhood

based on a 2-exchange. Regarding the iterative local search based on a partial exploration

(GPUILSHCPE), accelerations also grow with the size increase (from ×3.8 to ×9.6). How-

79

Chapter 3: Efficient Parallelism Control

Table 3.8: Analysis of the execution path of two different exploration strategies provided
by the CUDA Profiler. The instance tai50a is considered.

Algorithm

Intel Xeon E5450

GeForce GTX 280

240 GPU cores

Execution time Branches Divergent branches Warp serializations

ILSHCFE 8.2×13.7 439010221 28386975 157034001
ILSHCPE 1024 22×5.2 480112132 68814552 661318575
ILSHCPE 2048 17×6.5 479829773 68788731 576102293
ILSHCPE 4096 19×6.0 480053219 68787615 604398213

ever, as expected, the obtained results for the partial exploration of the neighborhood

are clearly less effective than a full exploration strategy. This performance difference es-

sentially comes from random moves in the partial exploration, leading to non-coalesced

accesses to the global memory.

To confirm this point, an analysis of the execution path of the two different exploration

strategies is required. To achieve this, the CUDA Profiler [NVI11] provides a tool to

examine the number of branches taken. Table 3.8 reports the results for the instance

tai50a.

Regarding the presented results, in addition to the full exploration-based algorithm, partial

exploration-based algorithms are considered with three different neighborhood sizes. In

general, the number of branches taken by threads is similar for each algorithm. However,

one can clearly observe that the number of divergent branches taken by threads in each

first exploration-based algorithm is at least twice more important than the full exploration

strategy. This is typically the results from additional non-coalesced accesses to the global

memory. Hence, such a threads divergence leads to many memory accesses that have to

be serialized, increasing the total number of instructions executed. Indeed, the number of

warp serializations for a partial exploration is about five times more important than a full

exploration-based algorithm. Such an analysis confirms the performance difference which

occurs in the two exploration strategies.

3.5 Large Neighborhoods for Improving Solutions Quality

Up to now, as the original iteration-level does not change the semantics of the sequen-

tial algorithm, the effectiveness in terms of quality of solutions has not been yet inves-

tigated. Thereby, it will be interesting to see how the definition of the neighborhood in

S-metaheuristics plays a crucial role in the performance of the algorithm. Indeed, theoret-

ical and experimental studies have shown that the increase of the neighborhood size may

improve the quality of the obtained solutions [AGM+07]. Nevertheless, as it is mostly CPU

80

Chapter 3: Efficient Parallelism Control

time-consuming, this mechanism is not often fully exploited in practice. So, in practice,

large neighborhoods algorithms are unusable because of their high computational cost.

Indeed, experiments using large neighborhoods are often stopped without convergence be-

ing reached. Thereby, in designing S-metaheuristics, there is often a trade-off between

the size of the neighborhood to use and the computational complexity to explore it. To

deal with such issues, only the use of parallelism allows to design methods based on large

neighborhood structures. We have shown in [2, 8] how the use of GPU computing allows

to exploit parallelism in such algorithms.

3.5.1 Application to the Permuted Perceptron Problem

As an application, a tabu search has been implemented on GPU for the permuted per-

ceptron problem. Three different neighborhoods based on different Hamming distances

are considered. Indeed, usual neighborhoods for solving binary problems are in general a

linear (e.g. 1-Hamming distance) or quadratic (e.g. 2-Hamming distance) function of the

input instance size. Some large neighborhoods may be high-order polynomial of the size

of the input instance (e.g. 3-Hamming distance).

The used configuration is the third configuration with the NVIDIA GTX 280 card. The

following experiments intend to assess the quality of solutions for the four instances of the

literature addressed in [KM99]. A tabu search has been executed 50 times with a maximum

number of
n× (n− 1)× (n− 2)

6
iterations. The tabu list size has been arbitrary set to

m

6
where m is the number of neighbors. The average value of the evaluation function (fitness)

and its standard deviation (in sub index) have been measured. The number of successful

tries (fitness equal to zero) and the average number of iterations to converge to a solution

are also represented.

3.5.1.1 Neighborhood based on a 1-Hamming Distance

Table 3.9 reports the results for the tabu search based on the 1-Hamming distance neigh-

borhood. In a short execution time, the algorithm has been able to find few solutions

for the instances m = 73, n = 73 (11 successful tries on 50) and m = 81, n = 81 (5 suc-

cessful tries on 50). The two other instances are well-known for their difficulties and no

solutions were found. Regarding the execution time, the GPU version does not offer any-

thing in terms of efficiency. Indeed, since the neighborhood is relatively small (n threads),

the number of threads per block is not enough to fully cover the memory access latency.

To measure the efficiency of the GPU-based implementation of this neighborhood, bigger

instances of the permuted perceptron problem should be considered.

81

Chapter 3: Efficient Parallelism Control

Table 3.9: Results obtained using a neighborhood based on a 1-Hamming Distance.

Problem Fitness # iterations # solutions CPU time GPU time
73× 73 9.86.2 59891.2 11/50 4s 9s
81× 81 11.36.6 72345.2 5/50 6s 13s

101× 101 20.712.2 166650 0/50 16s 33s
101× 117 16.88.4 260130 0/50 29s 57s

Table 3.10: Results obtained using a neighborhood based on a 2-Hamming Distance.

Problem Fitness # iterations # solutions CPU time GPU time Acc.
73× 73 15.518.1 42142.7 22/50 81s 10s ×8.2
81× 81 16.213.2 65421.3 17/50 174s 16s ×11.0

101× 101 13.113.8 133211.2 13/50 748s 44s ×17.0
101× 117 12.79.9 260130 0/50 1947s 105s ×18.5

3.5.1.2 Neighborhood based on a 2-Hamming Distance

A tabu search has been implemented on GPU using a neighborhood based on a Hamming

distance of two. Results of the experiment for the permuted perceptron problem are

reported in Table 3.10.

By using this other neighborhood, in comparison with Table 3.9, the quality of solutions

has been significantly improved: on the one side the number of successful tries for both

m = 73, n = 73 (22 solutions) and m = 81, n = 81 (17 solutions) is more prominent. On

the other side, 13 solutions were found for the instance m = 101, n = 101. Regarding the

execution time, the acceleration factor for the GPU version is remarkably efficient (from

×8.2 to ×18.5). Indeed, since a large number of threads are executed, the GPU can take

full advantage of the multiprocessors occupancy.

3.5.1.3 Neighborhood based on a 3-Hamming Distance

A tabu search using a neighborhood based on Hamming distance of three has been imple-

mented. The obtained results are collected in Table 3.11.

In comparison with Knudsen and Meier’s article [KM99], the results found by the generic

Table 3.11: Results obtained using a neighborhood based on a 3-Hamming Distance.

Problem Fitness # iterations # solutions CPU time GPU time Acc.
73× 73 2.54.1 19341.5 39/50 1202s 50s ×24.2
81× 81 3.24.2 40636.6 33/50 3730s 146s ×25.5

101× 101 5.85.1 100113.1 22/50 24657s 955s ×25.8
101× 117 7.12.3 214092.9 3/50 88151s 3351s ×26.3

82

Chapter 3: Efficient Parallelism Control

Figure 3.9: Analysis of the time spent for each major operation. The 3 different neighbor-
hoods are compared and the instances are ordered according to their size.

tabu search are competitive without any use of cryptanalysis techniques. Indeed, the num-

ber of successful solutions has been drastically improved for every instance (respectively

39, 33 and 22 successful tries) and 3 solutions have been even found for the difficult in-

stance m = 101, n = 117. Regarding the execution time, acceleration factors using the

GPU are highly significant (from ×24.2 to ×26.2).

The conclusions from this experiment indicate that the use of the GPU provides an effi-

cient way to deal with large neighborhoods. Indeed, a neighborhood based on a Hamming

distance of three on the permuted perceptron problem was unpractical in terms of sin-

gle CPU computational resources. Therefore, implementing this algorithm on GPU has

allowed to exploit the parallelism in such neighborhood and to improve the quality of

solutions. Furthermore, we strongly believe that the quality of the solutions would be

drastically enhanced by (1) increasing the number of running iterations of the algorithm

and (2) introducing appropriate cryptanalysis heuristics.

3.5.1.4 Performance Analysis

To validate the performance of the algorithms, we propose to make an analysis of the time

spent by each major operation to assess its impact in terms of efficiency. The obtained

results are reported in Fig. 3.9.

For the first neighborhood (n neighbors), one can notice that the time spent by the data

transfer is significant. For example, it represents 28% of the total execution time for

the instance m = 73, n = 73. The same goes on for the other instances. Furthermore,

regarding the time spent on the search process on CPU, almost 15% is dedicated to this

task whatever the instance size. As a consequence, since only half of the total execution

83

Chapter 3: Efficient Parallelism Control

time is dedicated to the GPU kernel, the amount of computation may not be enough to

fully cover the memory access latency. That is the reason why, no acceleration is provided

for a tabu search based on a neighborhood with a Hamming distance of one (see Table 3.9).

To go on with the idea, if a neighborhood based on a Hamming distance of two is considered

(
n× (n− 1)

2
neighbors), one can notice that the time spent of the GPU calculation is

greater than 70% for each instance. This time is almost equal to 90% for a neighborhood

based on Hamming distance of three. Thereby, regarding the time spent on both the

data transfer and the search process on CPU, it tends to decrease with 1) the number

of neighbors; 2) the instance size increase. Indeed, this can be explained by the fact

that in designing S-metaheuristics, these two latter parameters usually have a significant

influence on the total execution time and thus the amount of calculation. As a result, in

accordance with the previous results (see Table 3.10 and Table 3.11), algorithms based on

bigger neighborhoods clearly improve the GPU occupancy i.e. the amount of calculation

performed by the GPU, leading to a better global performance.

84

Chapter 3: Efficient Parallelism Control

Conclusion

In this chapter, we have dealt with the efficient control of parallelism for the iteration-level

on GPU. In this challenge, a clear understanding of the thread-based execution model

allows to design new algorithms, and to improve the performance of metaheuristics on

GPU.

• Thread control heuristic. When dealing with applications requiring a large num-

ber of threads, some experiments might not be conducted. The control of the gener-

ation of threads is a must to meet the memory constraints like the limited number

of registers allocated to each thread. We have proposed an efficient thread control

heuristic to automatically tune the different parameters involved during the ker-

nel execution. Such a control introduces some fault-tolerance mechanisms in GPU

applications. Further, it may provide an additional performance improvement.

• Mapping of neighborhood structures. Regarding the generation of the neigh-

borhood for S-metaheuristics, finding a mapping between a GPU thread and neigh-

bor solutions might represent a complex issue. In this purpose, we have provided

a methodology to deal with the main structures of the literature. Performance re-

sults indicate that such user-defined mappings provide a performance improvement

in comparison with predetermined tables.

• First improvement-based S-metaheuristics. The parallelism control allows to

develop new algorithms. In this purpose, we have discussed the possible utilization

of first improvement-based S-metaheuristics on GPU architectures. Thereby, we

have shown that their use might be well-adapted to GPU architectures, due to their

asynchronous and sequential natures.

• Large neighborhoods. The application of S-metaheuristics based on large neigh-

borhoods might not be conducted on traditional architectures because of its high

computational cost. In this purpose, GPU computing allows not only to speed up

the search process, but also to exploit parallelism to improve the quality of the

obtained solutions.

85

Chapter 3: Efficient Parallelism Control

86

Chapter 4

Efficient Memory Management

Efficient cooperation and parallelism control have been proposed in the previous chapters.

In this chapter, the scope is on the memory management on GPU architectures. Under-

standing the hierarchical organization of the different memories is useful to provide an

efficient implementation of parallel metaheuristics.

First, we will introduce concepts of memory management common to all metaheuristics.

We will briefly explain how different memory techniques affect the performance of GPU

applications. Then, the focus of this chapter will be on the parallel and cooperative model

on GPU. Indeed, the memory management is more prominent when dealing with these

cooperative algorithms. Thereby, we will investigate on how interactions between the

threads in P-metaheuristics might be exploited on the hierarchical GPU. In this purpose,

traditional mechanisms of cooperative algorithms are revisited on GPU to achieve better

performance.

Contents

4.1 Common Concepts of Memory Management 89

4.1.1 Memory Coalescing Issues . 89

4.1.2 Coalescing Transformation . 90

4.1.3 Texture Memory . 91

4.1.4 Memory Management . 92

4.2 Memory Management in Cooperative Algorithms 94

4.2.1 Parallel and Cooperative Model 94

4.2.2 Parallelization Strategies for Cooperative Algorithms 96

4.2.3 Issues Related to the Fully Distributed Schemes 101

4.3 Performance Evaluation . 106

4.3.1 Coalescing accesses to global memory 106

4.3.2 Memory Associations of Optimization Problems 107

4.4 Performance of Cooperative Algorithms 108

4.4.1 Configuration . 109

4.4.2 Measures in Terms of Efficiency 109

4.4.3 Measures in Terms of Effectiveness 113

87

Chapter 4: Efficient Memory Management

Main publications related to this chapter

Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. GPU-based Island Model for

Evolutionary Algorithms. Genetic and Evolutionary Computation Conference, GECCO

2010 pages 1089–1096, Proceedings, ACM, 2010.

Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. Parallel Hybrid Evolutionary

Algorithms on GPU. In IEEE Congress on Evolutionary Computation, CEC 2010, pages

1–8, Proceedings, IEEE, 2010.

Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. GPU-based Multi-start Local

Search Algorithms. 4th International Learning and Intelligent Optimization Conference,

LION 5, in press, Lecture Notes in Compute Science, Springer, 2011.

88

Chapter 4: Efficient Memory Management

Figure 4.1: An example of kernel execution for vector addition.

4.1 Common Concepts of Memory Management

4.1.1 Memory Coalescing Issues

In the GPU execution model, each block of threads is split into SIMD groups (warps). At

any clock cycle, each processor of the multiprocessor selects a half-warp (16 threads) that

is ready to execute the same instruction on different data. Global memory is conceptually

organized into a sequence of 128-byte segments. The number of memory transactions

performed for a half-warp will be the number of segments having the same addresses used

by that half-warp. Figure 4.1 illustrates an example of the memory management for a

basic vector addition.

For more efficiency, global memory accesses must be coalesced, which means that a mem-

ory request performed by consecutive threads in a half-warp is strictly associated with one

segment. The requirement is that threads of the same warp must read global memory in

an ordered pattern. If per-thread memory accesses for a single half-warp constitute a con-

tiguous range of addresses, accesses will be coalesced into a single memory transaction. In

the example of vector addition, memory accesses to the vectors a and b are fully coalesced,

since threads with consecutive thread indices access contiguous words.

Otherwise, accessing scattered locations results in memory divergence and requires the

processor to produce one memory transaction per thread. The performance penalty for

non-coalesced memory accesses varies according to the size of the data structure. In

Chapter 3, an insight of this issue has already been given for first improvement-based

S-metaheuristics (Section 3.3 and Section 3.4.4).

Indeed, regarding structures in optimization problems, coalescing is sometimes hardly

89

Chapter 4: Efficient Memory Management

Figure 4.2: An example of coalescing transformation for local structures.

feasible since global memory accesses have a data-dependent unstructured pattern (espe-

cially for permutation representation). Many research works on GPU such as [MBL+09,

SBPE10, VA10a, VA10b, ZCM08] ignore coalescing transformations of data structures.

Therefore, non-coalesced memory accesses imply many memory transactions that lead to

a significant performance decrease for these metaheuristics.

4.1.2 Coalescing Transformation

Nevertheless, for some optimization structures which are particular to a given thread,

memory coalescing on global memory can be performed. This is typically the case for the

data organization of a population in P-metaheuristics; or large local structures used for

the evaluation function. Figure 4.2 exhibits an example of a coalescing transformation

for local structures. As illustrated in the top of the figure, a natural wrong approach

to arrange the elements is to align the different structures one after the other. Thereby,

each thread can have access to the elements of its own structure with a logical pattern

baseAddress × id + offset. For instance, in the figure, each thread has access to the

second element of its structure with baseAddress = 3 and offset = 2.

Even if this way of organizing the elements on global memory is natural, it is clearly not

efficient. Indeed, to get a better global memory performance, memory accesses must consti-

tute a contiguous range of addresses to be coalesced. This is done in the bottom of the fig-

ure. In the second approach, the elements of the structures are dispatched such that thread

90

Chapter 4: Efficient Memory Management

accesses will be coalesced into a single memory transaction. In the figure, for instance,

accessing to the second element is done by using the pattern baseAddress2× offset + id.

An experimental comparison of the two approaches is conducted in Section 4.3.1. In this

case, each solution uses a large private structure which cannot be stored in a local private

memory. We will show how this transformation mechanism is well-adapted for large local

structures.

4.1.3 Texture Memory

Optimizing the performance of GPU applications often involves optimizing data accesses

which includes the appropriate use of the various GPU memory spaces. Some research

works on GPU [TF09, SBPE10, VA10a] have considered the memory management of

structures specific to combinatorial problems. However, the use of texture memory has

never been investigated for dealing with problem inputs.

Hence, in our contributions [1, 7], we have mainly use this memory for reducing memory

transactions due to non-coalesced accesses. Indeed, the texture memory provides a sur-

prising aggregation of capabilities including the ability to cache global memory (separate

from register, global and shared memory). This memory can be seen as an alternative

memory access path that can be bound to regions of the global memory. Each texture

unit has some internal memory that buffers data from global memory. Therefore, texture

memory can be seen as a relaxed mechanism for the threads to access the global memory,

since the coalescing requirements do not apply to texture memory accesses. Thereby, the

use of texture memory is well-adapted for metaheuristics for the following reasons:

• Data accesses are frequent in the computation of evaluation methods. Then, us-

ing texture memory can provide a high performance improvement by reducing the

number of memory transactions.

• Texture memory is a read-only memory i.e. no writing operations can be performed

on it. This memory is adapted to metaheuristics since the problem inputs are also

read-only values.

