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Abstract

Point feature label placement is the problem of placing text labels adjacent to point features on a map so as to maximize legibility. The
goal is to choose positions for the labels that do not give rise to label overlaps and that minimize obscuration of features. A practical goal
is to minimize the number of overlaps while considering cartographic preferences. This article proposes a new heuristic for solving the
point feature label placement problem based on the application of the POPMUSIC frame. Computational experiments show that the pro-
posed heuristic outperformed other recent metaheuristics approaches in the literature. Experiments with problem instances involving up
to 10 million points show that the computational time of the proposed heuristic increases almost linearly with the problem size. New
problem instances based on real data with more than 13,000 labels are proposed.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Automated label placement is a problem of fundamental
importance in cartography, where text labels must be
placed on maps while avoiding overlaps with cartographic
symbols and other labels. Interactive creation of maps
increases the importance of this problem. This task must
be performed with limited computational effort, typically
less than one second. Applications in cartography require
different label placement tasks.

First, the object to be labeled may have several different
dimensions:

• Dimension 0, labeling point features (such as cities and
mountain peaks)

• Dimension 1, labeling line (segment) features (such as
rivers and roads) and

• Dimension 2, labeling area features (such as countries
and oceans)

Then, overlapping labels may be accepted or not. If two
or more labels cannot overlap, two different problems can
be defined: In the label number maximization problem [10],
certain features (and their labels) are allowed to be deleted
and the objective is to place as many labels as possible with
no overlaps. This problem is equivalent to finding a maxi-
mum vertex independent set in a conflict graph [13,17]
where each node is a candidate label and there is an edge
between two nodes whenever there is a conflict between
the corresponding labels. In the label size maximization
problem, the objective is to determine the maximum scale
factor for the label size and a corresponding labeling with-
out overlaps.

If all features must be labeled and scaling is not allowed,
overlaps must be permitted. In that case, there are two
objectives: to minimize the number of overlaps, which is
called the label overlap minimization problem by [10] and
to minimize the number of labels obstructed by at least
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one other label [3] which is called maximum number of con-

flict free labels problem by [12].
Concerning the position of the labels, there are two

models. In the first one, an explicit enumerated set is con-
sidered for potential label positions (discrete model). In the
second model, an infinite number of possible label posi-
tions may be used. This continuous model is also called
the slider model.

Finally, for all labeling problems, it is possible to assign
a weight (penalty) for each label position and to use as
alternate objective the minimization of the sum of the
penalties.

Construction of good labeling, regardless of the features
being labeled, leads to combinatorial optimization prob-
lems that are generally NP-hard [7,9,11]. Exact algorithms
are able to solve problems with just a few hundred points
to label [5,10,13,22]. Therefore, heuristic algorithms must
be designed for dealing with larger problems or for getting
approximate solutions with low computational effort.

Although the methodology proposed in this paper can
be applied to various labeling problems, we are going to
illustrate this methodology on the NP-Hard point-feature
label placement problem (PFLP) with label overlap minimi-

zation. The size of the labels is fixed, the potential positions
of labels are discrete and all points must be labeled. There-
fore, the first objective considered is to minimize the num-
ber of overlaps. Cartographic preferences can also be
considered as an alternate objective.

Christensen et al. [4] presented a good review on the
PFLP. The authors developed a local search technique
based on a discrete form of gradient descent and a simu-
lated annealing based algorithm. Verner et al. [16] pro-
posed a heuristic based on genetic algorithms (GA).
More recent works, considering that all point features must
be labeled, include a tabu search [19], a constructive genetic
approach [21] and a fast algorithm for label placement [20].
Wagner et al. [17] proposed a two phase algorithm for the
label number maximization problem. An extensive Map-
Labeling bibliography is maintained by Wolff [18].

This work, outlined in Alvim and Taillard [1], is based
on the preliminary work of Burri and Taillard [2,14] which
investigates the evaluation of the POPMUSIC methodology
for the PFLP. POPMUSIC is a general optimization method
especially designed for optimizing large instances of combi-
natorial problems and can be seen as a large scale neigh-
borhood search (see [15]). The basic idea of POPMUSIC is
to locally optimize sub-parts of a solution, once a solution
of the problem is available. These local optimizations are
repeated until no improvements are found. The local opti-
mizations are performed by a new implementation of the
tabu search proposed by [19].

Although the results presented in the present article are
restricted to this labeling problem, this methodology can be
used to deal with other labeling problems due to the ability
of the tabu search used as local optimizer in POPMUSIC.

The paper is organized as follows: Section 2 introduces
the PFLP problem. Then, the adaptation of POPMUSIC

for the PFLP is presented in Section 3. This section starts
by describing the general POPMUSIC frame (Section 3.1).
A practical implementation based on POPMUSIC requires
the design of few components specific to the problem being
solved. The first one is the way an initial solution is
obtained (Section 3.2.1), then the way subproblems are
built (Section 3.2.2) and finally a procedure for optimizing
the subproblems (Section 3.2.3). The last is based on a tabu
search proposed by [19]. The tabu search is presented in
more detail than in [19] (and is certainly slightly different),
making the present article self-contained. Computational
results and new instances are presented in Sections 4 and
5. Concluding remarks are made in the last section.

2. The point feature label placement problem

In this paper, we consider a set of n points that have to
be labeled. Each point has p candidate label positions of
identical size, identified by the integers 1, . . . ,np. The posi-
tion of the label associated to point x, x = (1, 2, . . . ,n), is
given by variable yx that can take p different values:
yx 2 {(x � 1) * p + 1, (x � 1) * p + 2, (x � 1) * p + 3, . . . ,x *
p}.

