
MIC2005: The Sixth Metaheuristics International Conference ??-1

POPMUSIC for the Point Feature Label Placement

Adriana C. F. Alvim† Eric D. Taillard∗

†Instituto Tecnológico de Aeronáutica, Divisão de Ciência da Computação - ITA/IEC
São José dos Campos, 12.228-900, SP, Brazil

adriana@ita.br

∗Department of Electrical & Computer Engineering, University of Applied Sciences of
Western Switzerland

Route de Cheseaux 1, Case postale, CH-1401 Yverdon, Switzerland
eric.taillard@eivd.ch

1 Introduction

Label placement is a problem of fundamental importance in cartography, where text labels
must be placed on maps while avoiding overlaps with cartographic symbols and other labels.
It requires positioning labels of area (such as countries and oceans), line (such as rivers and
roads) and point (such as cities and mountain peaks) features [1]. Independent of the features
being labeled these problems are NP-hard.

POPMUSIC [4] is a general optimization method especially designed for optimizing the
solutions of large instances of combinatorial problems. The basic idea of POPMUSIC is to
locally optimize sub-parts of a solution, once a solution to the problem is available. These
local optimizations are repeated until a local optimum is found.

This work is based on the work of Burri and Taillard [2, 3] which investigates the evaluation
of the POPMUSIC methodology to the point-feature label placement problem (PFLP) which
is the problem of placing text labels adjacent to point features on a map or diagram so as to
maximize legibility. The PFLP consider candidate label positions for each point feature and
each label has a list of labels with which it overlaps. The objective is to place one candidate
label for each point so as to minimize the number of point features which label has one or
more overlaps.

In the next section we introduce the PFLP problem, Subsection 2.1 presents a tabu search
approach for PFLP and Subsection 2.2 presents the POPMUSIC based heuristic for PFLP.
Preliminary computational results and some concluding remarks are presented in Section 3.

Vienna, Austria, August 22–26, 2005



??-2 MIC2005: The Sixth Metaheuristics International Conference

2 POPMUSIC based Heuristic to PFLP

Given n points with p candidate positions for each one we have v = n∗p potential label positions
represented by the integers 1, . . . , v. We represent each point x, x = (1, 2, . . . , n) by a variable
yx where yx ∈ {(x−1)∗p+1, (x−1)∗p+2, (x−1)∗p+3, . . . , x∗p}. Associated with each label
yx there is a weight w(yx) ∈ {0.0, 0.4, 0.6, 0.9} which corresponds the quality of its placement,
lower values indicating best positions. We are also given an overlap symmetrical v×v matrix A
where aij = 1.0 + w(j) if label i overlaps label j, aij = w(i) for i = j and aij = 0 otherwise. A
solution S is a list of n labels (y1, y2, . . . , yn). For a given solution S, a typical quality measure
counts the number of point features labeled with one or more overlaps (same as the number
of labels with conflicts) and is expressed by f(S) =

∑n
i=1 min{1,

∑
j∈{1,...,n}\i ayiyj

}. Another
cost measure, which we will also use in this work, consider the cartographic preferences and
is expressed by c(S) =

∑n
i=1

∑n
j=1(ayiyj

).