• Cached texture data is laid out so as to give the best performance for 1D/2D access

patterns. The best performance will be achieved when the threads of a warp read

locations that are close together from a spatial locality perspective. Since optimiza-

tion problem inputs are generally 2D matrices or 1D solution vectors, optimization

structures can be bound to texture memory.

The use of textures in place of global memory accesses is a totally mechanical transforma-

tion. Details of texture coordinate clamping and filtering is given in [NBGS08, NVI11].

91

Chapter 4: Efficient Memory Management

Table 4.1: Kernel memory management. Summary of the different memories used in the
evaluation function.

Type of memory Optimization structure

Texture memory data inputs, solution representation

Global memory fitnesses structure, large structures

Registers additional variables

Local memory small structures

Shared memory partial fitnesses structure

Notice that, in the Fermi based GPUs, global memory is easier to access. This is due

to the relaxation of the coalescing rules and the presence of L1 cache memory. It means

that applications developed on GPU get a better global memory performance on this card.

Hence, the benefits of the use of texture memory as a data cache are less pronounced.

4.1.4 Memory Management

Table 4.1 summarizes the kernel memory management in accordance with the different

structures used in metaheuristics. The inputs of the problem (e.g. a matrix in the traveling

salesman problem) are associated with the texture memory. In the case of S-metaheuristics,

the solution which generates the neighborhood can also be placed in this memory. The

fitnesses structure, which stores the obtained results for each solution, is declared as global

memory. Indeed, since only one writing operation per thread is performed at each iteration,

this structure is not part of intensive calculations. Declared variables for the computation

of each solution evaluation are automatically associated with registers by the compiler.

Additional complex structures, which are private to a solution, will reside in local memory.

In the case where these structures are too large to fit into local memory, they should be

stored in global memory using the coalescing transformation mentioned above. Finally,

the shared memory may be used to perform additional reduction operations on the fitness

structure to collect the minimal/maximal fitness (see Section 2.2.3 in Chapter 2). All

the different memories quoted above have been widely used in the previous experiments

presented in Chapter 2 and Chapter 3.

Even if the shared memory has been widely investigated to reduce non-coalesced accesses

in regular applications (e.g. [RRS+08, OML+08]), its use may not be well-adapted for the

parallel iteration-level model. Due to the limited capacity of each multiprocessor (varying

from 16KB to 48KB), data inputs such as matrices cannot be completely stored on shared

memory. Thus, the use of shared memory must be considered as a user-managed cache.

This implies an explicit effort of code transformation: one has to identify common sub-

structures which are likely to be concurrently accessed by SIMD threads of a same block.

Unfortunately, such common accesses are not always predictable in evaluation functions

92

Chapter 4: Efficient Memory Management

since most of access patterns to data inputs differ from a solution to another (especially

for permutation-based problems).

The following transformation intends to show how to take advantage of the shared memory

in the case of the quadratic assignment. By considering a S-metaheuristic with a pair-

wise exchange operator, one part of the ∆ calculation (slight variation) of the evaluation

function for a neighbor (i,j) is given by:

∆1 = (aii − ajj)× (bπ(j)π(j) − bπ(i)π(i)) (4.1)

+ (aii − ajj)× (bπ(j)π(i) − bπ(i)π(j))

∆ = ∆1 +
n

∑

k=0
k 6=i
k 6=j

(aki − akj)× (bπ(k)π(j) − bπ(k)π(i)) (4.2)

+ (aik − ajk)× (bπ(j)π(k) − bπ(i)π(k))

A depth look at (4.2) indicates that a and b sub-matrices involving the variable k might be

concurrently accessed in parallel. Therefore, the idea is to associate such sub-structures

with the shared memory as a user-managed cache. The equation (4.2) can be transformed

into another one:

∆ = ∆1 +
n

∑

k=0
k 6=i
k 6=j

ra←row(a,k)
rb←row(b,π(k))

ca←col(a,k)
cb←col(b,π(k))

(rai − raj)× (rbπ(j) − rbπ(i)) (4.3)

+ (cai − caj)× (caπ(j) − cbπ(i))

Rows and columns are copied on shared memory at the beginning of each loop iteration via

a synchronization mechanism. In this manner, accesses to these structures are performed

through this memory in (4.3). Therefore, sub-matrices can benefit from the shared memory

since it is a low-latency memory in which non-coalescing accesses are reduced. However,

this transformation is problem-dependent, and it might not be applied to some evaluation

functions.

We will explore the performance obtained for the use of the different memories in Sec-

tion 4.3.2. Even if some research works on GPU has considered the association of data

structures with the shared memory [TF09, VA10a], we will experimentally show why this

93

Chapter 4: Efficient Memory Management

memory is not adapted to the parallelization of metaheuristics on GPU.

4.2 Memory Management in Cooperative Algorithms

One of the main goals of parallelizing a metaheuristic is to reduce the search time. This

is a fundamental aspect for some class of problems where there are hard requirements on

search time. In this purpose, the iteration-level model concerns the parallel evaluation of

solutions. It can be seen an acceleration model in charge of the evaluation of parallel and

independent computations. This is typically the case for S-metaheuristics which iteratively

improve a single solution. In these algorithms, neighborhood moves do not directly interact

with each other.

Things are different when it comes to P-metaheuristics. Indeed, the solutions representing

a population may cooperate during the search process. For instance, for evolution-based

P-metaheuristics (e.g. evolutionary algorithms or scatter search), the solutions composing

the population are selected and reproduced using variation operators. A new solution is

constructed from the different attributions of solutions belonging to the current population.

Another example concerns P-metaheuristics which participate in the construction of a

common and shared structure (e.g. ant colonies or estimation of distribution algorithms).

This shared structure will be the main input in generating the new population of solutions,

and the previously generated solutions participate in updating such a common structure.

Hence, P-metaheuristics provide additional cooperative aspects which are not addressed

in S-metaheuristics. Such a cooperation is far more prominent when dealing with multi-

ple metaheuristics simultaneously run in parallel. The exploitation of these cooperative

properties for GPU architectures clearly constitutes a challenging issue.

4.2.1 Parallel and Cooperative Model

In the algorithmic-level model, independent or cooperating self-contained metaheuristics

are used. It is a problem-independent inter-algorithm parallelization. The different algo-

rithms can be executed either independently or by exchanging information. They may be

homogeneous or heterogeneous i.e. configured with the same or different parameters. If

the different metaheuristics are independent, the search will be equivalent to the successive

execution of metaheuristics in terms of the quality of solutions. However, the cooperative

model will alter the behavior of the metaheuristics and enable the improvement of the

quality of solutions.

In the (a)synchronous cooperative model (see Figure 4.3), different metaheuristics are

simultaneously deployed to cooperate for computing better and robust solutions. They

exchange in a(n) (a)synchronous way different information to diversify the search. The

94

Chapter 4: Efficient Memory Management

Figure 4.3: The cooperative and parallel model of metaheuristics.

objective is to allow the delay of the global convergence, especially when the metaheuristics

are heterogeneous. The migration of solutions follows a policy defined by few parameters:

• Exchange topology: The topology specifies for each P-metaheuristic its neighbors

with respect to the migration process. In other words, it indicates for each P-

metaheuristic the other metaheuristics to which it may send its emigrants, and the

ones from which it may receive immigrants). Different well-known topologies are

proposed such as ring, mesh, torus, hypercube, etc.

• Number of emigrants: This parameter is usually defined either as a percentage

of the population size or a fixed number of individuals.

• Emigrants selection policy: The selection policy indicates in a deterministic or

stochastic way how to select emigrant individuals from the source P-metaheuristic.

Different selection policies are defined in the literature: roulette wheel, ranking,

stochastic or deterministic tournaments, uniform sampling, etc.

• Replacement/integration policy: Symmetrically, the replacement policy defines

how to integrate the immigrant individuals in the population. Different replacement

strategies may be used including stochastic replacement, tournaments, elitist and

pure random replacements.

• Migration decision criterion: Migration can be decided either periodically or

according to a given criterion. Periodic decision making consists in performing the

migration by each P-metaheuristic at a fixed or user defined frequency.

95

Chapter 4: Efficient Memory Management

Figure 4.4: Scheme of the parallel evaluation of the population on GPU.

4.2.2 Parallelization Strategies for Cooperative Algorithms

Previous works on P-metaheuristics on GPU have tried hard to implement parallel cooper-

ative algorithms [ZH09, PJS10, MWMA09a, SBPE10]. However, GPU-based cooperative

algorithms have never been deeply investigated since no general methods can be outlined

from the previous works. In this section, the focus is on the redesign of the cooperative

algorithmic-level. To accomplish this, we have designed in [5, 6] three different paralleliza-

tion schemes allowing a clear separation of the GPU memory hierarchical management

concepts.

4.2.2.1 Parallel Evaluation of Populations on GPU

A first scheme for the design and the implementation of cooperative algorithms is based on

a combination with the parallel iteration-level model on GPU (parallel evaluation of the

solutions). Indeed, in general, evaluating a fitness function for each solution is frequently

the most costly operation of a P-metaheuristic. Therefore, in this scheme, task distri-

bution is clearly defined: the CPU manages the whole sequential search process for each

cooperative algorithm, and the GPU is dedicated to the parallel evaluation of populations.

Figure 4.4 shows the principle of the parallel evaluation of each P-metaheuristic on GPU.

The CPU sends a certain number of solutions to be evaluated to the GPU via the global

memory, and these solutions will be processed on GPU. Each thread associated with one

solution executes the same evaluation function kernel. Finally, results of the evaluation

96

Chapter 4: Efficient Memory Management

function are returned back to the host via the global memory.

Regarding the details of the corresponding algorithm (see Algorithm 11), first, memory

allocations on GPU are made: data inputs of the problem, populations and their corre-

sponding fitnesses structures must be allocated (lines 3 to 5). Additional solution struc-

tures, which are problem-dependent, can also be allocated to facilitate the computation of

solution evaluation (line 5). Second, problem data inputs have to be copied onto the GPU

(lines 7). These data are read-only structure, and their associated memory are copied

only once during all the execution. Third, regarding the main body of the algorithm, the

different populations and their associated structures have to be copied at each iteration

(lines 11 and 12). Thereafter, the evaluation of solutions is performed in parallel on GPU

(lines 13 to 16). Fourth, the fitnesses structures have to be copied to the host CPU (line

17). Then, a specific post-treatment strategy and the replacement of the population are

done (lines 18 and 19). Finally, at the end of each generation, a possible migration may be

performed on CPU to exchange information between the different P-metaheuristics (line

20). The process is repeated until a stopping criterion is satisfied.

Algorithm 11 Cooperative algorithms template on GPU based on the parallel evaluation
of populations

1: Choose initial populations
2: Specific initializations
3: Allocate problem data inputs on GPU device memory
4: Allocate the different populations on GPU memory
5: Allocate fitnesses structures on GPU memory
6: Allocate additional structures on GPU memory
7: Copy problem data inputs on GPU device memory
8: repeat
9: for each P-metaheuristic do

10: Specific P-metaheuristic pre-treatment
11: Copy the different populations on GPU device memory
12: Copy additional structures on GPU memory
13: for each solution in parallel on GPU do
14: Evaluation of the solution
15: Insert the resulting fitness into the corresponding fitnesses structure
16: end for
17: Copy fitnesses structures on CPU hosts memory
18: Specific P-metaheuristic post-treatment
19: Replacement of the population
20: end for
21: Possible Migration between the different P-metaheuristics
22: until a stopping criterion satisfied

In this scheme, the GPU is used as a coprocessor in a synchronous manner. However, as

97

Chapter 4: Efficient Memory Management

Figure 4.5: Scheme of the full distribution of cooperative algorithms on GPU.

previously seen in Chapter 2, copying operations from CPU to GPU (i.e. population and

fitnesses structures) might be a bottleneck and thus can lead to a significant performance

decrease.

The main goal of this scheme is to accelerate the search process, and it does not alter the

semantics of the algorithm. As a result, the migration policy between the P-metaheuristics

remains unchanged in comparison with a classic design on CPU. Since the GPU is used as

a coprocessor to evaluate all individuals in parallel, this scheme is intrinsically dedicated

to synchronous cooperative algorithms.

4.2.2.2 Full Distribution of Cooperative Algorithms on GPU

A second parallelization strategy is to parallelize the whole process of cooperative algo-

rithms on GPU. This way, the main advantage of this approach is to minimize the data

transfers between the host memory and the GPU. Figure 4.5 gives an illustration of each

cooperative P-metaheuristic on GPU.

In this scheme, a logical parallelization is to associate each P-metaheuristic with one

threads block. One solution is represented by one thread, and each operation (e.g. pre-

treatment and post-treatment) is separated by block barriers to ensure the synchronization

between the threads. For example, in the case of evolutionary algorithms, synchronizations

between the different genetic operators (e.g. selection, crossover or mutation) ensure that

98

Chapter 4: Efficient Memory Management

all the individuals of a same block (island) reach the same point. Unless S-metaheuristics

which iterate a single solution, the full parallelization of cooperative algorithms on GPU

can be naturally achieved since solutions (threads) of each local P-metaheuristic are in-

volved during the whole algorithm process.

Regarding the migration policy, communications are performed via the global memory

which stores the global population. This way, each local P-metaheuristic can communicate

with any other one according to the given topology.

Algorithm 11 gives more details of the proposed algorithm. In comparison with the pre-

vious scheme, all the different allocations and data transfers are performed only once at

the beginning of the algorithm (lines 3 to 9). Thereafter, all the standard operations of

P-metaheuristics are fully performed to GPU. In other words, they are hard-coded in the

GPU kernel and not on CPU. One of the key points to pay attention concerns the syn-

chronizations previously mentioned (lines 12 and lines 17). Such a procedure ensures that

operations involving the cooperation of various solutions are valid.

Algorithm 12 Cooperative algorithms template on GPU based on the full distribution

1: Choose initial populations
2: Specific initializations
3: Allocate problem data inputs on GPU device memory
4: Allocate the different populations on GPU memory
5: Allocate fitnesses structures on GPU memory
6: Allocate additional structures on GPU memory
7: Copy problem data inputs on GPU device memory
8: Copy the different populations on GPU device memory
9: Copy additional structures on GPU memory

10: repeat
11: for each P-metaheuristic in parallel on GPU do
12: Specific P-metaheuristic pre-treatment with synchronization points
13: for each solution in parallel on GPU do
14: Evaluation of the solution
15: Insert the resulting fitness into the corresponding fitnesses structure
16: end for
17: Specific P-metaheuristic post-treatment with synchronization points
18: Replacement of the population
19: end for
20: Possible Migration between the different P-metaheuristics
21: until a stopping criterion satisfied

In comparison with the previous parallelization scheme, one of the limitations to move

the entire algorithm on GPU is the fact that heterogeneous strategies cannot be chosen.

Indeed, since threads work in a SIMD fashion, the same parameter configurations and

the same different search components (e.g. mutation or crossover in evolutionary algo-

99

Chapter 4: Efficient Memory Management

rithms) for each local P-metaheuristic must be applied. Another drawback of this scheme

concerns the maximal number of solutions per P-metaheuristic since this latter is limited

to the maximal number of threads per block (up to 512 or 1024 according to the GPU

architecture). A natural wrong idea to solve this restriction would be to associate one

P-metaheuristic with multiple threads blocks. However, it cannot be easily achieved in

practice since (1) threads work in an asynchronous manner; (2) threads synchronizations

are local to a same block. For instance, for evolutionary algorithms, one can imagine a

scenario in which a selection is made on two individuals of a different block, in which

one of the two threads has not yet updated its associated fitness value (i.e. one of the

two individuals has not yet been evaluated). Such a situation would provoke incoherent

results.

4.2.2.3 Full Distribution Using Shared Memory

Regarding the kernel memory management, from a hardware point of view, graphics cards

consist of multiprocessors, each with processing units, registers and on-chip memory. Ac-

cessing global memory incurs an additional 400 to 600 clock cycles of memory latency.

As previously said, since this memory is not cached and its access is slow, one needs to

minimize accesses to global memory (read/write operations) and reuse data within the

local multiprocessor memories.

To accomplish this, the shared memory, presented in Section 4.1.4, is a fast on-chip memory

located on the multiprocessors and shared by threads of each thread block. This memory

can be considered as a user-managed cache which can deliver substantial speedups by

conserving bandwidth to main memory [NVI11]. Furthermore, since the shared memory

is accessible to each threads block, it provides an efficient way for threads to communicate

within the same block.

Therefore, a last parallelization strategy is to associate each local P-metaheuristic with

a threads block on GPU with the use of the shared memory. An illustration for each P-

metaheuristic of this scheme is shown in Figure 4.6. This strategy is similar to the previous

one except the fact that local populations and their associated fitnesses are stored in the

on-chip shared memory. In this purpose, each solution (thread) of each P-metaheuristic

(block) performs the algorithm process (initialization, evaluation, etc.) via the shared

memory.

A more refined view is given in Algorithm 11. Basically, the template is similar to the

previous one. The main difference which occurs, is all the algorithm operations are not

performed on the global memory but on the shared memory. In this purpose, at the

beginning of the algorithm, populations are copied to the shared memory (lines 10 to 12).

Regarding the migration between P-metaheuristics, since it requires an inter-metaheuristic

100

Chapter 4: Efficient Memory Management

Figure 4.6: Scheme of the full distribution of cooperative algorithms on GPU using shared
memory.

communication, copying operations from each local population (shared memory) to the

global population (global memory) have to be considered (line 23). Details of this point

will be given in the next section.

Even if this scheme can improve the efficiency of cooperative algorithms, it presents a major

limitation: since each multiprocessor has a limited capacity of shared memory (varying

from 16KB to 48KB), only small problem instances can be dealt with. Indeed, the amount

of allocated shared memory per block depends on both the size of the local population

and the size of the problem instance. Therefore, a trade-off must be considered between

the number of threads per block and the size of the handled problem.