Fig. 1 shows the possible label positions for a point fea-
ture when p = 4. Each box corresponds to a region in
which the label may be placed. According to cartographic
standards, there is a preference (or, more precisely, a pen-
alty) for each possible label position, lower values indicat-
ing better positions: top right (position 1), top left (position
2), bottom left (position 3) and bottom right (position 4).
An arbitrary weight w(yx) < 1 is associated with each label
position yx. In this paper, we have considered problem
instances with p 2 {2,4,8} label positions for each point
x and respective weights w(yx) = ((yx � 1) modp) * 0.0001.
We are also given an overlap symmetrical np · np matrix A

where aij = 1.0 + w(j) if label i overlaps with label j,
aij = w(i) for i = j and aij = 0 otherwise. A solution S is a
list of n labels (y1,y2, . . . ,yn). For a given solution S, the
cost measure which counts the number of point features
labeled with one or more overlaps is expressed by
f ðSÞ ¼

Pn
i¼1 minf1;

P
j2f1;...;ngniayiyj

g; and the function that
counts the number of overlaps and takes the cartographic
preferences into account is expressed by �cðSÞ ¼Pn

i¼1

Pn
j¼1ðayiyj

Þ. For the special case where w(yx) = 0, for
x = 1, . . . ,n, we note by c(S) the function which simply

position 1position 2

position 3 position 4

0.00000.0001

0.0002 0.0003

Fig. 1. A point feature (circle) with four potential label positions (boxes).
A weight (penalty) {0,0.0001,0.0002,0.0003} is associated with each label
position, lower values indicating best positions according to cartographic
standards.
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counts the number of overlaps without considering carto-
graphic preferences. In this work we will use both �cðSÞ
and c(S) as objective functions to minimize. Let us note
that the objective function c(S)/2 (which counts the num-
ber of pairwise overlaps) is also used in practice when car-
tographic preferences are not taken into account.

Fig. 2 illustrates an example with three points (n = 3),
each one having p = 4 candidate label positions (y1 2
{1,2,3,4}, y2 2 {5,6,7,8}, y3 2 {9,10,11,12}). Given solu-
tion S = (4,6,9) we have: f(S) = min(1, (a4,6) + (a4,9)) +
min(1,(a6,4) + (a6,9)) + min(1,(a9,4) + (a9,6)) = min(1,1.0001) +
min(1, 2.0003) + min(1, 1.0001) = 3, �cðSÞ ¼ ða4;4Þ þ ða4;6Þþ
ða4;9Þþða6;4Þþða6;6Þþða6;9Þþða9;4Þþða9;6Þþða9;9Þ¼0:0003þ
1:0001þ0þ1:0003þ0:0001þ1:0þ0þ1:0001þ0¼ 4:0009
and c(S) = 4.

2.1. Reducing the size of problem instances

For the label number maximization problem in which
omitting labels is allowed, Wagner et al. [17] have proposed
rules for reducing the size of problem instances. For our
problem, the following two rules of the first phase are
applicable:

Rule L1: If candidate label xi of point feature x has no
conflicts, then assign label xi to point feature x and elimi-
nate all other candidates of x.

Rule L2: If candidate label xi of point feature x is only in
conflict with some label yk of point feature y, and y has a
candidate label yj (j 5 k) that is only in conflict with label
xl (l 5 i) of point feature x, then assign labels xi and yj,
respectively, to point features x and y, and eliminate all
other candidates of x and y.

When assigning a label to its feature and removing all
other candidates of that feature, the labels that are in con-
flict with those labels removed have their list of conflicting
labels changed. For this reason, these two rules are applied
while changes occur. The new reduced problem instance is
composed of all point features, with their corresponding
labels, that have not been fixed by this procedure.

Let us mention that: (i) Wagner et al. [17] have proposed
another rule that cannot be applied for the problem consid-
ered in this article; (ii) after applying this procedure, the
partial solution composed by the labeled point features
has no conflicts; (iii) if there is a solution for the label over-

lap minimization problem for the original instance with t

overlaps, then there is a solution with t overlaps after fixing
labels in this way; (iv) when cartographic preferences have
to be taken into account, the optimum of the reduced prob-
lem is not necessarily the optimum of the original one. So,
problem size reduction is not systematically used in our
computational results.

3. POPMUSIC for PFLP

In this section, we review the basic ideas of POPMUSIC
introduced by Taillard and Voss [15] and we present our
adaptation of the POPMUSIC frame for the PFLP.

3.1. General POPMUSIC frame

The basic POPMUSIC frame can be summarized as
follows:

procedure POPMUSIC(r,S);
1 Solution S composed of q parts s1, . . . , sq;
2 O ;;
3 while O 5 {s1, . . . , sq} repeat
4 Select si 62 O;
5 Create a subproblem Ri composed of the r closest

parts from si;
6 Optimize Ri;
7 if Ri has been improved then update S, O OnRi;
8 else O O [ {si};
end POPMUSIC.

Let us suppose that a solution S can be represented as a
set of parts s1, . . . , sq. Let us also suppose that a distance
measure can be defined between two parts. The central idea
of POPMUSIC is to select a part si, called seed part, and a
number r < q of the closest parts from the seed part si to
form a subproblem called Ri. If parts and subproblems
are defined in an appropriate way, an improvement in the
solution of the whole problem can be found for every
improvement in the subproblem.

Once the parts of a solution have been defined, POPMU-
SIC tries to improve the solution by locally improving a
subproblem composed of the seed part and a few parts that
mostly interact with the chosen seed part. The number of
parts considered for optimizing the subproblem so defined
is given by r, the unique parameter of the method (suppos-
ing that the parameters of the optimization procedure are
not chosen by the user).

To avoid generating twice the same subproblem, a set O

of parts is stored. O contains the seed parts that have been
used to define a subproblem already treated without suc-
cess. Once O contains all the parts of the complete solution,
then all subproblems have been examined without success
and the process stops. If subproblem Ri has been success-
fully improved, a number of parts from s1, . . . , sq have been
changed and further improvements may be found in the
neighborhood of these parts. In this case, all the parts used

point 1, label 4, w(4)=0.0003

point 2, label 6, w(6)=0.0001

point 3, label 9, w(0)=0

Fig. 2. Example with n = 3 and S = (4,6,9). In solution S there are three
labels with one or more overlaps (f(S) = 3) and four overlaps (c(S) = 4):
label 4 with label 6, label 6 with labels 4 and 9, and label 9 with label 6. If
cartographic preferences are considered, the cost is �cðSÞ ¼ 4:0009.
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for building Ri are removed from O before continuing the
process.

There are few possible variants for a POPMUSIC frame.
A faster one uses O O [ Ri instead of O O [ {si} in
line 8. A slower variant uses O ; instead of O OnRi

in line 7.

3.2. POPMUSIC adaptation for the PFLP

Like other metaheuristics, the general POPMUSIC frame
presented above does not define several points precisely.
These points depend on the problem being solved and their
definitions must be completed by the designer of a POPMU-
SIC-based method.