w(2)=0.4

w(3)=0.6

w(1)=0.0

w(4)=0.9

w(6)=0.4

w(7)=0.6

w(5)=0.0

w(8)=0.9

w(10)=0.4

w(11)=0.6

w(9)=0.0

w(12)=0.9

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

0.0

1.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.4

0.4

1.4

1.4

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.6

1.6

0.6

1.6

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.9

1.9

1.9

0.9

0.0

1.9

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.4

1.4

0.4

1.4

1.4

1.4

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.6

1.6

0.6

1.6

1.6

0.0

0.0

1.6

0.0

0.0

0.0

0.0

1.9

1.9

1.9

0.9

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

1.0

0.0

0.0

1.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.4

0.4

1.4

1.4

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.6

1.6

0.6

1.6

0.0

0.0

0.0

0.0

0.0

0.0

1.9

0.0

1.9

1.9

1.9

0.9

Figure 1: Example with n = 3, S = {4, 6, 9}, f(S) = 3 and c(S) = 7

Figure 1 illustrates an example with three points (n = 3) with four candidate positions each
one (y1 ∈ {1, 2, 3, 4}, y2 ∈ {5, 6, 7, 8}, y3 ∈ {9, 10, 11, 12}) and the corresponding matrix. Given
the solution S = (4, 6, 9) we note that f(S) = min(1, (a4, a6) + (a4, a9)) + min(1, (a6, a4) +
(a6, a9)) + min(1, (a9, a4) + (a9, a6)) = min(1, 1.4) + min(1, 2.9) + min(1, 1.4) = 3 and c(S) =
(a4, a4) + (a4, a6) + (a4, a9) + (a6, a4) + (a6, a6) + (a6, a9) + (a9, a4) + (a9, a6) + (a9, a9) =
0.9 + 1.4 + 0.0 + 1.9 + 0.4 + 1.0 + 0.0 + 1.4 + 0.0 = 7.

2.1 Tabu search based local search

For the local search procedure we used the basic ideas of the tabu search procedure proposed
by [5]. Starting from a solution composed by the labels which corresponds the best position
for each point S = (y1, y2, . . . , yn), where yx = (x− 1) ∗ p + 1 for x = (1, . . . , n), we investigate
neighborhoods defined by moves which change the label of a point x = (1, . . . , n). We denote by
LS(x) the label of point x in solution S. For each label yx ∈ {(x−1)∗p+1, (x−1)∗p+2, . . . , x∗p}
we calculate the cost of this label in solution S′ where LS′(x) = yx, LS′(ℓ) = LS(ℓ) ∀ℓ 6= x and
we denote by ∆S(yx) =

∑n
j=1(ayxyj

) this value. A move x(i ↔ k) is defined by changing the
label of point x from i to k. The solution S′ resulting from applying this move to solution S is

Vienna, Austria, August 22–26, 2005



MIC2005: The Sixth Metaheuristics International Conference ??-3

characterized by LS′(x) = k, LS′(ℓ) = LS(ℓ) ∀ℓ 6= x. Whenever a move x(i↔ k) is performed,
we forbid for a duration of parameter TabuTenure iterations all moves that would change the
label of point x. We consider a candidate list with a number of parameter CandidateListSize
labels (in solution) with higher ∆S(yx). At each tabu iteration, we scan the candidate list (in
non-decreasing order of ∆S(i)) and we choose the not taboo move x(i↔ k) with the samaller
value of ∆S(k). We also consider the classical aspiration criteria which allows a taboo move
to be selected if it improves the better solution so far.

We summarize in Figure 2 the procedure TabuSearch. Initializations are performed in
lines 1-4, line 2 costs O(v2) and create an ordered list of size n in line 3, costs O(n log n).
Iterations are performed along the loop in lines 4-36 until a solution with no overlaps is found
or a total of MaxTabuIt tabu search iterations have been performed. The actualization of the
parameters in line 7 cost O(nv). At each iteration, the algorithm determines in loop 10-24 the
best move. Scan the candidate list costs O(v); verify, in line 12, if the point is in the tabu list
can be done in constant time and verify, in line 15, if the move being examined would produce
a solution with lower c(S) has cost O(v). The selected move is applied to the current solution
in lines 27-35, dominated by line 29 with cost O(vn). Each tabu iteration cost O(vn) and the
initialization step has cost O(v2).