4.2.3 Issues Related to the Fully Distributed Schemes

We have presented three different parallelization strategies of the cooperative algorithmic-

level on GPU. The first scheme introduces the parallel evaluation of the global population

(iteration-level), and it has been widely investigated in Chapter 2 and in Chapter 3.

However, the two other schemes, which involve the entire parallelization of cooperative

algorithms on GPU, present many challenging problems related to the GPU execution

model. In this section, we propose to re-visit the parameters involving the migration

process on GPU.

• Exchange topology: Each threads block can be identified using a one-dimensional

or two-dimensional index. Therefore, two natural topologies can be defined on GPU:

101

Chapter 4: Efficient Memory Management

Algorithm 13 Cooperative algorithms template on GPU based on the full distribution
using shared memory

1: Choose initial populations
2: Specific initializations
3: Allocate problem data inputs on GPU device memory
4: Allocate the different populations on GPU memory
5: Allocate fitnesses structures on GPU memory
6: Allocate additional structures on GPU memory
7: Copy problem data inputs on GPU device memory
8: Copy the different populations on GPU device memory
9: Copy additional structures on GPU memory

10: for each P-metaheuristic in parallel on GPU do
11: Copy populations from the global memory to the shared memory
12: end for
13: repeat
14: for each P-metaheuristic in parallel on GPU do
15: Specific P-metaheuristic pre-treatment with synchronization points
16: for each solution in parallel on GPU do
17: Evaluation of the solution
18: Insert the resulting fitness into the corresponding fitnesses structure
19: end for
20: Specific P-metaheuristic post-treatment with synchronization points
21: Replacement of the population
22: end for
23: Possible Migration between the different P-metaheuristics using shared and global

memories
24: until a stopping criterion satisfied

102

Chapter 4: Efficient Memory Management

Figure 4.7: Principle of the bitonic sort.

ring (one-dimensional threads block) and 2D toroidal grid (two-dimensional threads

block). Finding an efficient mapping between the GPU threads spatial organization

and sophisticate topologies might be a difficult issue.

• Number of emigrants: This parameter does not represent any pertinent issue

except the fact that if the number of emigrants is too high, accesses to the global

memory will be more frequent leading to a small performance decrease.

• Emigrants selection policy: The selection policy is similar to the traditional

selection in evolutionary algorithms. Basically, most of selection operators (e.g.

tournament or roulette wheel) operate on unsorted data structures. Therefore, their

implementation on GPU is similar to a CPU one. However, some selection operators

such as rank-based selections manipulate sorted data structures. As a consequence,

a serious issue occurs since sorting on GPU is not as straightforward as on CPU,

due to the highly parallel SIMD architecture of GPUs.

To deal with this issue, one commonly used and efficient sort on GPU is the bitonic

sort (see Figure 4.7). Basically, this sort is based on (1) the concept of the bitonic se-

quence i.e. the composition of two subsequences: one monotonically non-decreasing

and the other monotonically non-increasing; (2) merging procedures to create a new

bitonic sequence. Despite its complexity of O(log2
2n), this sort has a high degree of

parallelism. Thereby, it has been stated as one of the fastest sort on GPU for a rel-

atively small number of elements [GZ06]. As a consequence, this sort is particularly

well-adapted for cooperative algorithms on GPU since the population size of each

P-metaheuristic is also relatively small.

• Replacement/integration policy: Symmetrically, the previous strategies of em-

103

Chapter 4: Efficient Memory Management

igrants selection on GPU can be similarly applied for the replacement/integration

policy. However, in practice, pure elitist replacements can be also considered, in

which the worst local individuals are replaced. Since read/write operations on mem-

ory are performed in an asynchronous manner, finding the proper minimal/maximal

fitnesses of each local population is not straightforward. To deal with this issue,

reduction techniques [NVI11] for each thread block must be considered (presented

in Chapter 2). Local synchronizations between threads in a same block guarantee

to get the minimum/maximum of a given array since threads operate at different

memory addresses.

• Migration decision criterion: Whatever the migration decision criterion (whether

periodically or according to a particular criterion) is, since the order of the execu-

tion of threads is undefined, the search process of each P-metaheuristic can be in a

different state (e.g. different generation). As a result, the migration on GPU be-

tween the different metaheuristics is intrinsically done in an asynchronous manner.

Nevertheless, there might be some cases where each P-metaheuristic needs to be in

the same state. Thereby, performing a global synchronization between cooperative

algorithms on GPU represents a significant issue. Indeed, performing a global syn-

chronization on threads (e.g. by implementing semaphores) would lead to a great

loss of performance. To deal with this, implicit synchronizations between the CPU

and the GPU must be considered by associating one kernel execution with one gen-

eration of the search process. This way, when the execution of one generation in

all P-metaheuristics on GPU is accomplished, the command is returned back to the

CPU ensuring an implicit global synchronization (see Figure 4.8). Performing such

synchronous mechanisms leads to some unavoidable decrease of the performance due

to the implicit synchronization and the overhead provoked by kernel calls.

Whether for a synchronous or an asynchronous model, regarding the scheme using shared

memory, emigrants must be copied into the global memory to ensure their visibility be-

tween the different metaheuristics. Figure 4.9 summarizes the memory management during

the migration process through an example of cooperative P-metaheuristics on GPU using

the shared memory.

In this example, solutions of each local population are associated with the shared mem-

ory, and a ring topology is considered. The two best individuals of each local population

(block) are first copied from the shared memory to the global memory. Such a procedure

ensures that the solutions to migrate are globally visible between the different local popu-

lations. Thereafter, the two worst solutions of each P-metaheuristic are replaced by their

corresponding emigrants.

104

Chapter 4: Efficient Memory Management

Figure 4.8: Implicit synchronization of threads to ensure that each cooperative P-
metaheuristics is in the same state.

Figure 4.9: Migration between P-metaheuristics on GPU using a ring topology.

105

Chapter 4: Efficient Memory Management

Table 4.2: Measures of the benefits of using coalescing accesses to the global memory
on the GTX 280. The CUDA Profiler is used for analysing the execution path. The
permuted perceptron problem using a neighborhood based on a Hamming distance of two
is considered.

Instance CPU
Non-coalesced accesses Coalesced accesses

GPU Warp serializations GPU Warp serializations

401-417 403 64×6.3 3306512379 14×28.8 435067418
601-617 2049 249×8.2 6613185750 51×40.1 612332013
801-817 5410 665×8.1 11242415771 128×42.3 1003787122

1001-1017 11075 1361×8.1 17855601525 252×43.9 1594250136
1301-1317 25016 3180×7.9 29759335873 568×44.1 1859958499

4.3 Performance Evaluation

4.3.1 Coalescing accesses to global memory

As previously said in Section 4.1.2, non-coalesced accesses to the global memory have a

remarkable impact on the performance of GPU applications. To achieve the best perfor-

mance, such an issue has to be dealt with in the case of metaheuristics on GPU.

In Section 4.1.2, two different access patterns have been described to deal with large

structures involving the global memory. Even if the first one is natural, this associated

performance might be limited because of non-coalesced memory accesses. That is the

reason why, the second pattern has always been used for the experiments presented in

Chapter 2 and in Chapter 3.

To confirm this point, a next experiment consists in comparing the performance results

obtained by the two different access patterns. For doing this, the permuted perceptron

problem is considered. In this problem, the neighbor evaluation requires the calculation

of a structure called histogram. Since this structure is particular to a neighbor, the local

memory is managed to store the histogram. However, for large instances (from m = 401

and n = 417), the amount of local memory may be not enough to store this structure, and

the program will fail at compilation time. As a consequence, in that case, the histogram

must be stored on global memory. Table 4.2 presents the obtained results on the GTX

280 for a tabu search with a neighborhood based on a Hamming distance of two (10000

iterations).

In comparison with the second approach, the obtained performance results for the first

one are drastically reduced whatever the instance. For the version using non-coalesced ac-

cesses, the speed-up obtained from the first approach varies between ×4.6 and ×7.0 whilst

the speed-up for the second approach alternates from ×28.8 and ×44.1. An analysis of

the execution path of the two algorithms can confirm this observation. One can observe

that the number of warp serializations for the version using non-coalesced accesses is be-

106

Chapter 4: Efficient Memory Management

tween seven and sixteen times more important than for its counterpart. Indeed, a threads

divergence caused by non-coalesced accesses leads to many memory accesses that have

to be serialized, increasing the instructions to be executed. This explains the difference

performance between the two versions. A conclusion of this experiment indicates that

memory coalescing applied on local structures is a must to obtain the best performance.

4.3.2 Memory Associations of Optimization Problems

Optimizing the performance of metaheuristics on GPU requires optimizing data accesses.

It involves the appropriate use of the different GPU memories. As previously seen in

Section 4.1.4, the use of texture memory is a solution for reducing memory transactions due

to non-coalesced accesses. It is essentially as a cache to the global memory in association

with data inputs of a given combinatorial problem. In a same manner, the shared memory

might also be used as a user-manage cache to reduce non-coalesced accesses. Such a

memory management does not appear in problems in which there are no data inputs (e.g.

the Weierstrass function).

The following experiment consists in comparing the performance of a same tabu search

(10000 iterations) with different memory associations for the quadratic assignment prob-

lem. The first version is a pure tabu search on GPU using only the global memory. In

the second one, the texture memory provides an alternative memory access path that is

bound to regions of the global memory in regards with the different data inputs (used in

the previous experiments). The last implementation uses the shared memory to deal with

data inputs. For doing this, data from the global memory need to be copied to the shared

memory.

Table 4.3 reports the obtained results for these different implementations. In a general

manner, the shared memory version (GPUSh) obtains better performance results than

the basic GPU version without memory optimization (GPUGlo). The acceleration factors

in comparison with a single-core on CPU diversify between ×0.7 and ×16.1 for GPUSh

against ×0.5 and ×15.7S for the standard version.

Nevertheless, such an improvement does not occur in regards with the texture version.

Indeed, for the two first configurations, the shared memory version is clearly outperformed

by the texture one. This is due to the extra cost of data copies from global memory to

shared memory (thus extra non-coalesced accesses) including local synchronizations for

each loop iteration. In the two last configurations, the gap is less relevant since global

memory is easier to access due to the relaxation of the coalescing rules.

A conclusion from this experiment indicates that the use of shared memory gives further

performance improvement. However, on the one hand, an effort of code rewriting has to be

provided. Furthermore, it is not clear that such a transformation is always feasible. On the

107

Chapter 4: Efficient Memory Management

Table 4.3: Measures in terms of efficiency of three different versions (global, texture,
and shared memories). The quadratic assignment problem using a pair-wise-exchange
neighborhood is considered.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600

GeForce 8600M GT GeForce 8800 GTX

32 GPU cores 128 GPU cores

GPUGlo GPUTex GPUSh GPUGlo GPUTex GPUSh

tai30a 4.2×0.5 1.3×1.8 3.1×0.7 2.3×0.8 1.0×1.9 2.1×0.9

tai35a 6.5×0.5 1.6×2.1 5.0×0.7 2.9×0.9 1.2×2.3 2.8×1.0

tai40a 9.7×0.5 1.8×2.6 5.5×0.9 3.7×1.1 1.5×2.9 3.5×1.2

tai50a 16×0.6 3.0×3.2 8.9×1.1 5.7×1.4 1.8×4.6 5.0×1.7

tai60a 28×0.6 4.9×3.4 13×1.3 8.4×1.6 2.0×7.1 6.1×2.3

tai80a 63×0.7 10×4.2 41×1.5 19×1.9 4.5×8.1 9.6×3.7

tai100a 139×0.8 19×5.6 67×1.6 33×2.3 8.7×8.8 15.6×4.8

Instance

Intel Xeon E5450 Xeon E5620

GeForce GTX 280 Tesla M2050

240 GPU cores 448 GPU cores

GPUGlo GPUTex GPUSh GPUGlo GPUTex GPUSh

tai30a 1.1×1.4 0.8×2.0 1.0×1.7 0.5×2.2 0.4×2.8 0.5×2.4

tai35a 1.2×1.9 0.9×2.6 1.1×2.2 0.6×2.4 0.5×3.8 0.6×2.7

tai40a 1.3×2.7 1.1×3.3 1.2×3.0 0.7×3.2 0.5×4.4 0.6×3.8

tai50a 1.7×4.1 1.3×5.3 1.5×4.7 0.8×5.4 0.6×7.2 0.7×6.1

tai60a 2.0×5.6 1.6×7.3 1.7×6.5 1.1×8.4 0.9×10.2 1.0×9.1

tai80a 3.2×9.1 2.8×10.8 2.9×10.3 1.9×12.4 1.7×13.5 1.8×12.7

tai100a 5.5×10.9 3.7×16.5 4.1×14.6 3.1×15.7 2.6×18.6 3.0×16.1

other hand, performance results for the quadratic assignment problem indicate that this

version is dominated by the texture one especially for low-graphic cards configurations.

Therefore, it seems that the stand-alone use of shared memory is not well-adapted for

the parallel iteration-level. That is the reason why, all the previous experiments on S-

metaheuristics have been performed by using the texture memory.

4.4 Performance of Cooperative Algorithms

The exploitation of the threads spatial organization and the different available memories

allows the design of cooperative algorithms on GPU. In Section 4.2, we have introduced a

guideline for redesign of the algorithmic-level parallel model on GPU.

To validate the performance of the proposed approaches, a cooperative island model for

evolutionary algorithms has been implemented on GPU. In this purpose, the Weierstrass-

Mandelbrot functions have been considered.

108

Chapter 4: Efficient Memory Management

4.4.1 Configuration

The used configuration for the experiments is an Intel Xeon 8 cores 2.4 Ghz with a

NVIDIA GTX 280 card. For each experiment, different implementations of the island

model are given: a standalone single-core implementation of the island model on CPU

(CPU), the synchronous island model using the parallel evaluation of populations on

GPU (CPU+GPU), the asynchronous and fully distributed island model on GPU (GPU),

the synchronous version (SGPU) and their associated versions using the shared memory

(GPUSh and SGPUSh).

Regarding the full implementation for evolutionary algorithms on GPU, previous tech-

niques presented in Section 4.2.3 are applied to the selection and the replacement. Re-

garding the components which are dependent of the problem (i.e. initialization, evaluation

function and variation operators), they do not represent specific issues related to the GPU

kernel execution. From an implementation point of view, the focus is on the management

of random numbers. To achieve this, efficient techniques are provided in several books

such as [NVI10] to implement random generators on GPU (e.g. Gaussian or Mersenne

Twister generators).

The operators used in the evolutionary process for the implementations are the following:

the crossover is a standard two-point crossover (crossover rate fixed to 80%) which gener-

ates two offspring, the mutation consists in changing randomly one gene with a real value

taken in [−1; 1] (with a mutation rate of 30%), the selection is a deterministic tournament

(tournament size fixed to the block size divided by four), the replacement is a (µ + λ) re-

placement and the number of generations has been fixed to 100. Regarding the migration

policy, a ring topology has been chosen, a deterministic tournament has been performed

for both emigrants selection and migration replacement (tournament size fixed to the block

size divided by four), the migration rate is equal to the number of local individuals divided

by four and the migration frequency is set to 10 generations.

4.4.2 Measures in Terms of Efficiency

The objective of the following experiments is to assess the impact of the different GPU-

based implementations in terms of efficiency. Only execution times (in seconds) and accel-

eration factors (compared to a single CPU core) are reported. The average time has been

measured in seconds for 50 runs. The first experiment consists in varying the dimension

of the Weierstrass function. The obtained results are reported in Table 4.4.

As long as the size of the dimension increases, each GPU version gives some outstanding

accelerations compared to a CPU version (up to ×1757 for the GPUSh version). The use

of the shared memory provides a way to accelerate the search process even if the GPU

109

Chapter 4: Efficient Memory Management

Table 4.4: Measures in terms of efficiency of the island model for evolutionary algorithms
on GPU. The Weierstrass function is considered. The number of individuals per island is
fixed to 128 and the global population to 8192 (64 islands).

CPU CPU+GPU GPU GPUSh SGPU SGPUSh

instance time time acc. time acc. time acc. time acc. time acc.

1 23 0.92 ×25 0.16 ×143 0.04 ×845 0.36 ×63 0.06 ×375

2 43 0.94 ×46 0.16 ×268 0.03 ×1150 0.36 ×119 0.08 ×511

3 64 0.95 ×67 0.17 ×375 0.05 ×1365 0.38 ×167 0.11 ×607

4 85 0.97 ×87 0.21 ×403 0.06 ×1442 0.47 ×179 0.13 ×641

5 105 1.00 ×105 0.22 ×479 0.07 ×1579 0.50 ×213 0.15 ×702

6 127 1.02 ×125 0.24 ×519 0.08 ×1639 0.55 ×231 0.17 ×728

7 148 1.04 ×142 0.28 ×529 0.09 ×1659 0.63 ×235 0.20 ×737

8 168 1.09 ×154 0.30 ×554 0.10 ×1684 0.68 ×246 0.23 ×748

9 190 1.19 ×159 0.31 ×610 0.11 ×1736 0.70 ×271 0.25 ×772

10 211 1.28 ×165 0.33 ×639 0.12 ×1757 0.74 ×284 0.27 ×781

11 231 1.36 ×170 0.35 ×666 – – 0.79 ×293 – –

version is already impressive. However, due to its limited capacity, bigger instances such

as a dimension of 11 cannot be handled in any shared memory versions.

Regarding the fully distributed synchronous versions, since implicit synchronizations are

performed, a certain reduction of acceleration factors (from ×63 to ×293 for the SGPU

version) can be observed in comparison with their associated asynchronous versions. Nev-

ertheless, the acceleration factors are still outstanding. For the scheme of the parallel

evaluation populations (CPU+GPU version), the speed-ups are less remarkable even if

they remain significant (from ×25 to ×170). This is explained by the important number

of data transfers between the CPU and the GPU.