The main points that are left free in the POPMUSIC

frame are:

• How a first initial solution is obtained;
• What is the definition of the parts of a solution (and

hence, what type of subproblem a set of several parts
is defining);

• What is the Selection procedure of a part in O;
• How the measure of the distance between parts is

defined;
• What procedure is used as subproblem optimizer.

The choices we have made in our POPMUSIC implemen-
tation for the PFLP are the following: First, the initial solu-
tion is obtained with a fast constructive procedure. Then,
each of the n points defines a part s1, . . . , sn, and conse-
quently each part is composed of p potential labels. After
that, the choice of the next seed part is arbitrary (index
order). To define the notion of distance between two parts,
we (implicitly) build an undirected graph with n vertices,
one per part. In this graph, we put an edge between vertices
x and y whenever there is at least a label of point x that can
overlap with a label of point y. The distance between part x

and y is the number of edges of the shortest path between x

and y in this graphical representation. Starting from a seed
part si, we construct subproblem Ri by including in Ri all
neighbors of si, then all neighbors of the neighbors of si,
and so on. Finally, we use procedure Tabu_PFLP, pre-
sented in Section 3.2.3, as subproblem optimizer. Let us
now present all these components in detail.

3.2.1. Building an initial solution

In order to get an initial solution for the problem as
quickly as possible, we used the first two steps of procedure
FALP [20,13]. The remaining steps are not used since their
complexity, O((np)2), is too high. The initial solution S is
built in the following way: First, all label positions are
sorted by increasing number of conflicts with other label
positions. Then, the label positions are readily inserted into
partial solution S in this order, provided that their corre-
sponding point has not already been labeled and that the
label position is not in conflict with other labels already
in S. Each time a label is selected, all label positions (of

points not yet labeled) are removed from the list and the
remaining label positions are re-sorted. Our implementa-
tion maintains a collection of overlap lists Overlaps[k],
k = 1, . . . ,np, where Overlaps[k] points to all labels that
overlap with k. We suppose that the weight of label k

can be computed in constant time as a function of its iden-
tifier (1, . . . ,np).

The basic steps of procedure FALP are presented in
Fig. 3. In this figure, Function Point(k) returns the point
of label k. Line 1 initializes a priority queue L that stores all
candidate labels that can still be used to complete solution
S (priority=jOverlaps[i]j, the number of potential conflicts
of label i, i = 1, . . . ,np). At each iteration (lines 3–13), the
label position with the lowest number of potential conflicts
is inserted into partial solution S (line 5). This label corre-
sponds to a label without conflict for partial solution S.
The inner loop (lines 6–12) eliminates all labels v 2 L that
overlap with label u that has just been inserted into solution
S (line 7). Indeed, label v cannot be used anymore without
creating a conflict. Since label v is removed, the number of
conflicts of labels overlapping with v must have decreased
(line 9). The loop ends when there are no more labels in
L, meaning that no labels can be added to partial solution
S without creating an overlap.

The second step is performed in the next loop (lines 14–
17) which completes solution S by inserting, for each point
x not yet labeled (S[x] = ;), the label which least increases
the number of overlaps in solution S. Line 15 considers
each of the p candidate label positions for current point
x and chooses the one which has the least conflicts with
labels already in solution S. Line 16 updates partial solu-
tion S.

Complexity of FALP. Creating the priority queue L (line
1) grows quasi-linearly with total number of lables
(O(np lognp)). The selection of label u in line 3 costs O(1)
and removing u from L (line 4) costs O(lognp) and is
repeated np times. Let d be the maximum number of con-
flicts for a given label. There are d labels at most to con-
sider in line 6, and for each one there are at most d labels
in conflict (line 8). Lines 7 and 10 make lognp moves each,
and decrementing priority (line 9) costs O(1). Therefore
loop 2–13 takes O(npd2 lognp) time. The second step con-
siders np labels (lines 14–15). For each one there are at
most d labels in conflict to consider. For this step, the total
number of moves is O(n p d). Therefore the overall com-
plexity of this implementation of FALP is O(npd2 lognp).

3.2.2. Subproblem creation

As presented above, each of the n points to label is one
part. An undirected graph with n nodes is implicitly built
by putting an edge of length 1 between vertices x and y

whenever there is at least one label of point x that can over-
lap with at least one label of point y. The length of the
shortest path between two points x and y is used to define
the distance between x and y. Note that x and y may
belong to different connected components. In this case, x

and y are completely independent of each other and the

A.C.F. Alvim, É.D. Taillard / European Journal of Operational Research 192 (2009) 396–413 399



problem itself can be broken down into several indepen-
dent problems, one for each connected component.

The pseudo-code for the procedure used to create sub-
problem Ri is presented in Fig. 4. As input parameters,
Procedure SubProblemRi takes r, the ideal size of the

subproblem we aim to create, the number p of candidate
positions, the seed part si, a collection of overlap lists Over-

laps[k] and control array Border[k]. Let us define the fol-
lowing functions: Point(l) returns the point of label l;
Empty(Q) returns true if list Q is empty and false

Fig. 3. Pseudo-code of the first two steps of procedure FALP [20].

Fig. 4. Pseudo-code of the procedure used to create a subproblem.
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otherwise; First(Q) returns the first element of Q and
Insert(Q,i) inserts element i at the end of Q. Queue Q

is used to store the points that could be further included
in Ri. Q is initialized with seed part si in line 1. When we
assign a value to parameter r we cannot guarantee that
there will be exactly r neighbors related to the seed part.
In case a connected component contains less than r points,
the size of a subproblem can be smaller than r. Conversely,
there are situations for which Ri will be greater than r.
These situations are explained later. However, in this case,
the optimization procedure is allowed to change the posi-
tion of r labels at most.

The loop in lines 3–13 is repeated while the size of the
subproblem is lower than r and there are still points that
can interact with Ri (Q not empty). Lines 4 and 5 initialize
current part x and subproblem Ri with x. For each label
position k associated with the current point x being
inserted into subproblem Ri (Line 6), all its pertinent neigh-
bors are included in Q (Line 9), i.e. neither those already in
subproblem Ri nor in queue Q. When Loop 3–13 ends,
there might still be parts (points) in queue Q, meaning that
the last part included in Ri has neighbors which are not in
Ri. To guarantee that an improvement of the solution of
the subproblem implies in an improvement in the whole
solution, we include these parts in Ri but we also store these
parts in an auxiliary array Border to indicate that they are
border parts and that they cannot have their label position
changed. In this situation, the number of parts of subprob-
lem Ri will be strictly greater than r. Meanwhile, as most r

parts can have their label changed by the optimization pro-
cedure, the other parts are Border parts used only to calcu-
late the cost of the solution being optimized. Loop 14–18
updates array Border. Procedure SubProblemRi returns
subproblem Ri (line 19) and array Border.