Let parameter NbLabelsOverlaps ← f(S) be the number of labels that has one or
more overlaps in solution S. The tabu search procedure use the following parameters: (i)
TabuTenure ← MinTabuLSize + (TabuFactor ∗ NbLabelsOverlaps) where MinTabuLSize

is the minimal size of the tabu list and TabuFactor is a weighted factor with relation to
the number of labels that overlaps; (ii) CandidateListSize← min(n, MinCandidateLSize+
CandidateFactor∗NbLabelsOverlaps)) where MinCandidateLSize is the minimal size of the
candidate list and CandidateFactor is a weighted factor with relation to the number of labels
that overlaps; (iii) MaxTabuIt is the maximum number of tabu search iterations. After some
iterations the number of labels that overlaps decreases, and after each m consecutive iterations
we recalculate parameters TabuTenure and CandidateListSize. If all the points are taboo,
we increase the size of CandidateFactor by a factor GrowingFactor which, as a consequence,
increases the size of the candidate list. After that, in each iteration this factor is divided by a
factor ReductionFactor until it is equal to the original factor CandidateBaseFactor.

2.2 POPMUSIC

The basic POPMUSIC [4] frame can be summarized as follows:

procedure POPMUSIC(r, S);
1 Solution S composed of parts s1, . . . , sp;
2 O ← ∅;
3 while O 6= {s1, . . . , sp} repeat

4 Select si /∈ O;
5 Create a sub-problem Ri composed of the r parts most related to si;
6 Optimize Ri;
7 if Ri has been improved then update S and O ← \Ri;
8 else O ← O ∪ {si};
end POPMUSIC.

Vienna, Austria, August 22–26, 2005



??-4 MIC2005: The Sixth Metaheuristics International Conference

procedure TabuSearch(n, p, A, S = (y1, y2, . . . , yn), MaxTabuIt);
1 iterations← 0; TabuList← ∅;
2 Calculate ∆S(i) ∀i = {1, . . . , (n ∗ p)};
3 CandidateList← (yk1

, yk2
, . . . , ykCandidateListSize

) ⊆ S

where ∆S(yk1
) ≥ ∆S(yk2

) ≥ . . . ≥ ∆S(ykCandidateListSize
);

4 BestSolution← S;
5 while (iterations < MaxTabuIt) and c(BestSolution) > 0 do

6 if (iterations% m == 0)
7 Actualize TabuListSize and CandidateListSize;
8 end if;
9 kRetained←∞; iRetained←∞; MinDelta←∞;
10 forall yi ∈ CandidateList do

11 forall k ∈ {(i− 1) ∗ p + 1, (i− 1) ∗ p + 2, . . . , i ∗ p} \ yi do

12 Autorized← (i /∈ Tabulist);
13 if (∆S(k) < MinDelta)
14 if not (Autorized) then do

15 S′ ← S; LS′(i)← k;
16 Aspired← (c(S′) < BestCost);
17 end if;
18 if (Autorized or Aspired) then do

19 kRetained← k; iRetained← i;
20 MinDelta← ∆S(k);
21 end if;
22 end if;
23 end forall;
24 end forall;
25 iterations← iterations + 1;
26 if (kRetained =∞) Actualize CandidateListSize;
27 else do

28 TabuList← TabuList ∪ yRetained for the next TabuTenure iterations;
29 Update ∆S(i) ∀i = {1, . . . , (n ∗ p)};
30 Reorder CandidateList;
31 LS(iRetained)← kRetained;
32 if c(S) < c(BestSolution) then do

33 BestSolution← S;
34 end if;
35 end if;
36 end while;
37 return BestSolution;
end TabuSearch.

Figure 2: Pseudo-code of tabu search based local search procedure for PFLP

Vienna, Austria, August 22–26, 2005



MIC2005: The Sixth Metaheuristics International Conference ??-5

The set O of part corresponds to seed parts that have been used to define sub-problems that
have been unsuccessfully optimized. Once O contains all the parts of the complete solution,
then all sub-problems have been examined without success and the process stops. It has one
parameter, r that controls the size of the sub-problem to be optimized.