A conclusion of the first experiment indicates that the full distribution of the search process

on GPU and its own memory management deliver high performance results. However,

the importance of these results should be minimized due to the nature of the Weierstrass

function, which is a compute-bound application. When considering a standard application

which is both compute and memory bound, things are different. Table 4.5 reports the

obtained results for the quadratic assignment problem using the same parameters used

before.

In a general manner, one can see that the obtained acceleration factors are more similar

than those ones presented in the previous chapters. The acceleration factors grow with the

instance size. They alternate from ×1.3 to ×15.2 according to the different paralleliza-

tion schemes. Regarding the versions using the shared memory, unless the Weierstrass

function, the performance improvements are less pronounced since accesses to matrix

structures (global and texture memories) are prominent in the entire algorithm. Further-

110

Chapter 4: Efficient Memory Management

Table 4.5: Measures in terms of efficiency of the island model for evolutionary algorithms
on GPU. The quadratic function is considered. The number of individuals per island is
fixed to 128 and the global population to 8192 (64 islands)

.

CPU CPU+GPU GPU GPUSh SGPU SGPUSh

instance time time acc. time acc. time acc. time acc. time acc.

tai30a 8.4 6.5 ×1.3 1.3 ×6.2 1.2 ×7.1 2.3 ×3.6 2.0 ×4.2

tai35a 11.1 6.9 ×1.6 1.4 ×7.8 1.3 ×8.5 2.5 ×4.4 2.2 ×5.1

tai40a 15 7.1 ×2.1 1.6 ×9.5 1.5 ×10.2 2.8 ×5.4 2.4 ×6.3

tai50a 22 7.9 ×2.8 2.0 ×11.2 1.8 ×12.3 3.5 ×6.3 3.1 ×7.0

tai60a 31 8.9 ×3.5 2.4 ×12.8 2.3 ×13.6 4.2 ×7.4 3.6 ×8.5

tai80a 60 11.5 ×5.2 4.3 ×13.9 – – 7.1 ×8.5 – –

tai100a 101 13 ×7.7 6.6 ×15.2 – – 10.4 ×9.7 – –

more, the same limitation of the problem size occurs from the instance tai80a, in which

the application could not be executed.

After evaluating the performance of the island model for evolutionary algorithms on GPU,

another experiment consists in measuring the scalability of our approaches. For doing

this, varying the number of islands with extreme values is needed in order to determine

the application scalability. Results of this experiment are reported in Table 4.6 for the

Weierstrass function.

Regarding each fully distributed version, for a small number of islands (i.e. one or two

islands), the acceleration factor is significant but not spectacular (from ×7 to ×51). This

is explained by the fact that since the global population is relatively small (less than 1024

threads), the number of threads per block is not enough to fully cover the memory access

latency. This is not the same situation when considering more islands. Indeed, the speed-

up grows accordingly with the increase of the number of islands and remains impressive

(up to ×2074 for GPUSh).

Regarding the CPU+GPU version, speed-ups for one or two islands are more important

than for fully distributed versions. Indeed, since only the evaluation of the population is

distributed on GPU, fewer registers are allocated for each thread. As a result, this version

benefits from a better occupancy of the multiprocessors for a small number of islands. GPU

keeps accelerating the process with the islands increase until reaching a peak performance

of ×165 for 64 islands. Thereafter, the acceleration factor decreases with the augmentation

of the number of islands. Indeed, for each parallel evaluation of the population, the amount

of data transfers is proportional to the number of individuals (e.g. 524288 threads for 4096

islands). Thus, from a certain number of islands, the time dedicated to copy operations

becomes significant, leading clearly to a decrease of the performance.

111

Chapter 4: Efficient Memory Management

Table 4.6: Measures in terms of scalability of the island model for evolutionary algorithms
on GPU. The Weierstrass function is considered. The dimension of the problem is fixed
to 2 and the number of individuals per island to 128.

CPU CPU+GPU GPU GPUSh SGPU SGPUSh

islands time time acc. time acc. time acc. time acc. time acc.

1 3 0.10 ×33 0.20 ×17 0.12 ×27 0.45 ×7 0.27 ×12

2 7 0.12 ×55 0.20 ×33 0.13 ×51 0.45 ×15 0.29 ×23

4 13 0.15 ×89 0.20 ×65 0.13 ×104 0.45 ×29 0.29 ×46

8 26 0.19 ×139 0.20 ×132 0.13 ×207 0.45 ×59 0.29 ×92

16 53 0.34 ×154 0.21 ×256 0.13 ×403 0.46 ×114 0.29 ×179

32 106 0.66 ×160 0.26 ×406 0.13 ×828 0.59 ×180 0.29 ×368

64 211 1.28 ×165 0.33 ×644 0.14 ×1560 0.74 ×286 0.30 ×693

128 422 2.68 ×158 0.45 ×939 0.26 ×1596 1.01 ×417 0.60 ×709

256 845 5.61 ×151 0.69 ×1222 0.50 ×1677 1.56 ×543 1.13 ×746

512 1692 11.81 ×143 1.24 ×1365 1.00 ×1691 2.79 ×607 2.25 ×752

1024 3382 25.72 ×132 – – 1.70 ×1990 – – 3.82 ×885

2048 6781 53.23 ×127 – – 3.27 ×2074 – – 7.36 ×922

4096 13585 143.71 ×95 – – – – – – – –

Regarding the scalability of the fully distributed versions, from a certain number of islands,

the GPU failed to execute the program because of the hardware register limitation. For

instance, for a number of 1024 islands (131072 threads), the SGPU implementation could

not be executed. In the GPUSh and the SGPUSh versions, since the shared memory is

used conducting to fewer registers, this limit is reached for a larger number of 4096 islands.

The CPU+GPU version provides a higher scalability since fewer registers are allocated

(only the evaluation kernel is executed on GPU).

In the previous experiments, the number of individuals is fixed to 128. Another experiment

consists in varying the number of individuals per island i.e. the number of threads per

block. In this purpose, it will allow to determine the effect of this parameter on the

global performance. Table 4.7 reports the obtained results. Regarding the execution time

of each version, it varies accordingly to the number of threads per block. In general,

best performances are obtained for 16, 32 or 64 threads per block. Indeed, the measured

results depend on the multiprocessor occupancy of a GPU. This latter varies according

to the number of threads used in a kernel, the amount of registers and shared memory

used. For instance, the CUDA occupancy calculator [NVI11] is an efficient tool to adjust

the different configurations. Another observation that can be made concerns the threads

limitation for the shared memory versions. Indeed, for 768 or 1024 threads per block, the

amount of allocated shared memory exceeds the memory capacity of each multiprocessor

(16KB). Therefore, for these versions, a trade-off must be found between the dimension of

the problem and the number of individuals per island.

112

Chapter 4: Efficient Memory Management

Table 4.7: Measures in terms of efficiency by varying the number of individuals per island.
The dimension of the problem is fixed to 2 and the global population to 8192.

individuals 4 8 16 32 64 128 256 512 768 1024

CPU 41.8 42.0 42.1 42.2 42.4 42.9 43.4 44.8 49.8 55.2

CPU+GPU 0.27 0.22 0.24 0.34 0.54 0.96 1.72 2.90 3.23 4.12

GPU 0.18 0.17 0.16 0.16 0.15 0.16 0.19 0.25 0.28 0.33

GPUSh 0.05 0.03 0.02 0.02 0.02 0.04 0.14 0.17 – –

SGPU 0.41 0.38 0.36 0.36 0.34 0.36 0.42 0.55 0.63 0.74

SGPUSh 0.10 0.07 0.05 0.05 0.05 0.09 0.30 0.37 – –

Figure 4.10: Measures in terms of effectiveness of the different island models during the
first minute. The dimension of the problem is fixed to 10, the global population is set to
8192 and the number of individuals per island to 128.

4.4.3 Measures in Terms of Effectiveness

After measuring the efficiency of our approaches, the last experiment consists in evaluat-

ing the quality of the obtained solutions. To accomplish this in a fair manner, only GPU

synchronous versions are considered to have the same algorithm semantic. Figure 4.10

reports the evolution of the average of the best fitness values during the first minute. In

agreement with the previous obtained results, the quality of the solutions differs accord-

ingly to the employed scheme. Indeed, for instance, the best results are obtained with the

full distribution of the island model on GPU using shared memory. Precise measurements

of the first second are not visible on the figure (populations have the same initializations),

but the evolution of the fitness for each GPU version decreases drastically during the first

second. The evolution of the fitness keeps decreasing with time but with a rather slow

convergence, due to a high migration rate (25%).

113

Chapter 4: Efficient Memory Management

Conclusion

In this chapter, the focus has been made on the memory management in metaheuristics

on GPU. The comprehension of the hierarchical organization of the different memories

available on GPU architectures is the key issue to develop efficient parallel metaheuristics.

In this purpose, we have investigated the complete redesign of the algorithmic-level model

for parallel and cooperative algorithms.

• Management of data structures. Through an example, we have shown that

coalescing transformations are essential for getting more global memory efficiency.

Furthermore, optimizing the performance of GPU-based metaheuristics involves the

appropriate use of various GPU memory spaces. The use of texture memory has

been revealed as a solution for reducing memory transactions due to non-coalesced

accesses. When dealing with optimization problems with data inputs, its use may

be more appropriated than the shared memory.

• Parallel and cooperative metaheuristics. Cooperative properties available in P-

metaheuristics may be exploited to design efficient cooperative algorithms. Thereby,

we have established three parallelization schemes for the algorithmic-level on GPU:

the parallel evaluation of populations on GPU, the full distribution on GPU, and

the entire distribution on GPU using the shared memory. For achieving this, all the

mechanisms for the migration of solutions between the different populations have

been revisited according to the hierarchical organization of memories. The obtained

results from the experiments suggest that such parallelization strategies are fully

efficient.

114

Chapter 5

Extension of the ParadisEO

Framework for GPU-based

Metaheuristics

Previous chapters have shown that parallel combinatorial optimization on GPU is not

straightforward and requires a huge effort at design as well as at implementation level.

Indeed, the design of GPU-aware metaheuristics often involves the cost of a sometimes

painful apprenticeship of parallelization techniques and GPU computing technologies. In

order to free from such burden those who are unfamiliar with those advanced features,

ParadisEO integrates the up-to-date parallelization techniques and allow their transparent

exploitation and deployment on COWs and computational grids.

First, a brief overview of the ParadisEO framework will be done. Then, we will extend

ParadisEO to deal with GPU accelerators. The challenges and contributions consist in

making the GPU as transparent as possible for the user minimizing his or her involvement

in its management. In this purpose, we offer solutions to this challenge as an extension of

the ParadisEO framework.

Contents

5.1 The ParadisEO Framework . 117

5.1.1 Motivations and Goals . 117

5.1.2 Presentation of the Framework 117

5.2 GPU-enabled ParadisEO . 118

5.2.1 Architecture of ParadisEO-GPU 119

5.2.2 ParadisEO-GPU Components . 120

5.2.3 A Case Study: Parallel Evaluation of a Neighborhood 122

5.2.4 Automatic Construction of the Mapping Function 124

5.3 Performance Evaluation . 126

5.3.1 Experimentation with ParadisEO-GPU 126

115

Chapter 5: Extension of ParadisEO for GPU-based Metaheuristics

Main publications related to this chapter

Nouredine Melab, Thé Van Luong, K. Boufaras, and El-Ghazali Talbi. Towards ParadisEO-

MO-GPU: A Framework for GPU-based Local Search Metaheuristics. 11th International

Work-Conference on Artificial Neural Networks, IWANN 2011, pages 401–408, volume

6691 of Lecture Notes in Computer Science, Springer, 2011.

Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. Neighborhood Structures for

GPU-based Local Search Algorithms. Parallel Processing Letters, 20(4):307–324, 2010.

Submitted article

Nouredine Melab, Thé Van Luong, K. Boufaras, and El-Ghazali Talbi. ParadisEO-MO-

GPU: A Framework for GPU-based Local Search Metaheuristics. Journal of Heuristics,

submitted.

116

Chapter 5: Extension of ParadisEO for GPU-based Metaheuristics

5.1 The ParadisEO Framework

5.1.1 Motivations and Goals

A framework is usually designed to be operated by the maximum number of users. Its

exploitation can only be successful if a significant number of criteria is satisfied. Therefore,

the main objectives of the ParadisEO framework are the following ones [CMT04]:

• Maximum design and code reuse. The framework must provide a full architecture

design for using metaheuristics. In this purpose, the programmer may redo as little

code as possible. This objective requires a clear and maximal conceptual separation

between the different methods and problems to be solved. Therefore, the user might

develop only the minimal code specific to the problem at hand.

• Flexibility and adaptability. It must be possible for the user to easily add new fea-

tures or to modify existing ones without involving other components. Moreover, as

existing problems evolve and new ones appear, the framework components must be

specialized and adapted to the general demand.

• Utility. The framework must allow the user to cover a wide range of metaheuristics,

problems, parallel distributed models, hybridization mechanisms, etc.

• Transparent and easy access to performance and robustness. As optimization ap-

plications are often time-consuming, the performance issue is crucial. The use of

parallelism is necessary to achieve high performance execution. In order to facilitate

its use, parallel techniques need to be implemented in a transparent manner for the

user. Moreover, the execution of the algorithms must be robust to guarantee the

reliability and the quality of the obtained results. In this purpose, the hybridization

mechanism allows to obtain robust and better solutions.

• Portability. In order to satisfy a large number of users, the framework must support

different hardware architectures and operating systems.

5.1.2 Presentation of the Framework

ParadisEO1 [CMT04] is a white-box object-oriented software framework dedicated to the

flexible design of metaheuristics for optimization problems. Based on EO2 (evolving ob-

jects) [KGRS01], this template-based C++ library is portable across different operating

systems.

1http://paradiseo.gforge.inria.fr
2http://eodev.sourceforge.net

117

Chapter 5: Extension of ParadisEO for GPU-based Metaheuristics

Figure 5.1: Main modules of ParadisEO.

The framework is composed of four modules that constitute a global framework. Fig-

ure 5.1 illustrates the different modules available in ParadisEO. Each module is based

on a clear conceptual separation of the metaheuristics from the problems they are in-

tended to solve. Such a separation provides a maximum code and design reuse to the user.

The first module ParadisEO-EO provides a broad range of classes for the development

of P-metaheuristics, including evolutionary algorithms and particle swarm optimization

techniques. Second, ParadisEO-MO contains a set of tools for S-metaheuristics such as

hill climbing, simulated annealing, or tabu search. Third, ParadisEO-MOEO is specifi-

cally dedicated to the reusable design of metaheuristics for multiobjective optimization.

Finally, ParadisEO-PEO provides a powerful set of classes for the design of parallel and

distributed metaheuristics: parallel evaluation of solutions, parallel evaluation of the ob-

jective function and parallel cooperative algorithms.

ParadisEO is one of the rare frameworks that provide the most common parallel and dis-

tributed models. These models are portable on distributed-memory machines and shared-

memory multiprocessors as they are implemented using standard libraries such as MPI

and PThreads. The models can be exploited in a transparent way. One has just to instan-

tiate their associated ParadisEO components. The ParadisEO-PEO module is an open

source framework originally intended to the design and deployment of parallel hybrid local

search metaheuristics on dedicated clusters and networks of workstations, shared-memory

machines and computational grids.

5.2 GPU-enabled ParadisEO

Two framework tentatives have been proposed in [MBL+09, SBPE10]. However, the first

one is limited to an application of genetic algorithms for continuous problems, while the

118

Chapter 5: Extension of ParadisEO for GPU-based Metaheuristics

Figure 5.2: A layered architecture of ParadisEO-GPU.

second one remains in a design step. To the best of our knowledge, there does not exist any

software framework for GPU-based metaheuristics applied to combinatorial optimization.

Regarding the different parallel implementations of ParadisEO, in [CMT04], the first ver-

sion of ParadisEO-PEO was dedicated to the reusable design of parallel and distributed

metaheuristics for only dedicated parallel hardware platforms. Later, the framework

was dedicated in [MCT06] to dynamic and heterogeneous large-scale environments us-

ing Condor-MW middleware and in [TMDT07] to computational grids using Globus. In

this section, we will present a step towards a ParadisEO framework for the reusable design

and implementation of the GPU-based parallel metaheuristics.

5.2.1 Architecture of ParadisEO-GPU

ParadisEO-GPU is an extension of the ParadisEO-PEO module, which is a coupling be-

tween ParadisEO and CUDA for the design and implementation of reusable metaheuristics

on GPU. It is composed by a set of new C++ abstract and predefined classes that enables

an easy and transparent development of metaheuristics on GPU accelerators. The actual

available components concern the iteration-level parallel model (parallel evaluation of solu-

tions). From an implementation point of view, this model presents many generic concepts

that can be parallelized. The architecture of ParadisEO-GPU is layered as illustrated in

Figure 5.2.

The user layer indicates the different problem-dependent components that must be defined:

119

Chapter 5: Extension of ParadisEO for GPU-based Metaheuristics

Figure 5.3: The major components of ParadisEO-GPU.

input data, the evaluation function and representations. The software layer supplies the

ParadisEO components including optimization solvers embedding metaheuristics. The

ParadisEO-GPU module provides a CUDA interface allowing the transparent interaction

with the hardware layer. The hardware layer supplies the different transparent tools

provided by ParadisEO-GPU such as the allocation and copy of data or the parallel gen-

eration and evaluation of the considered set of solutions. In addition, the platform offers

predefined structures (e.g. neighborhood structures) and mapping wrappers adapted to

hardware characteristics to deal with binary and permutation problems.

The layered architecture of ParadisEO-GPU has been designed in such a way that the user

does not need to build his or her own CUDA code for the specific problem to be solved.

Indeed, ParadisEO-GPU provides facilities for automatic execution of metaheuristics on

GPU. The only thing that must be user-managed is the different components described in

the user level quoted above.