Complexity. There are r parts to consider in line 3, for
each one there are p candidate labels (line 6) and d labels

in conflict (line 7), therefore Loop 3–13 and Loop 14–18
takes O(rpd) time.

Fig. 5 illustrates the creation of a subproblem with
r = 25. The seed part (with its p = 4 possible label posi-
tions) is identified by 0. The neighbors of the seed part
are numbered 1 (points that can be in conflict with the seed
part). The neighbors of parts numbered 1 are numbered 2
and so on. The parts not numbered in the figure are
marked by (x). For this figure, we have r = 25 points whose
label can be moved (those with numbers 0, 1, 2, 3 and a
subset of those with number 4) and jRij = 32 points that
are taken into consideration in the subproblem. The last
is composed of all objects with numbers 0, 1, 2, 3, 4 and
a subset of those with number 5. In this figure, the 7 points
belonging to the border are darker, contain dashed lines
and have numbers 4 or 5. The remaining objects with num-
bers 5 or larger, or not numbered, are completely ignored
during subproblem optimizations.

3.2.3. Subproblem optimization with tabu search

In order to optimize subproblems, we used a new imple-
mentation of the tabu search procedure proposed by [19].
Since [19] does not provide a detailed pseudo code of their
algorithm nor discuss their implementation, we present our
implementation precisely. The last is slightly different from
[19]. The parameter settings are different, as well as the ini-
tial solution.

Neighborhood. Let S = (y1,y2, . . . ,yn) be a solution to a
problem. Let LS(x) be the label of point x in solution S

and let DSðyxÞ ¼
Pn

j¼1ðayxyj
Þ be the cost of label yx in solu-

tion S. Solution S 0 is a neighbor of S whenever only one
label differs between S and S 0. Move x(i! k) is defined
by changing the label of point x from i to k. The solution
S 0 resulting from applying this move to solution S is char-
acterized by LS0 ðxÞ ¼ k, LS0 ð‘Þ ¼ LSð‘Þ 8‘ 6¼ x. The cost of a
move is approximated by DS(k) � DS(i).

Fig. 5. Illustration of the creation of a subproblem in POPMUSIC.
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Tabu status and candidate list. Whenever a move
x(i! k) is performed, we forbid all moves that would
change the label of point x for the duration of parameter
tenure iterations. To reduce the neighborhood size, we

store a list of candidate labels (of size candidateListSize)
with the highest values of DS(yx). At each tabu iteration,
we scan the candidate list (in non-increasing order of
DS(i)) and choose the allowed move x(i! k) with the

Fig. 6. Pseudo-code of tabu search based local search procedure for PFLP.
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smallest value of DS(k). We also consider the classical aspi-
ration criterion which allows a tabu move to be selected if it
improves the best solution found so far. The tabu search
procedure stops either when a solution with no overlaps
is found or when a total of MaxTabuIt tabu search itera-
tions have been performed.

Dynamic modification of parameters. The size of the can-
didate list has to depend on the number c(S) of overlaps of
the current solution S. The larger c(S) is, the larger candi-

dateListSize should be. Similarly, the tabu tenure has to
depend on c(S). We choose to adapt these parameters
dynamically with c(S). The tabu search procedure uses
the following parameters:

• tenure minTabuTSize + (tabuFactor * c(S)) where
minTabuTSize is the minimal size of the tabu list and
tabuFactor is a factor, weighted by the number of
overlaps;

• candidateListSize min(n,minCandidateLSize + candi-

dateFactor * c(S))) where minCandidateLSize is the min-
imal size of the candidate list and candidateFactor is a
factor weighted by the number of overlaps;

• maxTabuIt, the maximum number of iterations per-
formed by tabu search.

After some iterations, the number of overlapping labels
decreases. So, after m consecutive iterations, we recalculate
parameters tenure and candidateListSize. If all points are
tabu, we multiply the size of candidateFactor by growing-

Factor which, as a consequence, increases the size of the
candidate list. Further, at each iteration, this factor is
divided by reductionFactor until it is equal to the original
factor candidateBaseFactor. Fig. 6 summarizes procedure
Tabu_PFLP.

Time complexity of our implementation. Let us suppose
that label density (called d) does not vary with problem size
(n), meaning that the average number of overlaps of each
label is a constant, regardless of the number of labels in
the problem instance. Procedure Tabu_PFLP returns the
best solution found and takes as input problem dimension

n, number p of candidate positions, a collection of overlap
lists, the initial solution S, seven tabu search parameters
and the optional Boolean vector Border indicating whether
a label can be moved or not. Initializations are performed
in lines 1–5. The computation of DS for each label (line 3)
costs O(npd) and the creation of an ordered list of size np
(line 4) costs O(np lognp). Iterations (lines 6–38) are per-
formed until a solution with no overlaps is found or a total
of maxTabuIt tabu search iterations have been performed.
The update of the parameters (line 7), detailed in Fig. 7,
costs O(1). At each iteration, the algorithm determines
the best move (loop 9–25). Scanning the candidate list
(lines 9–10) costs O(np). Verifying whether the point is tabu
(line 11) is done in constant time and verifying whether the
move being examined would produce a solution with lower
c(S) (lines 14–16) has cost O(d). In line 27, we verify
whether or not all the moves are tabu. In this case, we actu-
alize parameter candidateListSize (Line 28; this step is spec-
ified precisely in Fig. 8). The move selected is applied to the
current solution (lines 30–33). Updating and reordering the
candidate list (lines 31–32) costs O(nd). Therefore, the ini-
tialization step costs O(npd + np lognp) and each tabu iter-
ation costs O(npd).