We now define the choices for POPMUSIC elements used in our implementation. Each
point n defines a part s1, . . . , sn, and consequently each part is composed by p labels. The
next seed part is considered in index order 1, . . . , n. Problem Ri will be created as follows: let
L be a list of points, each one with an associated cost. Initially L is empty. For each label of
the point being inserted, scan the labels that overlap with it. For each one of them verify if its
correspondent point is already in L. If so, increment the cost of this point by one, otherwise
include this point with cost 1 in L. The next part most related to the seed part si will be the
point from L with the higher cost. Repeat this procedure until the sub-problem is composed
by r parts or there is no more part which has conflict with the sub-problem to be inserted in
Ri, i.e., L is empty.

The pseudo-code of our POPMUSIC approach for PFLP is given in Figure 3. Initializations
are performed in lines 1-3. A seed part not in O is selected in line 5 and the corresponding
sub-problem with r parts is constructed in lines 6-8. In line 9 we apply the tabu search based
heuristic (described in the previous subsection) to the current solution S of the sub-problem
being examined. If the number of labels of the sub-problem with conflicts decreases, then
we update the solution of the original problem S in line 11. Next, we test if this change has
improved the best solution and, if so, we update the best solution in line 13 and, in line 14,
include Ri in O (this is faster than just making O empty). Otherwise, in line 15, we include
in set O the current seed part. The loop in lines 4-17 stops when we find an optimal solution
(f(S) = 0) or when there is no more seed part to improve.

3 Preliminary Computational Results

All computational experiments were performed on a Pentium 4, 2.8 GHz with 256 MB of RAM
memory. Algorithm POPMUSIC PFLP was coded in C and compiled with version 3.2.2 of the
gcc compiler with the optimization flag -O3. We considered the set of test problems introduced
by L.A.N. Lorena and available from http://www.lac.inpe.br/~lorena/instancias.html.
There are twenty five instances for each value of the number of points n ∈ {25, 100, 250, 500, 750,
1000} with four potential label positions for each point. We have considered only instances
with n ≥ 250 in our computational results, since the other instances are very easy to solve.

The implementation assumed the following values for the tabu search parameters [2]:
MinTabuLSize equal to 9; TabuFactor equal to 0.77; MinCandidateLSize equal to 18; Candida
teBaseFactor equal to 0.73; GrowingFactor equal to 15; ReductionFactor equal to 1.3; m
equal to 50 and MaxTabuIt ∈ {50n, 110n, 500n}.

To investigate the effectiveness of using POPMUSIC strategy, we compare our algorithm
with a basic tabu search presented in this paper. We try three different settings with both
algorithms: For POPMUSIC we try r = 10, r = 30 and r = 70 (and iterTabu = 10 ∗ r for the
optimization process embeds in POPMUSIC). For tabu search, we try MaxTabuIt = 50 ∗ n,
110 ∗ n and 200 ∗ n. Table 1 summarizes these results. We provide the following statistics

Vienna, Austria, August 22–26, 2005



??-6 MIC2005: The Sixth Metaheuristics International Conference

procedure POPMUSIC PFLP(n, p, r, iterTabu, A, S = (y1, y2, . . . , yn));
1 Solution S composed of parts s1, . . . , sn;
2 O ← ∅;
3 BestSolution← S;
4 while O 6= {s1, . . . , sn} and f(BestSolution) > 0 do repeat

5 Select si /∈ O;
6 Create sub-problem Ri composed of the r parts most related to si from S;
7 Construct the correspondent r × r overlap matrix B for sub-problem Ri;
8 Construct the correspondent solution S = (y1, y2, . . . , yr);
9 S′ ← TabuSearch(r, p, B, S, iterTabu);
10 if f(S′) < f(S) then do

11 Transform solution S′ with r points in solution S with n points;
12 if f(S) < f(BestSolution) then do

13 BestSolution← S;
14 O ← O \Ri;
15 else O ← O ∪ {si};
16 end if;
17 end while;
18 return BestSolution;
end POPMUSIC PFLP.