5.2.2 ParadisEO-GPU Components

Figure 5.3 illustrates the major components of the platform. The advantage of the decom-

position into components is to separate the components that must be defined by the user

and those which are generic and provided in ParadisEO-MO-GPU.

Initially, to implement a sequential metaheuristic, the user must overload required classes

of ParadisEO-EO and ParadisEO-MO. The classes coding the problem-specific part are

120

Chapter 5: Extension of ParadisEO for GPU-based Metaheuristics

abstract classes to be specialized and implemented by the user. To GPU-enable their

metaheuristics, users need to derivate their own classes with a bench of new provided ones.

In the following components, the main modifications to take into account are detailed:

• Solution representation. Some keywords must be specified by the user to indicate

which part of the structure will be executed on GPU. Some predefined extensions for

binary or permutation representations are already provided in the ParadisEO-GPU

module.

• Population / Neighborhood. For S-metaheuristics, according to the used neighbor-

hood, the user needs to make an explicit function call to a predefined mapping

function. It will automatically allow to find the right association between a neighbor

and a GPU thread. Such a problem does not appear when dealing with a population

in P-metaheuristics.

• Problem data inputs. The user must specify which inputs of the problem to be solved

will be allocated on GPU. This can be achieved by introducing additional keywords.

• Solution evaluation. In this component, structures, which are likely to be allocated

and managed on GPU, must be indicated by the user. All private structures specific

to a solution (such as an array) must be declared in a static way. Furthermore, the

user might need to adapt multidimensional arrays into one-dimensional ones. Such

a hard constraint is required to execute programs in the CUDA platform.

To summarize, regarding new user-defined classes, the user must specify the structures

which are likely to be accessed on the GPU device. This strict restriction enables more

efficiency and flexibility. Indeed, on the one hand, unnecessary structures for the parallel

evaluation of solutions should not be automatically allocated on GPU to reduce the com-

plexity memory space. On the other hand, some additional structures required for each

solution evaluation might be copied for each iteration of the metaheuristic, whilst some

others are transferred only once during the program. Such a restriction makes it possible

to avoid undesirable transfers, which would lead to a performance decrease.

Regarding the components supplied in the software framework, the associated classes

establish a hierarchy of classes implementing the invariant part of the code. The different

features of these generic components are the following:

• Memory allocation and deallocation. According to the specification made by the user,

this generic component enables the automatic allocation on GPU of the different

structures used for the problem. Type inference and size detection are managed by

this component. The same goes on for the deallocation.

121

Chapter 5: Extension of ParadisEO for GPU-based Metaheuristics

• Data transfers. For P-metaheuristics, the population is automatically copied from

CPU to GPU at each iteration. Regarding S-metaheuristics, the transfer of the

candidate solution, which is used to generate the neighborhood, is automatically

performed from CPU to GPU. Moreover, this component also ensures the transparent

copy of the fitness results from GPU to CPU. Type inference and size detection of

the different structures are also supported.

• Parallel evaluation. This component manages the kernel of the solutions evalua-

tion. Concepts involving kernel such as thread blocks and block grids are completely

hidden to the user.

• Fitnesses results. The corresponding structure is manipulated in a transparent man-

ner to store the results of the solutions evaluated on GPU. Afterwards, this structure

is sent back to the CPU to continue the search process of the given metaheuristic in

a sequential manner.

• Mapping functions. For S-metaheuristics, predefined mapping functions control the

generation of the neighborhood on GPU. They consist in associating one thread with

a specific neighbor. Such a mapping differs according to the used neighborhood.

• Memory management. Based on the user specifications, this component manages

all the previous structures which are stored on global memory. This management is

performed in a transparent way to the user.

The decomposition of the components in ParadisEO-GPU allows to separate the features

specific to metaheuristics (ParadisEO-EO and ParadisEO-MO) from those which are re-

lated to the GPU code. This separation of concerns makes it possible to split the software

framework into distinct features that overlap in functionality as little as possible.

5.2.3 A Case Study: Parallel Evaluation of a Neighborhood

The ParadisEO-GPU execution is illustrated in Figure 5.4 through an UML sequence

diagram. In this example, a S-metaheuristic is considered. The scenario shows the design

and implementation of the parallel neighborhood evaluation on GPU. At each iteration,

the different stages of the parallel evaluation process on GPU are the following:

1. The neighborhood component moGPUNeighborhood prepares all the steps for the

parallel generation of the neighborhood on GPU. The initialization consists in setting

a mapping table between GPU threads and neighbors. Thereafter, the associated

data are sent only once to the GPU global memory since the mapping structure does

not change during the execution process of S-metaheuristics. The last step relies on

122

Chapter 5: Extension of ParadisEO for GPU-based Metaheuristics

Figure 5.4: The parallel generation and evaluation of a neighborhood provided in
ParadisEO-GPU.

123

Chapter 5: Extension of ParadisEO for GPU-based Metaheuristics

the evaluation kernel invocation. It will be informed later on its termination to

retrieve the precomputed fitnesses structure.

2. Before proceeding to the parallel evaluation, the component moGPUEval configures

the kernel with m threads such that each thread is associated exactly with one

neighbor evaluation (m designates the neighborhood size). During the first iteration,

the component allocates the neighborhood fitnesses structure in which the result of

the evaluated neighbors will be stored. Otherwise, in any case, it only sends to the

GPU device the candidate solution which generates the neighborhood.

3. The component moGPUKernelEval modelizes the main body which will be executed

by m concurrent threads on different input data. A first step consists in getting

the thread identifier then the set of its associated data. This mechanism is done

through the mapping table previously mentioned. The second step calculates the

evaluation of the corresponding neighbor. Finally, the resulting fitness is stored in

the corresponding index of the fitnesses structure.

4. The worker component moGPUEvalFunc is the specific object with computes on the

GPU device the neighbor evaluation and returns back the produced result to the

CPU.

Once the entire neighborhood has been carried out in parallel on GPU, the precalculated

fitness structure is copied back to the CPU and given as input to the ParadisEO-MO mod-

ule. In this way, the S-metaheuristic continues the neighborhood exploration (iteration)

on the CPU side. Instead of reevaluating each neighbor, the corresponding fitness value

will be retrieved from the precomputed fitnesses structure. Hence, this mechanism has

the advantage of allowing both the deployment of any metaheuristic and the use of tool-

boxes provided in ParadisEO (e.g. statistical or fitnesses landscape analysis, checkpoint

monitors, etc.). This common technique is also currently available for P-metaheuristics.

5.2.4 Automatic Construction of the Mapping Function

As previously said in Chapter 3, for S-metaheuristics, the advantage of generating the

neighborhood on GPU is to drastically reduce the data transfers since the whole neigh-

borhood does not have to be copied. However, the main difficulty is to find an efficient

mapping between a GPU thread and neighbor candidate solution(s). In other words, the

issue is to say which solution must be handled by which thread. The answer is dependent

of the solution representation. In Chapter 3, we have provided some mappings for the

main neighborhood structures of the literature. However, from an implementation point

124

Chapter 5: Extension of ParadisEO for GPU-based Metaheuristics

Figure 5.5: Automatic construction of the mapping function.

of view, they are still user-managed. Indeed, the neighborhood structure strongly depends

on the target optimization problem representation.

To deal with these issues, mappings for different neighborhoods could be hard-coded in

the software framework. However, such a solution does not ensure any flexibility. Hence,

we propose to add a supplementary layer in terms of transparency for the deployment of

S-metaheuristics on GPU. The main idea is to find a generic mapping which is common

for a set of neighborhoods. To achieve this, we provide an automatic construction of the

mapping function for k-swaps and k-Hamming distance neighborhoods. Figure 5.5 depicts

such a construction of a mapping table. In this example, each neighbor associated with a

particular thread can retrieve its three corresponding indexes from the mapping table.

Considering a given vector of size n and a given neighborhood whose neighbors are com-

posed of k indexes with k in {1, 2, 3, ...}, the size of the associated neighborhood is exactly

m =
n× (n− 1)× ...× (n− k + 1)

k!
. The resulting mapping table associates each thread

id with a set of k indexes. Each index can be respectively retrieved from the mapping

table with the access pattern:

{id, id + m, ..., id + (k − 2)×m, id + (k − 1)×m}

The corresponding mapping table will be used at each iteration of the local search. This ta-

ble is dynamically constructed on CPU according to the neighborhood size and transferred

only once to the GPU global memory during the program execution.

125

Chapter 5: Extension of ParadisEO for GPU-based Metaheuristics

5.3 Performance Evaluation

5.3.1 Experimentation with ParadisEO-GPU

5.3.1.1 Application to the Permuted Perceptron Problem

The objective is to assess the impact in terms of efficiency of an implementation done with

ParadisEO-GPU compared with an optimized version done outside the software frame-

work. In this purpose, a tabu search is considered for the permuted perceptron problem.

To measure the performance difference, three neighborhoods based on increasing Ham-

ming distances are considered for the experiments. In such neighborhoods, a neighbor is

produced by flipping respectively 1, 2 and 3 bits of the candidate solution.

The considered instances of the permuted perceptron problem are the difficult ones pre-

sented in [Poi95] for cryptanalysis applications. A tabu search has been implemented in

four different versions: 1) a ParadisEO-MO implementation on CPU and its counterpart

on GPU; 2) an optimized CPU implementation and its associated GPU version. Par-

adisEO versions are pure object-based implementations, whilst the optimized ones are

pointer-based made outside the software framework.

Experiments have been carried out on top of an Intel Core i7 970 3.2 Ghz with a GTX

480 card (15 multiprocessors with 32 cores). This is actually the machine dedicated to the

engineering production. To measure the acceleration factors, only a single CPU core has

been considered using the Intel i7 turbo mode (3.46 Ghz). For the different neighborhoods,

50 executions for each different version are considered. The stopping criterion of the S-

metaheuristic has been set to 10000 iterations.

Table 5.1 reports the results obtained for the tabu search based on a Hamming distance

of one. From the instance m = 171 and n = 187, both GPU versions start to yield

positive accelerations (from ×1.1 to ×1.2). As long as the instance size increases, the

acceleration factor grows accordingly (from ×1.3 to ×1.7). The acceleration factor for

this implementation is not really significant. This can be explained by the fact that since

the neighborhood is relatively small (n threads), the number of threads per block is not

enough to fully cover the memory access latency. Furthermore, since the execution time

for CPU versions is not meaningful, one can also argue on the use of GPU computing in

that case.

An experiment on a larger scale concerns a tabu search using a neighborhood based on

a Hamming distance of two. For this neighborhood, the evaluation kernel is executed by
n× (n− 1)

2
threads. The obtained results from experiments are reported in Table 5.2.

For the first instance (m = 73, n = 73), acceleration factors are already significant (from

×8.2 and ×13.1). As long as the instance size increases, the acceleration factor grows ac-

cordingly. A peak performance is obtained for the last instance (efficient speed-ups varying

126

Chapter 5: Extension of ParadisEO for GPU-based Metaheuristics

Table 5.1: Measures in terms of efficiency of a ParadisEO-GPU implementation with
an optimized version made outside the platform. The permuted perceptron problem is
considered with a neighborhood based on a Hamming distance of one (n neighbors).

Instance
ParadisEO-MO Optimized version

CPU GPU Acc. CPU GPU Acc.

73-73 0.5 1.1 ×0.4 0.3 0.8 ×0.4
81-81 0.6 1.2 ×0.5 0.4 1.0 ×0.4

101-117 1.0 1.4 ×0.7 0.7 1.2 ×0.6
121-137 1.4 1.5 ×0.9 1.1 1.3 ×0.8
151-167 2.1 1.7 ×1.2 1.7 1.5 ×1.1

171-187 2.7 1.9 ×1.4 2.3 1.7 ×1.4

201-217 3.8 2.2 ×1.7 3.3 1.9 ×1.7

Table 5.2: Measures in terms of efficiency of a ParadisEO-GPU implementation with an
optimized version made outside the platform. The permuted perceptron problem is consid-

ered with a neighborhood based on a Hamming distance of two (
n× (n− 1)

2
neighbors).

Instance
ParadisEO-MO Optimized version Perf. degradation

CPU GPU Acc. CPU GPU Acc. CPU GPU

73-73 19.8 2.4 ×8.2 17.1 1.3 ×13.1 86% 54%
81-81 26 2.8 ×9.3 22 1.6 ×13.8 84% 57%

101-117 61 3.9 ×15.6 51 2.2 ×23.2 83% 56%
121-137 106 5.2 ×20.4 91 2.9 ×31.3 86% 56%
151-167 193 8.0 ×24.1 134 4.1 ×32.7 69% 51%
171-187 305 11.3 ×26.9 208 5.6 ×37.1 68% 49%
201-217 455 17.6 ×29.5 343 8.2 ×41.8 75% 46%

127

Chapter 5: Extension of ParadisEO for GPU-based Metaheuristics

Table 5.3: Measures in terms of efficiency of a ParadisEO-GPU implementation with an
optimized version made outside the platform. The permuted perceptron problem is con-

sidered with a neighborhood based on a Hamming distance of three (
n× (n− 1)× (n− 2)

6
neighbors).

Instance
ParadisEO-MO Optimized version Perf. degradation

CPU GPU Acc. CPU GPU Acc. CPU GPU

73-73 565 32 ×17.7 303 15.3 ×19.8 54% 47%
81-81 877 44 ×19.9 464 21 ×22.1 53% 47%

101-117 2468 99 ×24.9 1375 50 ×27.5 56% 50%
121-137 4887 182 ×26.8 3137 89 ×35.2 64% 48%
151-167 11983 401 ×29.9 7781 190 ×41.0 65% 49%
171-187 20239 612 ×33.1 13089 288 ×45.4 64% 47%
201-217 37956 1111 ×34.1 26706 504 ×53.0 70% 45%

from ×29.5 to ×41.8). A thorough examination of the acceleration factors points out that

the performance obtained with ParadisEO-GPU is not so far from an optimized imple-

mentation. The performance degradation that occurs is certainly due to the additional

cost provided by ParadisEO-MO.

Indeed, regarding the two CPU versions, initially, there is already a performance gap re-

garding the execution time (between 68% and 86%). This difference can be explained by

the overhead caused by the creation of generic objects in ParadisEO whereas the opti-

mized version on CPU is a pure pointer-based implementation. Indeed, the tabu search in

ParadisEO-MO is a specialized instantiation of a common template to any S-metaheuristic,

whilst the optimized version is a specific tabu search implementation. This may also clar-

ify the performance difference between the two different GPU counterparts in which the

same phenomenon occurs. However, for such a transparent exploitation and flexibility,

the obtained results are remarkably convincing. A conclusion of this experiment indicates

that the performance results of the GPU version provided by ParadisEO are not much

degraded compared to the GPU pointer-based one.

As previously said, the definition of the neighborhood is a major step for the performance

improvement of the algorithm. Indeed, the increase of the neighborhood size may improve

the quality of the obtained solutions. However, its exploitation for solving real-world

problems is possible only by using a great computing power. The following experiment

intend to perform a large neighborhood obtained with a Hamming distance of 3. For

such neighborhood, the evaluation kernel is executed by
n× (n− 1)× (n− 2)

6
threads.

Table 5.3 presents the obtained results for such a large neighborhood.

In general, for the same problem instance, the obtained acceleration factors are much

more important than for the previous neighborhoods. For example, for the first instance,

the obtained speed-up already varies from ×17.7 to ×19.8. GPU keeps accelerating the

128

Chapter 5: Extension of ParadisEO for GPU-based Metaheuristics

Table 5.4: Measures in terms of efficiency of a ParadisEO-GPU implementation with
an optimized version made outside the platform. The quadratic assignment problem is
considered with a neighborhood based on a pair-wise exchange operator.

Instance
ParadisEO-MO Optimized version Perf. degradation

CPU GPU Acc. CPU GPU Acc. CPU GPU
tai30a 0.8 0.9 ×0.9 0.7 0.7 ×1.0 87% 77%
tai40a 1.9 1.2 ×1.6 1.7 1.0 ×1.7 89% 83%
tai50a 3.6 1.6 ×2.2 3.0 1.3 ×2.3 83% 81%
tai60a 6.0 2.0 ×3.0 5.0 1.6 ×3.1 83% 80%
tai80a 15 2.8 ×5.4 12 2.1 ×5.8 81% 75%
tai100a 32 3.8 ×8.3 26 2.8 ×9.2 82% 73%
tai150b 120 8.9 ×13.4 98 6.5 ×15.1 82% 73%

process as long as the size grows. A highly significant acceleration varies from ×34.1

to ×53 for the biggest instance (m = 201, n = 217). Regarding the difference between

ParadisEO-MO implementations and the optimized ones, the performance degradation is

more important between the CPU versions (from 53% to 70%). Indeed, the increase of

the neighborhood size may induce more creations of objects. This is also the same case for

the performance degradation regarding the GPU counterparts. Nevertheless, according

to the reported time measurements, the performance results of ParadisEO-GPU are still

satisfactory for such a transparency.

5.3.1.2 Application to the Quadratic Assignment Problem

Another experiment consists in assessing the performance of ParadisEO-GPU for a permutation-

based problem. In this purpose, the quadratic assignment problem is considered. Results

are reported in Table 5.4 for the different versions.

From the instance tai40a, both GPU versions start giving positive accelerations (from

×1.6 to ×1.7). The poor performance for small instances is explained by the fact that

the neighborhood is relatively small. Therefore, the number of threads per block is not

enough to fully cover the memory access latency. However, as long as the instance size

increases, the acceleration factor grows accordingly (e.g. from ×5.4 to ×5.8 for tai80a).

Finally, significant speed-ups are obtained for the instance tai150b. They vary between

×13.4 and ×15.1. In a general manner, since the turbo mode is activated for the core i7

(boost of one single-core), the GPU acceleration factors are less pronounced.