3.3. Putting all components together

The pseudo-code of our POPMUSIC approach for PFLP
is given in Fig. 9. Procedure Pop_PFLP takes as input
problem dimension n, number p of candidate positions,
parameter r (the size of the subproblem), a collection of
overlap lists Overlaps[k], and tabu search parameters. It
returns the best solution found. Initializations are per-
formed in lines 1–3. A seed part not in O is selected in line
5 and the corresponding subproblem is constructed in
lines 6–7 (detailed in Fig. 4). In line 8, we apply the tabu
search based heuristic (described in the previous subsec-
tion) to the current subsolution Si of the subproblem
being examined. If the number of overlaps of Si decreases,
then we update the solution of the original problem S

(line 10) and remove from O all the parts used to build

Fig. 7. Pseudo-code of procedure used to actualize parameters candidateListSize and tenure.
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Ri (line 11). Otherwise (line 13) we include the current
seed part in O. Array Border is initialized in line 3 and
actualized in lines 6 and 15. The main loop (lines 4–16)
ends either when a solution without overlaps is found or
when there is no seed part available to create a
subproblem.

The overall complexity of this procedure cannot be
deduced in the worst case since, a priori, the number z of
times Loop 4–16 is repeated is unknown. It is shown exper-
imentally in Section 6 that z is increasing almost linearly
with n, for uniformly generated instances.

However, the best case complexity is: X(npd2 log(np) +
nrp log(rp)). Indeed, the initial solution has to be created
(O(npd2 lognp)) and at least n 6 z subproblem of size r have
to be optimized with a tabu search performing 10r itera-
tions. Since the initial solution is built only once, the part
of the algorithm requiring the most computational effort
is the optimization of subproblems with tabu search. As
we have shown in Section 3.2.3, time complexity of tabu

search is O(npd + np lognp) for the initialization step and
O(npd) for each tabu iteration. To get the complexity of
the call to the tabu search optimization procedure (line 8)
we substitute n by r and multiply the iteration step by
10r, the maximum number of tabu iterations performed.
We then get a complexity of O(rpd + rp log rp + r2pd) �
O(rp log rp + r2pd). Since the loop of lines 4–16 is done at
least n times and the initialization step costs O(npd2 lognp),
the overall best complexity is X(npd2 lognp + nr-
p log rp + nr2pd). So, Pop_PFLP complexity grows quasi-
linearly with the number of labels and quadratically with
r and d.

4. Computational results

This section presents numerical results obtained from
the application of our POPMUSIC-based algorithm
(Pop_PFLP) and our implementation of the basic tabu
search presented in this paper (Tabu_PFLP).

Fig. 9. Pseudo-code of POPMUSIC-based procedure for PFLP.

Fig. 8. Pseudo-code of procedure used to actualize parameter candidateListSize.
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4.1. Environment

All computational experiments were performed on a
Pentium M Centrino 1.6 GHz with 512 MB of RAM mem-
ory. Algorithms Pop_PFLP and Tabu_PFLP were coded
in C and compiled with g++ version 4.1.2 using the
optimization flag -O4. All running times reported in this
paper for our implementations are CPU seconds measured
with getrusage function up to the end of the computa-
tion. Running times do not include the cost of reading
the input data.

4.2. Parameter setting

In all our computational experiments, we have always
used the following tabu search parameter values (see Sec-
tion 3.2.3 for their definition):

• minTabuTSize = 9
• tabuFactor = 0.5
• minCandidateLSize = 18
• candidateBaseFactor = 0.73
• growingFactor = 15
• reductionFactor = 1.3
• m = 50.

These values originate from [2]. When invoked from
Pop_PFLP for optimizing subproblems of size r, parameter
maxTabuIt (maximum number of tabu iterations) is set to
10 * r, as previously mentioned.

We provide results for Pop_PFLP for various subprob-
lem sizes, namely: r = 10 (Pop(10)), r = 30 (Pop(30))
and r = 70 (Pop(70)). We have also tried an ‘‘ascending’’
version called Pop(asc). In this version we have started
with r = 10 and, each time the list of seed elements is revis-
ited, we increment the value of r by 20 until r = 70. For this
version we used O ; in line 10 of Fig. 9 instead of
O OnRi (implying a higher complexity). Method
Tabu_PFLP was tested with different settings for parame-
ter maxTabuIt. We try maxTabuIt = 50 * n (Tabu(50n)),
maxTabuIt = 100 * n (Tabu(100n)) and maxTabuIt =
500 * n (Tabu(500n)). For each of these seven algorithms
we investigate two variants using objective functions: min-
imize c(S) or minimize �cðSÞ. Regardless of the objective

function used to guide the searches, for a given solution
S we can always compute the number c(S) of overlaps,
the % of labels placed without overlap and the cost �cðSÞ
of the solution if preferences were taken into account.

4.3. Comparison with existing methods

To compare our algorithms with other implementations,
we first considered the set of test problems introduced by
L.A.N. Lorena and available from [8]. There are twenty
five instances for each value of the number of points
n 2 {25,100,250,500,750,1000} with four potential label
positions for each point. We have considered only
instances with n P 250 in our computational results, since
the other instances are very easy to solve.

Ribeiro and Lorena [12] report lower bounds on the
number of pairwise overlaps cðSÞ

2

� �
for Lorena’s instances

[8]. Table 1 shows, for each n, the best lower bound
extracted from [12], and upper bound ub, gap 100 � ub�lb

lb

� �
and time in seconds found, respectively, by LagClus [12]
and by pop(70). We see in this table that our results
are very close to optimal solutions. So, the challenge for
these instances is either to prove optimality (which is done
for n = 500) or to obtain excellent solutions in moderate
computational time (which is the main purpose of Table 2).

To investigate the effectiveness of POPMUSIC strategy,
we compared the results obtained by algorithms
Pop(10), Pop(30), Pop(70), Pop(asc), Tabu(50n),
Tabu(100n) and Tabu(500n) with those obtained by
other approaches reported in the literature: FALP [20],
the Genetic Heuristic of Yamamoto et al. [21], the Tabu
Search Heuristic of Yamamoto et al. [19] and a recent
Lagrangean relaxation with cluster by Ribeiro and Lorena
[12] were developed while the present article was under
revision. Let us mention that the numerical results pro-
vided in the first three references do not consider carto-
graphic preferences. So, we only provide results for the
variants of our algorithms when they use c(S) as objective.