Figure 3: Pseudo-code of POPMUSIC based procedure for PFLP

average over the 25 instances, either for objectives without preferences (w(yx) = 0) or for
objectives with preferences (w(yx) ∈ {0.0, 0.4, 0.6, 0.9}): % is the percentage of label placed
without conflict, c(S), f(S) and CPU time.

We also compare, in Table 1, the heuristic POPMUSIC PFLP with the Genetic Heuris-
tic of Yamamoto et al. [6] (column CGA(best) reports the average result for six trials and
CGA(average) is the best result) and the Tabu search Heuristic of Yamamoto et al [5] (column
Tabu). Let us mention that the numerical results provided in these last references only consider
the % of labels placed without conflicts. The processor used by the authors of Tabu [5] was a
Sun Sparc 20 workstation (therefore a computer about 45 times slower than ours, according
to Dongarra’s factor). The computational effort corresponding to the results for Tabu [5] is
therefore similar to those of our tabu search when run between 110n and 500n iterations. The
processor used for CGA [6] was a Pentium III (at least 550 MHz ?), therefore a computer
about 10 times slower than ours). These authors only provides the computational time to
reach the best solution. Therefore, the computational times are difficult to compare, but it is
sure that the computational effort for our methods was significantly lower than those of CGA.

First, we notice that our tabu search implementation provides solutions of similar quality
than those reported by the Tabu search heuristic of Yamamoto et al. [5], which is coherent.
Then, we notice that the tabu search is not able to find solutions as good as POPMUSIC
ones, even if it runs for much longer CPU times (there are however three exceptions for the
% of label placed without conflicts, but the other objectives are much higher). Therefore,
the POPMUSIC approach was fundamental to find better solutions. Strangely, increasing the

Vienna, Austria, August 22–26, 2005



MIC2005: The Sixth Metaheuristics International Conference ??-7

sub-problem size in POPMUSIC seems to be counter-productive: the computational time are
higher and the solution worse. This perhaps translates the fact the tabu search embedded in
POPMUSIC frame as optimization procedure is not able to find good solutions to problems
with a moderately large number of labels.

We propose a new heuristic for solving the point feature label placement problem based on
the application of POPMUSIC methodology. Preliminary results showed that the proposed
heuristic outperformed other recent metaheuristic approaches in the literature, in terms of
solution quality. To obtain solutions of better quality than those of this preliminary study,
extensions are under development.

References

[1] Christensen, J., Marks, J., and Shieber, S. (1995): “An Empirical Study of Algorithms
for Point-Feature Label Placement”. In: ACM Transactions on Graphics 14, 203–232.

[2] Burri, G., Taillard, Éric. (2003): “Problème du placement géographique de labels”. In:
Raport de travail de diplôme, École d’ingénieurs du canton de Vaud.

[3] Taillard, Éric, and Burri, G. (2004): “POPMUSIC pour le placement de légende sur de
plans”. In: Francoro IV, 95-97.

[4] Taillard, Éric, and Voss, S. (2001): “POPMUSIC: Partial Optimization Metaheuristic
Under Special Intensification Conditions”. In: Ribeiro, C. and Hansen, P. (eds.): Essays
and surveys in metaheuristics. Kluwer Academic Publishers, Boston, USA, 613–629.

[5] Yamamoto, M., Camara, G. and Lorena, L.A.N. (2002): “Tabu Search Heuristic for
Point-Feature Cartographic Label Placement”. In: GeoInformatica 6, 77–90.

[6] Yamamoto, M., and Lorena, L.A.N. (2003): “A Constructive Genetic Approach to Point-
Feature Cartographic Label Placement”. Presented at The Fifth Metaheuristics Interna-
tional Conference 2003 (MIC 2003), Kyoto, Japan, August, 2003.