Regarding the performance difference of the two GPU versions, acceleration factors are

quite similar. The difference which appears is due to the CPU version provided by

ParadisEO-MO. Indeed, regarding the two CPU versions, initially, there is already an

existing difference regarding the execution time. Such a gap varies between 81% and 89%

129

Chapter 5: Extension of ParadisEO for GPU-based Metaheuristics

according to the instance. As previously said, this difference is explained by the overhead

caused by the creation of generic objects in ParadisEO. This clarifies the performance

difference between the two different GPU counterparts (between 73% and 83%). However,

for such a transparent exploitation, the obtained results are still satisfactory.

130

Chapter 5: Extension of ParadisEO for GPU-based Metaheuristics

Conclusion

In this chapter, we have proposed a pioneering framework called ParadisEO-GPU for

the reusable design and implementation of parallel metaheuristics on GPU architectures.

We have revisited the ParadisEO software framework to allow its utilization on GPU

accelerators focusing on the parallel iteration-level model.

• Framework architecture. The architecture of ParadisEO-GPU has been thought

in such a way that the user does not need to have any knowledge about CUDA

code for the particular problem to be solved. In this way, ParadisEO-GPU provides

facilities for the automatic execution of metaheuristics on GPU.

• Framework components. The components in ParadisEO-GPU have been sepa-

rated to distinguish the features specific to metaheuristics from those which are par-

ticular to the CUDA code. This conceptual distinction allows to divide the global

framework into distinct features that overlap in functionality as little as possible.

• Functionalities. The ParadisEO-GPU provides different transparent tool such as

the allocation and copy of data or the parallel evaluation of solutions. In addition,

predefined structures (e.g. neighborhood and mapping wrappers for S-metaheuristics)

are proposed. Such structures are adapted to hardware characteristics to deal with

combinatorial problems.

131

Chapter 5: Extension of ParadisEO for GPU-based Metaheuristics

132

Conclusion and Future Works

Parallel metaheuristics allow to improve the effectiveness and robustness in combinatorial

optimization. Their exploitation for solving real-world problems is possible only by using

an important computational power. High-performance computing based on the use of

GPUs has been revealed to be a good way to provide such computational power [OML+08,

RRS+08, ND10]. However, the exploitation of parallel models is not trivial and many

issues related to the GPU memory hierarchical management of this architecture have to

be considered. To the best of our knowledge, GPU-based parallel approaches have never

been deeply and widely investigated so far. In this document, a new guideline has been

established to design and implement efficiently metaheuristics on GPU.

An efficient mapping of the iteration-level parallel model on the hierarchical GPU has

been proposed in Chapter 2 and in Chapter 3. For the iteration-level, the CPU manages

the whole search process and allows the GPU to be used as a coprocessor dedicated to

intensive calculations. Regarding S-metaheuristics, we came up with the pioneering work

on GPU-based S-Metaheuristics. Indeed, previous research works [JJL08, ZCM08] just

rely on a multi-start execution of local search algorithms. In our contributions, an efficient

CPU-GPU cooperation, which minimizes the data transfer between the two components,

is a must to achieve the best performance. Then, the purpose of the parallelism control

is 1) to control the generation of the neighborhood to meet the memory constraints; 2)

to find efficient mappings between neighborhood candidate solutions and GPU threads.

The redesign of the parallel iteration-level model on GPU is a good fit for deterministic S-

metaheuristics such as hill climbing, tabu search, variable neighborhood search or iterative

local search. Furthermore, we proved the robustness of our approach by applying an

efficient thread control. This latter allows to prevent GPU-based metaheuristics from

crashing when considering a large set of solutions to be evaluated. In addition to this,

such a thread control provides additional acceleration improvements.

Another contribution is the redesign of the algorithmic-level through an effective use of the

memory management on GPU in Chapter 4. In this purpose, we have particularly focused

on P-metaheuristics where there are a significant number of works on GPU (see Section 1.3

in Chapter 1). However, to the best of our knowledge, GPU-based cooperative algorithms

have never been intensely studied in terms of memory management, and no general models

can be outlined from previous research works [ZH09, PJS10, MWMA09a, SBPE10]. In this

document, we have contributed with the entire redesign of parallel cooperative algorithms

133

Conclusion and Future Works

on GPU. More exactly, in our contribution, we have proposed three different general

schemes for building efficient parallel and cooperative metaheuristics on GPU. In the first

scheme, cooperative algorithms are combined with the parallel evaluation of the population

on GPU (iteration-level). From an implementation point of view, this approach is the

most generic since only the evaluation kernel is considered. However, the performance

of this scheme is limited due to the data transfers between the CPU and the GPU. To

deal with this issue, the two other schemes operate on the full distribution of the search

process on GPU, involving the appropriate use of local memories. Applying such a strategy

allows to drastically improve the performance. However, these schemes could present

some restrictions due to the memory limitation with some problems that could be more

demanding in terms of resources.

In a general manner, we proved the effectiveness of our methods through extensive exper-

iments. In particular, we showed that it enables to gain up on GPU cards to a factor of

×80 in terms of acceleration (compared with a single-core architecture) when deploying

it for well known combinatorial instances and up to ×2000 for a continuous problem. In

addition to this, experiments indicate that the approaches performed on these problems

scale well with last GPU cards such as a Tesla Fermi card. Moreover, the experiments

highlight that GPU computing allows not only to speed up the search process, but also to

exploit parallelism to improve the quality of the obtained solutions.

In this document, we have also presented a step towards a ParadisEO framework [CMT04]

for the reusable design and implementation of the GPU-based parallel metaheuristics. In

this contribution, the focus has been set on the iteration-level parallel evaluation of the so-

lutions. We have revisited the design and implementation of this last model in ParadisEO

to allow its efficient execution and its transparent use on GPU. In order to reduce the cost

of the data transfer, mapping functions are defined and implemented into ParadisEO al-

lowing to assign a thread identifier to each solution. These mapping functions may be used

in a fully transparent way for dealing with many problem representations. An implementa-

tion made in ParadisEO using CUDA has been experimentally validated and compared to

the same implementation realized outside ParadisEO. The experimental results show that

the performance degradation that occurs between the two implementations is satisfactory.

Indeed, for such a flexibility and an easiness of reuse at implementation, the results ob-

tained with ParadisEO-GPU are really promising. Hence, the use of ParadisEO-GPU is

a viable solution. The first release of ParadisEO for GPU architectures is currently avail-

able on the ParadisEO website3. Tutorials and documentation are provided to facilitate

its reuse. This release is dedicated to parallel metaheuristics based on the iteration-level

parallel model. In the future, the framework will be extended with further features to be

3http://paradiseo.gforge.inria.fr

134

Conclusion and Future Works

validated on a wider range of problems.

For a same computational power, GPU computing is much more efficient than cluster of

workstations (COWs) and grids for dealing with data-parallel regular applications. In-

deed, the main issue in such parallel and distributed architectures is the communication

cost. This is due to the synchronous nature of the algorithms proposed in this document.

However, since GPU follows a SIMD execution model, it might not be well-adapted for few

irregular problems (e.g. [MCT06]). When dealing with such problems in which the compu-

tations become asynchronous, using COWs or computational grids might be more relevant.

Most of GPU-accelerated algorithms designed in this manuscript only exploit a single

CPU core. With the arrival of GPU resources in COWs and grids, the next objective is to

examine the conjunction of GPU computing and distributed computing to fully and effi-

ciently exploit the hierarchy of parallel models of metaheuristics. Indeed, all processors are

nowadays multi-core and when coupled with GPU devices hybrid or heterogeneous com-

puting, which is definitely a new trend of parallel computing, performance of GPU-based

algorithms might be drastically improved. Furthermore, heterogeneous computing raises

other challenging issues that require a large study and many experiments. The challenge

will be to find the best mapping in terms of efficiency and effectiveness of the hierarchy

of parallel models on the hierarchy of CPU-GPU resources provided by multi-level archi-

tectures. This is a very challenging perspective of this work that we will consider in the

near future. OpenCL for heterogeneous computing might be the key to address a range

of fundamental parallel algorithms on multiple platforms.

Furthermore, in the context of multiobjective optimization, the methods developed in this

document could be easily applied to this class of optimization. However, the archiving of

non-dominated solutions might represent a prominent issue in the design of multiobjective

algorithms on GPU architectures. Indeed, for multiobjective optimization problems whose

objectives are uncorrelated, the number of non-dominated solutions could be huge, leading

to a serious performance decrease of GPU-based implementations. Even if some archiv-

ing techniques could be applied to restrict the archive size, they would not completely

solve the issue at all. As a consequence, for being complete, an extension of this work

is to provide a SIMD parallel archiving on GPU. This way, it will allow to produce new

algorithms for multiobjective optimization. Nevertheless, performing a parallel archiving

of non-dominated solutions is challenging. In this purpose, it requires to ensure addi-

tional synchronizations, non-concurrent writing operations and to manage some dynamic

allocations on GPU.

135

Conclusion and Future Works

136

Appendix

.1 Mapping Proofs

.1.1 Two-to-one Index Transformation

Let us consider a 2D abstraction in which the elements of the neighborhood are disposed

in a zero-based indexing 2D representation. This repartition is performed in a similar

way as a lower triangular matrix. Let n be the size of the solution representation and

let m =
n× (n− 1)

2
be the size of its neighborhood. Let i and j be the indexes of two

elements to be exchanged in a permutation. A candidate neighbor is then identified by

both i and j indexes in the 2D abstraction. Let f(i, j) be the corresponding index in the

1D neighborhood fitnesses structure. Fig. 6 is an example illustrating this abstraction.

In this example, n = 6, m = 15 and the neighbor identified by the coordinates (i = 2 ,

j = 3) is mapped to the corresponding 1D array element f(i, j) = 9.

The neighbor represented by the (i, j) coordinates is known and its corresponding index

f(i, j) on the 1D structure has to be calculated. If the 1D array size was n ∗ n, the 2D

abstraction would be similar to a matrix and thus the mapping would be:

f(i, j) = i× (n− 1) + (j − 1)

Since the 1D array size is m =
n× (n− 1)

2
, in the 2D abstraction, elements above the

diagonal preceding the neighbor do not have to be considered (illustrated in Fig. 6 by a

Figure 6: An illustration of the two-to-one transformation.

137

Appendix

Figure 7: An illustration of the one-to-two transformation.

triangle). The corresponding two-to-one transformation is therefore:

f(i, j) = i× (n− 1) + (j − 1)− i× (i + 1)

2
(1)

.1.2 One-to-two Index Transformation

Let us consider the 2D abstraction previously presented. If the element corresponding to

f(i, j) in the 2D abstraction has a given i abscissa, then let k be the distance plus one

between the i + 1 and n− 2 abscissas. If k is known, the value of i can be deduced:

i = n− 2− ⌊
√

8X + 1− 1

2
⌋ (2)

Let X be the number of elements following f(i, j) in the neighborhood index-based array

numbering:

X = m− f(i, j)− 1 (3)

Since this number can be also represented in the 2D abstraction, the main idea is to

maximize the distance k such as:

k × (k + 1)

2
≤ X (4)

Fig. 7 gives an illustration of this idea (represented by a triangle).

Resolving (4) yields the greatest distance k:

k = ⌊
√

8X + 1− 1

2
⌋ (5)

138

Appendix

Figure 8: An illustration of the one-to-three transformation.

A value of i can then be calculated according to (2). Finally, by using (1), j can be given

by:

j = f(i, j)− i× (n− 1) +
i× (i + 1)

2
+ 1 (6)

.1.3 One-to-three Index Transformation

f(x, y, z) is a given index of the 1D neighborhood fitnesses structure and the objective is to

find the three indexes x, y and z. Let n be the size of the solution representation and m =
n× (n− 1)× (n− 2)

6
be the size of the neighborhood. The main idea is to find in which

plan (coordinate z) corresponds the given element f(x, y, z) in the 3D abstraction. If this

corresponding plan is found, then the rest is similar to the one-to-two index transformation.

Figure 8 illustrates an example of the 3D abstraction.

In this representation, since each plan is a 2D abstraction, the number of elements in each

plan is the number of combinations C2
k where k ∈ {2, 3, . . . , n− 1} according to each plan.

For a specific neighbor, if a value of k is found, then the value of the corresponding plan

z is:

z = n− k − 1 (7)

For a given index f(x, y, z) belonging to the plan k in the 3D abstraction, the number of

139

Appendix

elements contained in the next plans is C2
k (also equal to

k × (k − 1)× (k − 2)

6
).

Let Y be the number of elements following f(x, y, z) in both the 1D neighborhood fitnesses

structure and the 3D abstraction:

Y = m− f(x, y, z)

Then the main idea is to minimize k such as:

k × (k − 1)× (k − 2)

6
>= Y (8)

By reordering (8), in order to find a value of k, the next step is to solve the following

equation:

k3
1 − k1 − 6Y = 0 (9)

Cardano’s method in theory allows to solve cubic equation. Nevertheless, in the case

of finite discrete machine, this method can lose precision especially for big integers. As

a consequence, a simple Newton-Raphson method for finding an approximate value of

k1 is enough for our problem. Indeed, this iterative process follows a set guideline to

approximate one root, considering the function, its derivative, an initial arbitrary k1-value

and a certain precision (see Algorithm 14).

Algorithm 14 Newton-Raphson method for solving k
3

1 − k1 − 6Y = 0.

1: k1 ← initial value;
2: repeat
3: term ← (k1 ∗ k1 ∗ k1 − k1 − 6 ∗ Y) / (3 ∗ k1 ∗ k1 − 1);
4: k1 ← k1 − term;
5: until |term / k1| > precision

Finally, since the minimization of k in (8) is expected, the value of k is:

k = ⌈k1⌉

Then a value of z can be deduced with (7). At this step, the plan corresponding to the

element f(x, y, z) is known. The next steps for finding x and y are identically the same as

the one-to-two index transformation with a change of variables.

First, the number of elements preceding f(x, y, z) in the neighborhood index-based array

numbering is exactly:

nbElementsBefore = m− (k + 1)× k × (k − 1)

6

140

Appendix

Second, the number of elements contained in the same plan z as f(x, y, z) is:

nbElements =
k × (k − 1)

2

Finally the index of the last element of the plan z is:

lastElement = nbElementsBefore + nbElements− 1

As a result, the one-to-two index transformation is applied with a change of variables:

f(i, j) = f(x, y, z)− nbElementsBefore

n′ = n− (z + 1)

X = lastElement− f(x, y, z)

After performing this transformation, a value of x and y can be deduced:

x = i + (z + 1)

y = j + (z + 1)

.1.4 Three-to-one index transformation

x, y and z are known and its corresponding index f(x, y, z) have to be found. According

to the 3D abstraction, since a value of z is known, k can be calculated:

k = n− 1− z

Then the number of elements preceding f(x, y, z) in the neighborhood index-based array

numbering can be also deduced.

If each plan size was (n − 2) ∗ (n − 2), each 2D abstraction would be similar to a matrix

and the IN× IN→ IN mapping would be:

f1(x, y, z) = z × (n− 2)× (n− 2) + (x− 1)× (n− 2) + (y − 2) (10)

Since each 2D abstraction looks like a triangular matrix, some elements must not be

considered. The advantage of the 3D abstraction is that these elements can be found by

geometric construction (see Fig. 9).

141

Appendix

Figure 9: IN× IN× IN→ IN mapping.

First, given a plan z, the number of elements in the previous plans to not consider is:

n1 = z × (n− 2)× (n− 2)− nbElementsBefore

Second, the number of elements on the left side to not consider in the plan z is:

n2 = z × (n− 2)

Third, the number of elements on the upper side to not consider in the plan z is:

n3 = (y − z)× (n− k − 1)

Fourth, the number of elements on the upper triangle above f(x, y, z) to not consider is:

n4 =
(y − z)× (y − z − 1)

2

Finally a value of f(x, y, z) can be deduced:

f(x, y, z) = f1(x, y, z)− n1− n2− n3− n4 (11)

142

Bibliography

Table 5: Measures in terms of efficiency for the permuted perceptron problem using a
neighborhood based on a Hamming distance of two (binary representation). Test of the
null hypothesis of normality with the Kolmogorov-Smirnov’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620

GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores

CPU GPU CPU GPU CPU GPU CPU GPU

73-73 + + + + + + + +

81-81 + + + + + + + +

101-117 + + + + + + + +

201-217 + + + + + + + +

401-417 + + + + + + + +

601-617 + + + + + + + +

801-817 + + + + + + + +

1001-1017 + + + + + + + +

1301-1317 + + + + + + + +

Table 6: Measures in terms of efficiency for the permuted perceptron problem using a
neighborhood based on a Hamming distance of two (binary representation). Test of the
null hypothesis of variances equality with the Levene’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620

GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores

CPU - GPU CPU - GPU CPU - GPU CPU - GPU

73-73 + + + +

81-81 + + + +

101-117 + + + +

201-217 + + + +

401-417 + + + +

601-617 + + + +

801-817 + + + +

1001-1017 + + + +

1301-1317 + + + +

.2 Statistical Tests

143

Bibliography

Table 7: Measures in terms of efficiency for the permuted perceptron problem using a
neighborhood based on a Hamming distance of two (binary representation). Test of the
null hypothesis of the averages equality with the Student’s t-test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620

GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores

CPU - GPU CPU - GPU CPU - GPU CPU - GPU

73-73 - - - -

81-81 - - - -

101-117 - - - -

201-217 - - - -

401-417 0.083 - - -

601-617 - - - -

801-817 - - - -

1001-1017 - - - -

1301-1317 - - - -

Table 8: Measures in terms of efficiency for the traveling salesman problem using a 2-opt
neighborhood (permutation representation). Test of the null hypothesis of normality with
the Kolmogorov-Smirnov’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620

GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores

CPU GPU CPU GPU CPU GPU CPU GPU

eil101 + + + + + + + +

d198 + + + + + + + +

pcb442 + + + + + + + +

rat783 + + + + + + + +

d1291 + + + + + + + +

pr2392 + . + + + + + +

fnl4461 + . + . + + + +

rl5915 + . + . + . + +

Table 9: Measures in terms of efficiency for the traveling salesman problem using a 2-
opt neighborhood (permutation representation). Test of the null hypothesis of variances
equality with the Levene’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620

GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores

CPU - GPU CPU - GPU CPU - GPU CPU - GPU

eil101 + + + +

d198 + + + +

pcb442 + + + +

rat783 + + + +

d1291 + + + +

pr2392 . + + +

fnl4461 . . + +

rl5915 . . . +

144

Bibliography

Table 10: Measures in terms of efficiency for the traveling salesman problem using a 2-opt
neighborhood (permutation representation). Test of the null hypothesis of the averages
equality with the Student’s t-test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620

GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores

CPU - GPU CPU - GPU CPU - GPU CPU - GPU

eil101 - 0.064 - -

d198 - - - -

pcb442 - - - -

rat783 - - - -

d1291 - - - -

pr2392 . - - -

fnl4461 . . - -

rl5915 . . . -

Table 11: Measures of the benefits of applying thread control. The traveling salesman
problem using a 2-opt neighborhood is considered. Test of the null hypothesis of normality
with the Kolmogorov-Smirnov’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620

GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores

GPU GPUTC GPU GPUTC GPU GPUTC GPU GPUTC

eil101 + + + + + + + +

d198 + + + + + + + +

pcb442 + + + + + + + +

rat783 + + + + + + + +

d1291 + + + + + + + +

pr2392 . + + + + + + +

fnl4461 . + . + + + + +

rl5915 . + . + . + + +

Table 12: Measures of the benefits of applying thread control. The traveling salesman
problem using a 2-opt neighborhood is considered. Test of the null hypothesis of variances
equality with the Levene’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620

GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores

GPU - GPUTC GPU - GPUTC GPU - GPUTC GPU - GPUTC

eil101 + + + +

d198 + + + +

pcb442 + + + +

rat783 + + + +

d1291 + + + +

pr2392 . + + +

fnl4461 . . + +

rl5915 . . . +

145

Bibliography

Table 13: Measures of the benefits of applying thread control. The traveling salesman
problem using a 2-opt neighborhood is considered. Test of the null hypothesis of the
averages equality with the Student’s t-test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620

GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores

GPU - GPUTC GPU - GPUTC GPU - GPUTC GPU - GPUTC

eil101 0.58 - 0.65 -

d198 0.62 - 0.60 -

pcb442 - - - -

rat783 0.55 - - -

d1291 0.64 - - -

pr2392 . - - -

fnl4461 . . - -

rl5915 . . . -

Table 14: Measures of the benefits of using the reduction operation on the GTX 280.
The permuted perceptron problem is considered for two different neighborhoods using 100
hill climbing algorithms. Test of the null hypothesis of normality with the Kolmogorov-
Smirnov’s test.

Instance
n neighbors

n× (n− 1)

2
neighbors

CPU GPU GP UR CPU GPU GP UT exR

73-73 + + + + + +

81-81 + + + + + +

101-117 + + + + + +

201-217 + + + + + +

401-417 + + + + + +

601-617 + + + + + +

801-817 + + + + + +

1001-1017 + + + + + +

1301-1317 + + + + + +

Table 15: Measures of the benefits of using the reduction operation on the GTX 280. The
permuted perceptron problem is considered for two different neighborhoods using 100 hill
climbing algorithms. Test of the null hypothesis of variances equality with the Levene’s
test.

Instance
n neighbors

n× (n− 1)

2
neighbors

CPU - GP UR GPU - GP UR CPU - GP UR GPU - GP UT exR

73-73 + + + +

81-81 + + + +

101-117 + + + +

201-217 + + + +

401-417 + + + +

601-617 + + + +

801-817 + + + +

1001-1017 + + + +

1301-1317 + + + +

146

Bibliography

Table 16: Measures of the benefits of using the reduction operation on the GTX 280. The
permuted perceptron problem is considered for two different neighborhoods using 100 hill
climbing algorithms. Test of the null hypothesis of the averages equality with the Student’s
t-test.

Instance
n neighbors

n× (n− 1)

2
neighbors

CPU - GP UR GPU - GP UR CPU - GP UR GPU - GP UT exR

73-73 0.064 0.059 - -

81-81 0.058 0.057 - -

101-117 0.071 0.060 - -

201-217 0.062 0.063 - -

401-417 - - - -

601-617 - - - -

801-817 - - - -

1001-1017 - - - -

1301-1317 - - - -

147

Bibliography

148

Bibliography

[ABR03] Renata M. Aiex, S. Binato, and Mauricio G. C. Resende. Parallel

grasp with path-relinking for job shop scheduling. Parallel Computing,

29(4):393–430, 2003.

[AGM+07] Ravindra K. Ahuja, Jon Goodstein, Amit Mukherjee, James B. Orlin,

and Dushyant Sharma. A very large-scale neighborhood search algo-

rithm for the combined through-fleet-assignment model. INFORMS

Journal on Computing, 19(3):416–428, 2007.

[AK96] David Andre and John R. Koza. Parallel genetic programming: a scal-

able implementation using the transputer network architecture. Ad-

vances in genetic programming: volume 2, pages 317–337, 1996.

[ALNT04] Enrique Alba, Francisco Luna, Antonio J. Nebro, and José M. Troya.

Parallel heterogeneous genetic algorithms for continuous optimization.

Parallel Computing, 30(5-6):699–719, 2004.

[AT02] Enrique Alba and Marco Tomassini. Parallelism and evolutionary algo-

rithms. IEEE Trans. Evolutionary Computation, 6(5):443–462, 2002.

[ATD10] Ramnik Arora, Rupesh Tulshyan, and Kalyanmoy Deb. Parallelization

of binary and real-coded genetic algorithms on gpu using cuda. In

IEEE Congress on Evolutionary Computation [DBL10], pages 1–8.

[BCC+06] Raphael Bolze, Franck Cappello, Eddy Caron, Michel J. Daydé,

Frédéric Desprez, Emmanuel Jeannot, Yvon Jégou, Stéphane Lanteri,

Julien Leduc, Nouredine Melab, Guillaume Mornet, Raymond Namyst,

Pascale Primet, Benjamin Quétier, Olivier Richard, El-Ghazali Talbi,

and Iréa Touche. Grid’5000: A large scale and highly reconfigurable

experimental grid testbed. IJHPCA, 20(4):481–494, 2006.

[BcRW98] Rainer E. Burkard, Eranda Çela, Günter Rote, and Gerhard J. Woeg-

inger. The quadratic assignment problem with a monotone anti-monge

and a symmetric toeplitz matrix: Easy and hard cases. Math. Pro-

gram., 82:125–158, 1998.

149

Bibliography

[Bev02] Alessandro Bevilacqua. A methodological approach to parallel sim-

ulated annealing on an smp system. J. Parallel Distrib. Comput.,

62(10):1548–1570, 2002.

[BFM97] Thomas Back, David B. Fogel, and Zbigniew Michalewicz, editors.

Handbook of Evolutionary Computation. IOP Publishing Ltd., Bris-

tol, UK, UK, 1st edition, 1997.

[BHX00] Maria J. Blesa, Lluis Hernandez, and Fatos Xhafa. Parallel skeletons

for tabu search method. In In Proceedings of International Conference

on Parallel and Distributed Systems, ICPADS ’01, IEEE, 2000.

[BOL+09] Hongtao Bai, Dantong OuYang, Ximing Li, Lili He, and Haihong Yu.

Max-min ant system on gpu with cuda. In Proceedings of the 2009

Fourth International Conference on Innovative Computing, Informa-

tion and Control, ICICIC ’09, pages 801–804, Washington, DC, USA,

2009. IEEE Computer Society.

[BSB+01] Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau Bölöni,

Muthucumaru Maheswaran, Albert I. Reuther, James P. Robertson,

Mitchell D. Theys, Bin Yao, Debra A. Hensgen, and Richard F. Fre-

und. A comparison of eleven static heuristics for mapping a class of

independent tasks onto heterogeneous distributed computing systems.

J. Parallel Distrib. Comput., 61(6):810–837, 2001.

[CB96] John A. Chandy and Prithviraj Banerjee. Parallel simulated annealing

strategies for vlsi cell placement. In VLSI Design [DBL96], pages 37–

42.

[CBM+08] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.

Sheaffer, and Kevin Skadron. A performance study of general-purpose

applications on graphics processors using cuda. J. Parallel Distributed

Computing, 68(10):1370–1380, 2008.

[CG02] Teodor Gabriel Crainic and Michel Gendreau. Cooperative parallel

tabu search for capacitated network design. J. Heuristics, 8(6):601–

627, 2002.

[CGHM04] Teodor Gabriel Crainic, Michel Gendreau, Pierre Hansen, and Nenad

Mladenovic. Cooperative parallel variable neighborhood search for the

-median. J. Heuristics, 10(3):293–314, 2004.

150

Bibliography

[CGU+11] José M. Cecilia, José M. Garćıa, Manuel Ujaldon, Andy Nisbet, and

Martyn Amos. Parallelization strategies for ant colony optimisation on

gpus. In IPDPS Workshops, pages 339–346. IEEE, 2011.

[Chi07] Darren M. Chitty. A data parallel approach to genetic programming

using programmable graphics hardware. In GECCO ’07: Proceedings

of the 9th annual conference on Genetic and evolutionary computation,

volume 2, pages 1566–1573, London, 2007. ACM Press.

[CMT04] Sébastien Cahon, Nordine Melab, and El-Ghazali Talbi. Paradiseo:

A framework for the reusable design of parallel and distributed meta-

heuristics. J. Heuristics, 10(3):357–380, 2004.

[CS00] Rachid Chelouah and Patrick Siarry. Tabu search applied to global

optimization. European Journal of Operational Research, 123(2):256–

270, 2000.

[CSK93] J. Chakrapani and J. Skorin-Kapov. Massively Parallel Tabu Search for

the Quadratic Assignment Problem. Annals of Operations Research,

41:327–341, 1993.

[CSV10] Jee W. Choi, Amik Singh, and Richard W. Vuduc. Model-driven au-

totuning of sparse matrix-vector multiply on gpus. SIGPLAN Not.,

45:115–126, January 2010.

[CTG95] T.G. Crainic, M. Toulouse, and M. Gendreau. Parallel Asynchronous

Tabu Search for Multicommodity Location-Allocation with Balancing

Requirements. Annals of Operations Research, 63:277–299, 1995.

[DBL96] 9th International Conference on VLSI Design (VLSI Design 1996), 3-6

January 1996, Bangalore, India. IEEE Computer Society, 1996.

[DBL10] Proceedings of the IEEE Congress on Evolutionary Computation, CEC

2010, Barcelona, Spain, 18-23 July 2010. IEEE, 2010.

[DG97] Marco Dorigo and Luca Maria Gambardella. Ant colony system: a

cooperative learning approach to the traveling salesman problem. IEEE

Trans. on Evolutionary Computation, 1(1):53–66, 1997.

[DPST06] J. Dréo, A. Pétrowski, P. Siarry, and E. Taillard. Metaheuristics for

Hard Optimization. Springer, 2006.

151

Bibliography

[dPVK10] Lucas de P. Veronese and Renato A. Krohling. Differential evolution

algorithm on the gpu with c-cuda. In IEEE Congress on Evolutionary

Computation [DBL10], pages 1–7.

[FKB10] Maŕıa A. Franco, Natalio Krasnogor, and Jaume Bacardit. Speeding

up the evaluation of evolutionary learning systems using gpgpus. In

Proceedings of the 12th annual conference on Genetic and evolution-

ary computation, GECCO ’10, pages 1039–1046, New York, NY, USA,

2010. ACM.

[FWW07] Ka-Ling Fok, Tien-Tsin Wong, and Man-Leung Wong. Evolutionary

computing on consumer graphics hardware. IEEE Intelligent Systems,

22:69–78, 2007.

[GB77] S.W Golomb and G.S. Bloom. Applications of numbered undirected

graphs. Proceedings of the IEEE, 65(4):562–570, 1977.

[GLGN+08] Michael Garland, Scott Le Grand, John Nickolls, Joshua Anderson,

Jim Hardwick, Scott Morton, Everett Phillips, Yao Zhang, and Vasily

Volkov. Parallel computing experiences with cuda. IEEE Micro,

28(4):13–27, 2008.

[GLMBMPMV03] Félix Garćıa-López, Belén Melián-Batista, José A. Moreno-Pérez, and

J. Marcos Moreno-Vega. Parallelization of the scatter search for the

p-median problem. Parallel Computing, 29(5):575–589, 2003.

[Glo89] Fred Glover. Tabu search - part i. INFORMS Journal on Computing,

1(3):190–206, 1989.

[Glo90] Fred Glover. Tabu search - part ii. INFORMS Journal on Computing,

2(1):4–32, 1990.

[GPR94] Bruno-Laurent Garcia, Jean-Yves Potvin, and Jean-Marc Rousseau. A

parallel implementation of the tabu search heuristic for vehicle routing

problems with time window constraints. Computers & OR, 21(9):1025–

1033, 1994.

[Gro10] Khronos Group. OpenCL 1.0 Quick Reference Card, 2010.

[GZ06] Alexander Greß and Gabriel Zachmann. Gpu-abisort: optimal parallel

sorting on stream architectures. In 20th International Parallel and

Distributed Processing Symposium (IPDPS 2006), 2006.

152

Bibliography

[GÉTA99] Luca Maria Gambardella, Éric Taillard, and Giovanni Agazzi. Macs-

vrptw: A multiple colony system for vehicle routing problems with

time windows. In New Ideas in Optimization, pages 63–76. McGraw-

Hill, 1999.

[Har08] Mark Harris. Optimizing parallel reduction in cuda. NVIDIA Developer

Technology, 2008.

[HB07] Simon Harding and Wolfgang Banzhaf. Fast genetic programming on

GPUs. In Proceedings of the 10th European Conference on Genetic Pro-

gramming, volume 4445 of Lecture Notes in Computer Science, pages

90–101. Springer, 2007.

[HL00] Francisco Herrera and Manuel Lozano. Gradual distributed real-coded

genetic algorithms. IEEE Trans. Evolutionary Computation, 4(1):43–

63, 2000.

[JJL08] Adam Janiak, Wladyslaw A. Janiak, and Maciej Lichtenstein. Tabu

search on gpu. J. UCS, 14(14):2416–2426, 2008.

[JJMH03] Gabriele Jost, Haoqiang Jin, Dieter An Mey, and Ferhat F. Hatay.

Comparing the openmp, mpi, and hybrid programming paradigm on

an smp cluster. NASA Technical Report, 2003.

[JRG09] T. James, C. Rego, and F. Glover. A cooperative parallel tabu search

algorithm for the quadratic assignment problem. European Journal of

Operational Research, 195:810–826, 2009.

[KGRS01] Maarten Keijzer, Juan J. Merelo Guervós, Gustavo Romero, and Marc

Schoenauer. Evolving objects: A general purpose evolutionary compu-

tation library. In Pierre Collet, Cyril Fonlupt, Jin-Kao Hao, Evelyne

Lutton, and Marc Schoenauer, editors, Artificial Evolution, volume

2310 of Lecture Notes in Computer Science, pages 231–244. Springer,

2001.

[KM99] Lars R. Knudsen and Willi Meier. Cryptanalysis of an identification

scheme based on the permuted perceptron problem. In EUROCRYPT,

pages 363–374, 1999.

[Kru56] J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the

Traveling Salesman Problem. In Proceedings of the American Mathe-

matical Society, 7, 1956.

153

Bibliography

[Lan11] William B. Langdon. Graphics processing units and genetic program-

ming: an overview. Soft Comput., 15(8):1657–1669, 2011.

[LB08] William B. Langdon and Wolfgang Banzhaf. A SIMD interpreter for

genetic programming on GPU graphics cards. In Proceedings of the 11th

European Conference on Genetic Programming, EuroGP 2008, volume

4971 of Lecture Notes in Computer Science, pages 73–85, Naples, 26-28

March 2008. Springer.

[LL96] Soo-Young Lee and Kyung-Geun Lee. Synchronous and asynchronous

parallel simulated annealing with multiple markov chains. IEEE Trans.

Parallel Distrib. Syst., 7(10):993–1008, 1996.

[LL06] Zhongwen Luo and Hongzhi Liu. Cellular genetic algorithms and local

search for 3-sat problem on graphic hardware. In Evolutionary Compu-

tation, 2006. CEC 2006. IEEE Congress on, pages 2988 –2992, 2006.

[LV98] Evelyne Lutton and Jacques Lévy Véhel. Holder functions and decep-

tion of genetic algorithms. IEEE Trans. on Evolutionary Computation,

2(2):56–71, 1998.

[LWHC07] JIAN-MING LI, XIAO-JING WANG, RONG-SHENG HE, and

ZHONG-XIAN CHI. An efficient fine-grained parallel genetic algorithm

based on gpu-accelerated. In Proceedings of the 2007 IFIP International

Conference on Network and Parallel Computing Workshops, NPC ’07,

pages 855–862, Washington, DC, USA, 2007. IEEE Computer Society.

[MBL+09] Ogier Maitre, Laurent A. Baumes, Nicolas Lachiche, Avelino Corma,

and Pierre Collet. Coarse grain parallelization of evolutionary algo-

rithms on gpgpu cards with easea. In Proceedings of the 11th An-

nual conference on Genetic and evolutionary computation, GECCO ’09,

pages 1403–1410, New York, NY, USA, 2009. ACM.

[MCD09] Luca Mussi, Stefano Cagnoni, and Fabio Daolio. Gpu-based road sign

detection using particle swarm optimization. In ISDA, pages 152–157.

IEEE Computer Society, 2009.

[MCT06] Nouredine Melab, Sébastien Cahon, and El-Ghazali Talbi. Grid com-

puting for parallel bioinspired algorithms. J. Parallel Distributed Com-

puting, 66(8):1052–1061, 2006.