Table 2 shows for each problem dimension
n 2 {250,500,750,1000}: Algorithm name, percentage of
labels placed without conflicts and CPU time in seconds
(for our methods, this is the total computational time up
to termination of the program). The results were obtained
by averaging over 25 instances. The size of the problem

Table 1
Best lower bounds on the number of pairwise overlaps cðSÞ

2

� �

n best lb LagClus pop(70)

ub Gap (%) Time [second]c ub Gap (%) Time [second]

250 0.00a 0.00 0.00 0.12 0.00 0.0 0.00
500 0.84a 0.84 0.00 0.4 0.84 0.0 0.04
750 8.09a 8.96 10.75 53.84 8.92 10.26 0.79

1000 31.23b 44.80 43.45 3842.84 38.76 24.11 3.22

a Extracted from Table 5 [12].
b Extracted from Table 6 [12].
c Pentium IV 2.66 GHz.
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instances was not reduced. Since the numerical results of
other authors were obtained using different computers,
we have divided their computational times with appropri-
ated factors [6] so that the values indicated in Table 2
should be directly comparable. The results for FALP (Fast
Point-Feature Label Placement Algorithm) were extracted
from [20], Tables 1 and 2. The authors report average
results over 25 instances. The results for CGA(best) and
CGA(average) were extracted from [21], Tables 2 and
3. CGA(best) refers to the best result over six trials and
CGA(average) reports average results obtained by the
constructive genetic approach. The results for Tabu (Tabu
search implementation of [19]) were extracted from [19],
Table 2. The reported time for these three methods is the
time to reach the best solution (and not total computa-
tional time). The results for LagClus were extracted from
[12], Table 7. Best results are highlighted.

Comparing the results obtained by our Tabu_PFLP
implementation with those reported by the Tabu Search
Heuristic of Yamamoto et al. [19], we note that the compu-
tational effort of Tabu [19] is of the same order of magni-
tude as those of our tabu search running for 500n

iterations. Note however that Yamamoto et al. [21] only
provide the computational time to reach the best solution.
We also observed that our Tabu_PFLP implementation
provides solutions of better quality than those reported
by Tabu [19], which might be explained as we used different
initial solutions and a better tuning of the parameters.
Therefore, the computational times are difficult to com-
pare, but without a doubt the computational effort
required for our methods is significantly lower than those
for CGA and LagClus.

From Table 2, one can conclude that, for the set of
instances available at [8], the fastest POPMUSIC variant
(Pop(10)) is faster than the best methods previously pub-
lished while providing solutions of higher quality. Indeed,

Algorithm Pop(10) found better solutions in less time
than FALP [20], CGA(best) [21] and Tabu [19]. Concern-
ing the new method LagClus [12], Pop(30) provides bet-
ter solutions with computational efforts several orders of
magnitude lower.

The best POPMUSIC variant seems to be Pop(asc) but
it requires computational efforts higher than FALP for
n 2 {750,1000}. However, the solution quality is much
better (the gap to optimality is divided by 2 or more).
Our first conclusion is that embedding the basic tabu
search proposed by [19] in a POPMUSIC frame, which is
very simple to implement, is an excellent choice when deal-
ing with large instances of point feature label placement
problems.

4.4. Computational results for problem instances of Lorena

[8]

Since other authors do not provide results considering
alternate objectives, we report next on more complete com-
putational results for our new implementations only.

Table 3 summarizes the results we obtained, averaged
over the 25 instances for each problem size n 2
{500,750,1000} and for two objective functions (minimize
c(S) and minimize �cðSÞ). Results are provided both with
and without reduction of problem size. Let us mention that
for n = 250 all our algorithms find solutions without over-
lap (so with f(S) = c(S) = 0) in less than 0.01 seconds and
with �cðSÞ ¼ 0:03. Table 3 provides the following informa-
tion: algorithm name, percentage of labels placed without
conflict, number of labels placed without conflict, number
of overlaps, cost of the solution if we consider cartographic
preferences, and finally CPU time (in seconds). For each n

we also provide the number f(SFALP) of labels placed with-
out conflict and the number c(SFALP) of overlaps in the ini-
tial solution. When problem size reduction was used, we

Table 2
Comparison with other approaches

minimize c(S)

n = 250 n = 500 n = 750 n = 1000

% Time % Time % Time % Time

Pop(10) 100.00 0.00 99.67 0.01 97.46 0.11 91.94 0.30
Pop(30) 100.00 0.00 99.67 0.02 97.72 0.23 92.54 0.96
Pop(70) 100.00 0.00 99.67 0.04 97.73 0.79 92.58 3.22
Pop(asc) 100.00 0.00 99.67 0.01 97.72 0.41 92.68 2.57
Tabu(50n) 100.00 0.00 99.57 0.07 97.53 0.48 91.54 1.29
Tabu(100n) 100.00 0.00 99.57 0.14 97.54 0.96 91.54 2.58
Tabu(500n) 100.00 0.00 99.57 0.70 97.55 4.78 91.59 12.86
FALP [20] 100.00 0.00a 99.50 0.10a 96.70 0.28a 90.12 0.59a

CGA(best) [21] 100.00 0.06b 99.60 2.15b 97.10 22.89b 90.70 122.72b

CGA(average) [21] 100.00 0.06b 99.60 2.15b 96.80 19.59b 90.40 98.18b

Tabu [19] 100.00 0.62c 99.26 2.53c 96.76 5.44c 90.00 26.2c

LagClus [12] 100.00 0.12d 99.67 0.4d 97.65 53.84d 91.42 3842.84d

a Time to reach the best solutions on a Pentium II? divided by 10 [6].
b Time to reach the best solutions on a Pentium III divided by 10 [6].
c Time to reach the best solutions on a Sun Sparc 20 divided by 45 [6].
d Time on a Pentium IV 2.66 GHz processor with 512 MB of RAM memory.
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also provide the number of points that have been
suppressed by the reduction. Again, all results have been
averaged over 25 instances.

Comparing the two different approaches Pop_PFLP and
Tabu_PFLP we notice that all eight POPMUSIC-based vari-

ants systematically find solutions at least as good as the
best tabu search variant (Tabu(500n)), with the excep-
tion of variant Pop(10) with n = 750, objective function
c(S)) while taking much shorter CPU times. Therefore,
the POPMUSIC approach is fundamental to finding good

Table 3
Experimental results for variants of algorithms Pop_PFLP and Tabu_PFLP on PFLP instances