Vienna, Austria, August 22–26, 2005



??-8 MIC2005: The Sixth Metaheuristics International Conference

Table 1: Computational results

without preferences with preferences
250

% c(S) f(S) s % c(S) f(S) s
PopMusic(10) 100.00 0.0 0.0 0.00 99.97 0.10 0.08 0.00
PopMusic(30) 100.00 0.0 0.0 0.00 99.94 0.18 0.16 0.00
PopMusic(70) 100.00 0.0 0.0 0.00 99.94 0.18 0.16 0.00
Tabu(50n) 99.84 0.4 0.4 0.01 99.42 19.02 1.44 0.02
Tabu(110n) 99.84 0.4 0.4 0.02 99.42 19.02 1.44 0.07
Tabu(500n) 99.84 0.4 0.4 0.12 99.42 19.02 1.44 0.32
CGA(best) [6] 100.00 - - 0.6a - - - -
CGA(average) [6] 100.00 - - 0.6a - - - -
Tabu [5] 100.00 - - 28.0b - - - -

500
% c(S) f(S) s % c(S) f(S) s

PopMusic(10) 99.60 2.00 2.00 0.02 99.34 4.13 3.32 0.03
PopMusic(30) 99.66 1.68 1.68 0.03 99.14 4.67 4.28 0.08
PopMusic(70) 99.66 1.68 1.68 0.03 99.05 5.13 4.76 0.14
Tabu(50n) 99.60 2.00 2.00 0.28 97.90 79.68 10.52 0.72
Tabu(110n) 99.60 2.00 2.00 0.43 99.08 79.28 9.6 2.10
Tabu(500n) 99.62 1.92 1.92 2.75 98.25 79.11 8.76 8.47
CGA(best) [6] 99.60 - - 21.5a - - - -
CGA(average) [6] 99.60 - - 21.5a - - - -
Tabu [5] 99.20 - - 114.0b - - - -

750
% c(S) f(S) s % c(S) f(S) s

PopMusic(10) 96.26 30.64 28.04 0.12 95.18 52.17 36.16 0.15
PopMusic(30) 97.52 19.04 18.56 0.41 96.80 30.27 24.00 0.94
PopMusic(70) 97.63 18.08 17.76 1.33 96.04 36.60 29.68 4.17
Tabu(50n) 96.72 24.88 24.60 1.37 94.74 206.60 39.48 4.12
Tabu(110n) 96.79 24.40 24.08 2.29 94.73 206.60 39.48 9.18
Tabu(500n) 96.95 23.36 22.84 14.21 95.16 205.81 36.32 41.99
CGA(best) [6] 97.10 - - 228.9a - - - -
CGA(average) [6] 96.80 - - 195.9a - - - -
Tabu [5] 96.80 - - 245.0b - - - -

1000
% c(S) f(S) s % c(S) f(S) s

PopMusic(10) 86.71 153.76 132.92 0.39 84.22 254.39 157.80 0.47
PopMusic(30) 91.30 92.56 87.00 1.92 89.18 150.97 108.24 2.92
PopMusic(70) 92.16 83.12 78.40 7.57 88.57 152.35 114.32 12.87
Tabu(50n) 90.08 101.76 99.20 3.52 88.18 440.07 118.20 8.33
Tabu(110n) 90.19 100.80 98.12 7.00 88.84 437.73 111.60 18.42
Tabu(500n) 90.45 98.40 95.48 35.14 89.13 436.22 108.68 81.53
CGA(best) [6] 90.70 - - 1227.2a - - - -
CGA(average) [6] 90.40 - - 981.8a - - - -
Tabu [5] 90.00 - - 1179.0b - - - -
a time to reach the best solutions on a Pentium III.
b time to reach the best solutions on a Sun Sparc 20.
‘-’ is used to indicate information not available.

Vienna, Austria, August 22–26, 2005