154

Bibliography

[MWMA09a] Asim Munawar, Mohamed Wahib, Masaharu Munetomo, and Kiyoshi

Akama. Hybrid of genetic algorithm and local search to solve max-

sat problem using nvidia cuda framework. Genetic Programming and

Evolvable Machines, 10:391–415, 2009. 10.1007/s10710-009-9091-4.

[MWMA09b] Asim Munawar, Mohamed Wahib, Masaharu Munetomo, and Kiyoshi

Akama. Theoretical and empirical analysis of a gpu based parallel

bayesian optimization algorithm. In Parallel and Distributed Com-

puting, Applications and Technologies, PDCAT, pages 457–462. IEEE

Computer Society, 2009.

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable

parallel programming with cuda. ACM Queue, 6(2):40–53, 2008.

[ND10] John Nickolls and William J. Dally. The gpu computing era. IEEE

Micro, 30(2):56–69, 2010.

[NM09] Akira Nukada and Satoshi Matsuoka. Auto-tuning 3-d fft library for

cuda gpus. In Proceedings of the Conference on High Performance

Computing Networking, Storage and Analysis, SC ’09, pages 30:1–

30:10, New York, NY, USA, 2009. ACM.

[NVI10] NVIDIA. GPU Gems 3. Chapter 37: Efficient Random Number Gen-

eration and Application Using CUDA, 2010.

[NVI11] NVIDIA. CUDA Programming Guide Version 4.0, 2011.

[OML+08] J. D. Owens, M.Houston, D. Luebke, S. Green, J. E. Stone, and J. C.

Phillips. Gpu computing. Proceedings of the IEEE, 96(5):879–899,

2008.

[PDB10] Frédéric Pinel, Bernabé Dorronsoro Dı́az, and Pascal Bouvry. A new

parallel asynchronous cellular genetic algorithm for scheduling in grids.

In IPDPS Workshops, pages 1–8. IEEE, 2010.

[PJS10] Petr Pospichal, Jiŕı Jaros, and Josef Schwarz. Parallel genetic algorithm

on the cuda architecture. In Cecilia Di Chio, Stefano Cagnoni, Carlos

Cotta, Marc Ebner, Anikó Ekárt, Anna Esparcia-Alcázar, Chi Keong

Goh, Juan J. Merelo Guervós, Ferrante Neri, Mike Preuss, Julian

Togelius, and Georgios N. Yannakakis, editors, EvoApplications (1),

volume 6024 of Lecture Notes in Computer Science, pages 442–451.

Springer, 2010.

155

Bibliography

[Poi95] David Pointcheval. A new identification scheme based on the percep-

trons problem. In EUROCRYPT, pages 319–328, 1995.

[RK10] Boguslaw Rymut and Bogdan Kwolek. Gpu-supported object tracking

using adaptive appearance models and particle swarm optimization.

In Leonard Bolc, Ryszard Tadeusiewicz, Leszek J. Chmielewski, and

Konrad W. Wojciechowski, editors, ICCVG (2), volume 6375 of Lecture

Notes in Computer Science, pages 227–234. Springer, 2010.

[RL02] Marcus Randall and Andrew Lewis. A parallel implementation of ant

colony optimization. J. Parallel Distrib. Comput., 62(9):1421–1432,

2002.

[RRS+08] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, John A. Stratton,

Sain-Zee Ueng, Sara S. Baghsorkhi, and Wen mei W. Hwu. Program

optimization carving for gpu computing. J. Parallel Distributed Com-

puting, 68(10):1389–1401, 2008.

[SAGM10] Nicholas A. Sinnott-Armstrong, Casey S. Greene, and Jason H. Moore.

Fast genome-wide epistasis analysis using ant colony optimization for

multifactor dimensionality reduction analysis on graphics processing

units. In Proceedings of the 12th annual conference on Genetic and

evolutionary computation, GECCO ’10, pages 215–216, New York, NY,

USA, 2010. ACM.

[SBA97] Franciszek Seredynski, Pascal Bouvry, and Farhad Arbab. Parallel

evolutionary computation: Multi agents genetic algorithms. In Euro-

PDS, pages 293–298. IASTED/ACTA Press, 1997.

[SBPE10] Nicolas Soca, Jose Luis Blengio, Martin Pedemonte, and Pablo Ezzatti.

Pugace, a cellular evolutionary algorithm framework on gpus. In IEEE

Congress on Evolutionary Computation [DBL10], pages 1–8.

[Tal09] El-Ghazali Talbi. Metaheuristics: From design to implementation. Wi-

ley, 2009.

[TF09] Shigeyoshi Tsutsui and Noriyuki Fujimoto. Solving quadratic assign-

ment problems by genetic algorithms with gpu computation: a case

study. In Proceedings of the 11th Annual Conference Companion on

Genetic and Evolutionary Computation Conference: Late Breaking Pa-

pers, GECCO ’09, pages 2523–2530, New York, NY, USA, 2009. ACM.

156

Bibliography

[TF11] Shigeyoshi Tsutsui and Noriyuki Fujimoto. Fast qap solving by aco

with 2-opt local search on a gpu. In IEEE Congress on Evolutionary

Computation, pages 812–819. IEEE, 2011.

[TMDT07] A-A. Tantar, N. Melab, C. Demarey, and E-G. Talbi. Building a Vir-

tual Globus Grid in a Reconfigurable Environment - A case study:

Grid5000. In INRIA Research Report. HAL INRIA, 2007.

[TMT07] Alexandru-Adrian Tantar, Nouredine Melab, and El-Ghazali Talbi. A

comparative study of parallel metaheuristics for protein structure pre-

diction on the computational grid. In IPDPS, pages 1–10. IEEE, 2007.

[TSP+08] Christian Tenllado, Javier Setoain, Manuel Prieto, Luis Piñuel, and

Francisco Tirado. Parallel implementation of the 2d discrete wavelet

transform on graphics processing units: Filter bank versus lifting. IEEE

Transactions on Parallel and Distributed Systems, 19(3):299–310, 2008.

[VA10a] Pablo Vidal and Enrique Alba. Cellular genetic algorithm on graphic

processing units. In Juan González, David Pelta, Carlos Cruz, Germán

Terrazas, and Natalio Krasnogor, editors, Nature Inspired Cooperative

Strategies for Optimization (NICSO 2010), volume 284 of Studies in

Computational Intelligence, pages 223–232. Springer Berlin / Heidel-

berg, 2010.

[VA10b] Pablo Vidal and Enrique Alba. A multi-gpu implementation of a cellu-

lar genetic algorithm. In IEEE Congress on Evolutionary Computation

[DBL10], pages 1–7.

[Won09] Man Leung Wong. Parallel multi-objective evolutionary algorithms on

graphics processing units. In Proceedings of the 11th Annual Confer-

ence Companion on Genetic and Evolutionary Computation Confer-

ence: Late Breaking Papers, GECCO ’09, pages 2515–2522, New York,

NY, USA, 2009. ACM.

[WW06] Man-Leung Wong and Tien-Tsin Wong. Parallel hybrid genetic algo-

rithms on consumer-level graphics hardware. In Evolutionary Compu-

tation, 2006. CEC 2006. IEEE Congress on, pages 2973–2980, 2006.

[WWF05] Man Leung Wong, Tien-Tsin Wong, and Ka-Ling Fok. Parallel evolu-

tionary algorithms on graphics processing unit. In Congress on Evolu-

tionary Computation, pages 2286–2293. IEEE, 2005.

157

Bibliography

[YCP05] Qizhi Yu, Chongcheng Chen, and Zhigeng Pan. Parallel genetic al-

gorithms on programmable graphics hardware. In Lecture Notes in

Computer Science 3612, page 1051. Springer, 2005.

[ZCM08] W Zhu, J Curry, and A Marquez. Simd tabu search with graphics hard-

ware acceleration on the quadratic assignment problem. International

Journal of Production Research, 2008.

[ZH09] Sifa Zhang and Zhenming He. Implementation of parallel genetic algo-

rithm based on cuda. In Zhihua Cai, Zhenhua Li, Zhuo Kang, and Yong

Liu, editors, Advances in Computation and Intelligence, volume 5821

of Lecture Notes in Computer Science, pages 24–30. Springer Berlin /

Heidelberg, 2009.

[Zhu09] Weihang Zhu. A study of parallel evolution strategy: pattern search on

a gpu computing platform. In Proceedings of the first ACM/SIGEVO

Summit on Genetic and Evolutionary Computation, GEC ’09, pages

765–772, New York, NY, USA, 2009. ACM.

[ZT09] You Zhou and Ying Tan. Gpu-based parallel particle swarm optimiza-

tion. In IEEE Congress on Evolutionary Computation, pages 1493–

1500. IEEE, 2009.

158

International Publications

[1] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. GPU Computing for Local

Search Metaheuristic Algorithms. IEEE Transactions on Computers, in press, 2011.

[2] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. Neighborhood Structures

for GPU-based Local Search Algorithms. Parallel Processing Letters, 20(4):307–324,

2010.

[3] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. GPU-based Approaches

for Multiobjective Local Search Algorithms. A Case Study: the Flowshop Scheduling

Problem. 11th European Conference on Evolutionary Computation in Combinato-

rial Optimization, EVOCOP 2011, pages 155–166, volume 6622 of Lecture Notes in

Computer Science , Springer, 2011.

[4] Nouredine Melab, Thé Van Luong, K. Boufaras, and El-Ghazali Talbi. Towards

ParadisEO-MO-GPU: A Framework for GPU-based Local Search Metaheuristics.

11th International Work-Conference on Artificial Neural Networks, IWANN 2011,

pages 401–408, volume 6691 of Lecture Notes in Computer Science, Springer, 2011.

[5] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. GPU-based Multi-start

Local Search Algorithms. 4th International Learning and Intelligent Optimization

Conference, LION 5, in press, Lecture Notes in Compute Science, Springer, 2011.

[6] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. GPU-based Island Model

for Evolutionary Algorithms. Genetic and Evolutionary Computation Conference,

GECCO 2010 pages 1089–1096, Proceedings, ACM, 2010.

[7] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. Parallel Hybrid Evolu-

tionary Algorithms on GPU. In IEEE Congress on Evolutionary Computation, CEC

2010, pages 1–8, Proceedings, IEEE, 2010.

[8] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. Large Neighborhood Local

Search Optimization on Graphics Processing Units. 24th IEEE International Sym-

posium on Parallel and Distributed Processing, IPDPS 2010, pages 1–8, Workshop

Proceedings, IEEE, 2010.

159

[9] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. Local Search Algorithms on

Graphics Processing Units. A case study: the Permutation Perceptron Problem. Evo-

lutionary Computation in Combinatorial Optimization, 10th European Conference,

EvoCOP 2010, pages 264–275, volume 6022 of Lecture Notes in Computer Science,

Springer, 2010.

[10] Thé Van Luong, Lakhdar Loukil, Nouredine Melab, and El-Ghazali Talbi. A GPU-

based Iterated Tabu Search for Solving the Quadratic 3-dimensional Assignment

Problem. The 8th ACS/IEEE International Conference on Computer Systems and

Applications, AICCSA 2010, pages 1–8, Proceedings, IEEE, 2010.

[11] Naouel Ayari, Thé Van Luong, and Abderrazak Jemai. A hybrid Genetic Algorithm

for Golomb Ruler Problem. The 8th ACS/IEEE International Conference on Com-

puter Systems and Applications, AICCSA 2010, pages 1–4, Proceedings, IEEE, 2010.

160

Résumé :

Les problèmes d’optimisation du monde réel sont souvent complexes et NP-difficiles. Bien

que des algorithmes approchés telles que les métaheuristiques permettent de réduire la

complexité de leur résolution, ces méthodes restent insuffisantes pour traiter des prob-

lèmes de grande taille. De nos jours, le calcul sur GPU s’est révélé efficace pour traiter des

problèmes coûteux en temps de calcul. Un des enjeux majeurs pour les métaheuristiques

est de repenser les modèles existants pour permettre leur déploiement sur les accélérateurs

GPU. La contribution de cette thèse porte sur la reconception de ces modèles parallèles

pour permettre la résolution des problèmes d’optimisation à large échelle sur les architec-

tures GPU. Pour cela, des approches efficaces ont été proposées pour l’optimisation des

transferts de données entre le CPU et le GPU, le contrôle de threads ou encore la ges-

tion de la mémoire. Les approches ont été expérimentées de façon exhaustive en utilisant

cinq problèmes d’optimisation et quatre configurations GPU. En comparaison avec une

exécution sur CPU, les accélérations obtenues vont jusqu’à 80 fois plus vite pour des prob-

lèmes d’optimisation combinatoire et jusqu’à 2000 fois pour un problème d’optimisation

continue.

Mots-clés : métaheuristiques parallèles, calcul sur GPU, recherche locale, algorithmes

évolutionnaires.

Abstract:

Real-world optimization problems are often complex and NP-hard. Although near-optimal

algorithms such as metaheuristics make it possible to reduce the temporal complexity of

their resolution, they fail to tackle large problems satisfactorily. Nowadays, GPU com-

puting has recently been revealed effective to deal with time-intensive problems. One of

the major issues for metaheuristics is to rethink existing parallel models and programming

paradigms to allow their deployment on GPU accelerators. The contribution of this thesis

is to deal with such issues for the redesign of parallel models of metaheuristics to allow solv-

ing of large scale optimization problems on GPU architectures. Our objective is to rethink

the existing parallel models and to enable their deployment on GPUs. In this purpose,

very efficient approaches are proposed for CPU-GPU data transfer optimization, thread

control or memory management. These approaches have been exhaustively experimented

using five optimization problems and four GPU configurations. Compared to a CPU-based

execution, experiments report up to 80-fold acceleration for large combinatorial problems

and up to 2000-fold speed-up for a continuous problem.

Keywords: parallel metaheuristics, GPU computing, local search, evolutionary algo-

rithms.

161

	Introduction
	GPU Computing for Parallel Metaheuristics
	Parallel Metaheuristics
	Optimization Context
	Principles of Metaheuristics
	Solution Representation
	Evaluation Function
	Principles of S-metaheuristics
	Principles of P-metaheuristics

	Parallel Models of Metaheuristics

	Metaheuristics and GPU Computing
	GPU Architecture
	GPU Challenges for Metaheuristics
	General GPU Model: CPU-GPU Cooperation
	GPU Threads Model: Parallelism Control
	Kernel Management: Memory Management

	Related Works on Parallel Metaheuristics
	Metaheuristics on Parallel and Distributed Architectures
	Research Works on GPU-based Metaheuristics

	Experimental Protocol
	Optimization Problems
	Permuted Perceptron Problem
	The Quadratic Assignment Problem
	The Weierstrass Continuous Function
	The Traveling Salesman Problem
	The Golomb Rulers
	Problem Characteristics

	Machines Configuration
	Metric and Statistical Tests

	Efficient CPU-GPU Cooperation
	Task Repartition for Metaheuristics on GPU
	Model of Parallel Evaluation of Solutions
	Parallelization Scheme on GPU

	Data Transfer Optimization
	Generation of the Neighborhood in S-metaheuristics
	The Proposed GPU-based Algorithm
	Additional Data Transfer Optimization

	Performance Evaluation
	Analysis of the Data Transfers from CPU to GPU
	Additional Data Transfer Optimization

	Comparison with Other Parallel and Distributed Architectures
	Parallelization Scheme on Parallel and Distributed Architectures
	Configurations
	Cluster of Workstations
	Workstations in a Grid Organization

	Efficient Parallelism Control
	Thread Control for Metaheuristics on GPU
	Execution Parameters at Runtime
	Thread Control Heuristic

	Efficient Mapping of Neighborhood Structures on GPU
	Binary Encoding
	Discrete Vector Representation
	Vector of Real Values
	Permutation Representation
	2-exchange Neighborhood
	3-exchange Neighborhood
	Mapping Tables for General Neighborhoods

	First Improvement S-metaheuristics on GPU
	Performance Evaluation
	Thread Control for Preventing Crashes
	Application to the Traveling Salesman Problem
	Thread Control Applied to the Traveling Salesman Problem

	Thread Control for Further Optimization
	Performance of User-defined Mappings
	First Improvement S-metaheuristics on GPU

	Large Neighborhoods for Improving Solutions Quality
	Application to the Permuted Perceptron Problem
	Neighborhood based on a 1-Hamming Distance
	Neighborhood based on a 2-Hamming Distance
	Neighborhood based on a 3-Hamming Distance
	Performance Analysis

	Efficient Memory Management
	Common Concepts of Memory Management
	Memory Coalescing Issues
	Coalescing Transformation
	Texture Memory
	Memory Management

	Memory Management in Cooperative Algorithms
	Parallel and Cooperative Model
	Parallelization Strategies for Cooperative Algorithms
	Parallel Evaluation of Populations on GPU
	Full Distribution of Cooperative Algorithms on GPU
	Full Distribution Using Shared Memory

	Issues Related to the Fully Distributed Schemes

	Performance Evaluation
	Coalescing accesses to global memory
	Memory Associations of Optimization Problems

	Performance of Cooperative Algorithms
	Configuration
	Measures in Terms of Efficiency
	Measures in Terms of Effectiveness

	Extension of ParadisEO for GPU-based Metaheuristics
	The ParadisEO Framework
	Motivations and Goals
	Presentation of the Framework

	GPU-enabled ParadisEO
	Architecture of ParadisEO-GPU
	ParadisEO-GPU Components
	A Case Study: Parallel Evaluation of a Neighborhood
	Automatic Construction of the Mapping Function

	Performance Evaluation
	Experimentation with ParadisEO-GPU
	Application to the Permuted Perceptron Problem
	Application to the Quadratic Assignment Problem

	Conclusion and Future Works
	Appendix
	Mapping Proofs
	Two-to-one Index Transformation
	One-to-two Index Transformation
	One-to-three Index Transformation
	Three-to-one index transformation

	Statistical Tests

	Bibliography
	International Publications