Without cartographic preferences With cartographic preferences

% f(S) c(S) �cðSÞ Time % f(S) c(S) �cðSÞ Time

Without reduction
n = 500, f(SFALP) = 2.32(=99.54%), c(SFALP) = 2.72
Pop(10) 99.67 1.64 1.68 1.73 0.01 99.66 1.68 1.68 1.73 0.01
Pop(30) 99.67 1.64 1.68 1.73 0.02 99.65 1.76 1.76 1.81 0.02
Pop(70) 99.67 1.64 1.68 1.73 0.04 99.63 1.84 1.84 1.89 0.05
Pop(asc) 99.67 1.64 1.68 1.73 0.01 99.66 1.68 1.68 1.73 0.03
Tabu(50n) 99.57 2.16 2.32 2.37 0.07 99.55 2.24 2.32 2.37 0.12
Tabu(100n) 99.57 2.16 2.32 2.37 0.14 99.55 2.24 2.32 2.37 0.24
Tabu(500n) 99.57 2.16 2.32 2.37 0.70 99.57 2.16 2.24 2.29 1.14

n = 750, f(SFALP) = 24.56(=96.72%), c(SFALP) = 28.24
Pop(10) 97.46 19.04 20.08 20.17 0.08 97.44 19.20 19.84 19.92 0.11
Pop(30) 97.72 17.12 17.92 18.01 0.23 97.50 18.76 19.52 19.59 0.34
Pop(70) 97.73 17.04 17.84 17.93 0.79 97.25 20.60 21.52 21.59 1.39
Pop(asc) 97.72 17.12 17.92 18.01 0.41 97.57 18.24 18.80 18.87 2.03
Tabu(50n) 97.53 18.52 18.88 18.97 0.48 96.84 23.72 25.28 25.36 0.69
Tabu(100n) 97.54 18.44 18.80 18.89 0.96 96.86 23.52 25.04 25.12 1.38
Tabu(500n) 97.55 18.36 18.72 18.81 4.78 96.89 23.36 24.40 24.48 6.85

n = 1000, f(SFALP) = 94.76(=90.52%), c(SFALP) = 116.80
Pop(10) 91.94 80.60 86.64 86.78 0.30 91.76 82.36 85.36 85.47 0.40
Pop(30) 92.54 74.56 78.64 78.78 0.96 91.85 81.48 85.76 85.86 1.40
Pop(70) 92.58 74.20 77.52 77.66 3.22 91.22 87.84 94.80 94.90 5.29
Pop(asc) 92.68 73.20 77.84 77.98 2.59 92.05 79.52 82.24 82.34 8.18
Tabu(50n) 91.54 84.64 87.28 87.42 1.29 90.53 94.68 104.32 104.46 1.76
Tabu(100n) 91.54 84.60 87.04 87.18 2.58 90.53 94.68 104.32 104.46 3.51
Tabu(500n) 91.59 84.12 86.56 86.70 12.86 90.53 94.68 104.32 104.46 17.63

With reduction
n = 500(343.40points reduced), f(SFALP) = 2.52(=99.50%), c(SFALP) = 2.80
Pop(10) 99.67 1.64 1.68 1.73 0.00 99.66 1.68 1.68 1.73 0.01
Pop(30) 99.67 1.64 1.68 1.73 0.01 99.66 1.68 1.68 1.73 0.01
Pop(70) 99.67 1.64 1.68 1.73 0.03 99.66 1.68 1.68 1.73 0.03
Pop(asc) 99.67 1.64 1.68 1.73 0.01 99.66 1.68 1.68 1.73 0.01
Tabu(50n) 99.58 2.08 2.16 2.21 0.02 99.54 2.32 2.40 2.45 0.02
Tabu(100n) 99.58 2.08 2.16 2.21 0.04 99.54 2.32 2.40 2.45 0.05
Tabu(500n) 99.58 2.08 2.16 2.21 0.17 99.54 2.32 2.40 2.45 0.23

n = 750(346.28points reduced), f(SFALP) = 24.84(=96.69%), c(SFALP) = 28.56
Pop(10) 97.58 18.16 19.28 19.37 0.08 97.51 18.68 19.28 19.37 0.07
Pop(30) 97.72 17.12 17.92 18.01 0.15 97.50 18.72 19.28 19.36 0.20
Pop(70) 97.72 17.08 17.92 18.01 0.36 97.48 18.88 19.52 19.60 0.47
Pop(asc) 97.71 17.20 18.08 18.17 0.20 97.58 18.12 18.56 18.64 0.40
Tabu(50n) 97.44 19.20 19.44 19.53 0.20 96.84 23.72 24.88 24.97 0.28
Tabu(100n) 97.45 19.12 19.36 19.45 0.39 96.84 23.68 24.80 24.89 0.56
Tabu(500n) 97.49 18.84 19.04 19.13 1.95 96.89 23.32 24.16 24.25 2.71

n = 1000(274.92points reduced), f(SFALP) = 97.12(=90.29%), c(SFALP) = 121.36
Pop(10) 91.83 81.72 87.44 87.58 0.28 91.75 82.52 86.00 86.12 0.33
Pop(30) 92.48 75.20 78.80 78.94 0.81 91.88 81.24 85.76 85.88 1.08
Pop(70) 92.54 74.56 77.68 77.82 2.36 90.97 90.32 96.16 96.28 3.13
Pop(asc) 92.59 74.08 77.68 77.82 1.93 92.05 79.48 82.48 82.60 3.72
Tabu(50n) 91.45 85.52 88.08 88.22 0.83 90.28 97.20 106.88 107.01 1.12
Tabu(100n) 91.47 85.32 87.92 88.06 1.65 90.28 97.20 106.80 106.93 2.24
Tabu(500n) 91.52 84.84 87.52 87.66 8.20 90.28 97.20 106.80 106.93 11.30

Left: using number of conflict c(S) as the objective to minimize. Right: using cartographic preferences �cðSÞ as the objective to minimize.
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solutions. Variant Pop(asc) provides the best solutions
in terms of quality.

If we consider individual results for each of the 25
instances and for the four objectives considered in Table
3, there is no case where cðSÞ 6¼ intð�cðSÞÞ. So, intð�cðSÞÞ
expresses the number of overlaps for the set of problems
available at [8]. This is due to two facts. First, we have cho-
sen very low values for cartographic preferences. Second,
for this set of instances, good solutions have a very low
number of overlaps. We hoped that adding very low carto-
graphic preferences could help guide the tabu search pro-
cess toward good solutions. Indeed, when there are
several solutions in the neighborhood having exactly the
same number of overlaps (a frequently occurring situa-
tion), taking cartographic preferences could guide the tabu
search. Unfortunately, these hopes were soon dashed.
Apparently, solving the problem by considering carto-
graphic preferences (minimize �cðSÞ) is more difficult than
without it (minimize c(S)). In all cases, using �cðSÞ as an
objective function produces a solution quality (f(S)) no bet-
ter than the solution quality obtained using c(S) as an
objective function.

This explains why increasing the subproblem size from
r = 30 to r = 70 in Pop_PFLP seems to be counter-produc-
tive when minimizing �cðSÞ: the computational time is
higher and the solutions worse (for n 2 {500,750,1000}).
This means that our tabu search optimization procedure
cannot find good solutions to problems with a moderately
large number of labels while taking cartographic prefer-
ences into account.

4.5. Algorithm behavior when changing objective function

Fig. 10 (and, respectively, Fig. 11) illustrates the average
behavior of our algorithms with objective functions mini-
mize c(S) (respectively, minimize �cðSÞ) for the 25 problem

instances with n = 1000. In these figures, we plot the evolu-
tion of the number of overlaps of the best solution found so
far as a function of computational time. As each POPMU-

SIC run might stop for different computational times, we
end the plots as soon as one of the 25 runs stops.

These figures show that the tabu search is very aggres-
sive. Initially, it finds better solutions faster than the four
variants of Pop_PFLP methods. This is because the tabu
search is implemented using a candidate list and, for these
instances, there are several regions that do not need to be
improved. So, the tabu search does not try any moves
involving labels in these regions while Pop_PFLP launches
an optimization process in these regions.

We can also observe that our implementation of tabu
search is relatively ineffective for optimizing the number
of overlaps in the long term while taking the cartographic
preferences into account. This is true even for very small
problem instances with n = 70, since the improvements
are relatively moderate for Pop(70) compared to faster
Pop_PFLP variants. So, an effort should be undertaken
to design a good optimization process minimizing �cðSÞ.

After relatively few iterations, Tabu(500n) reaches a
local optima and is unable to escape. Conversely,
Pop_PFLP variants make small but constant improve-
ments, cross Tabu(500n) and continue to improve the
solutions.

Fig. 10 suggests that one could profit from tabu search
aggressiveness and start Pop_PFLP with a solution
obtained by a short tabu search. This strategy is shown
in Fig. 12, also for problem instances with n = 1000 (with-
out preferences). We call Tabu(50n)+Pop(70) the ver-
sion that first runs Tabu_PFLP with MaxTabuIt = 50n

and then Pop_PFLP with r = 70.
In this figure, we see that Pop_PFLP is indeed able to

easily improve the solution produced by Tabu(50n).
However, the final solution is not as good as the standard
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Fig. 10. Number of overlaps (minimize c(S)) as a function of time.
Average results for 25 instances with n = 1000. Comparison of algorithms
Pop(10), Pop(30), Pop(70), Pop(asc) and Tabu(500n). Loga-
rithmic scale for horizontal axis.
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Pop(70) starting with the FALP solution while exacting
higher computational effort, mainly due to the time spent
to obtain the Tabu(50n) solution.

5. New problem instances

Since a true geographical map contains several thousand
points to label which are not uniformly distributed (as the
problem instances considered above), we propose new map
labeling problem instances. The positions of the points to
label corresponds to 13,206 nodes of the road network in
Switzerland. Twenty instances were generated by varying
the size of the labels. Five different label surfaces have been
chosen and for each surface, four different heights H and

lengths L. Fig. 13 shows the best solution found for the
problem instance with H = 4 and L = 12 (units are
hectometers).

Computational results for Pop_PFLP(10) are given in
Table 4. For each problem instance we provide: the height
H of the label, the length L of the label, the number p of
candidate positions, the maximal degree maxd of a node
in the graph of incompatibilities, the number of point cover

for which all p label positions cover another point, the
number of point features for the reduced problem, the
number c(SFALP) of conflicts for the initial solution gener-
ated by the first two steps of FALP, the percentage of labels
placed without conflicts (when using c(S) as the objective to
minimize), the number f(S) of labels in conflict (when using
c(S) as the objective to minimize), the number c(S) of con-
flicts, the objective value �cðSÞ when cartographic prefer-
ences are taken into account, the computational time (in
seconds) of Pop_PFLP(10), either if it uses c(S) or �cðSÞ
as the objective to minimize.

In Table 4, we see that the computational time of
Pop_PFLP(10) remains moderate for large problem
instances. The computing time increases with the difficulty
of the problem, even if the number of labels is constant.
For optimizing problem instances of a size around 10,
our implementation of the tabu search seems to be able
to take cartographic preferences into account. Indeed,
�cðSÞ values are generally lower than c(S) values. So, this
means that adding cartographic preferences guides the tabu
search into better regions than a pure Boolean criterion
(whether or not the label is in conflict). As previously men-
tioned, for larger problems, the tabu search is not valuably
guided with cartographic preferences. So, in Table 5, we
compare the performances of Tabu(50n) and Pop(asc)

by considering the versions of our algorithms that use c(S)
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Fig. 13. Identifiers of 13,206 nodes of the road network in Switzerland. Black identifiers do not overlap with other identifiers.
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as the objective. Let us mention that the values of objec-
tives for longer tabu search runs are almost identical, while
taking up more computational time.

In Table 5 we see that Tabu(50n) requires two to three
times more computational efforts than Pop(asc) and
always produces inferior quality solutions. The number
of labels in conflict with Tabu(50n) ranges from 1.5%
to 13.3% higher than with Pop(asc) while both the num-
ber of conflicts c(S) and the objective value with carto-
graphic preferences �cðSÞ ranges from 7% to 26% higher.
Excepting the first two instances, the comparison of
Tabu(50n) with Pop_PFLP(10) reveals that the latter
method produces better results in 40 instances with up to
130 times less computational effort. We also note that
instances with p = 8 are easier than instances with p = 4.
In fact, in all cases, column cover equal to zero for p = 8,
this explains why solution quality is better for p = 8 (Tables

4 and 5). Finally, let us call attention to the fact the label
density is very high in populated areas. This can be seen
in Fig. 13 and explains why the % of labels without conflict
decreases rapidly as label size increases.

6. Evaluating the practical complexity of our approach

Since the problem instances treated up to now have very
different structures, a new class of instances was generated
in order to evaluate the practical time complexity of our
approach. To generate problems that are homogeneous,
regardless of their size, we used the following process:
labels are of equal size (12 · 4). The points are distributed
uniformly on a square of size D

ffiffiffi
n
p � D

ffiffiffi
n
p

, where D = 10 is
a constant. For p = 2 and for various n between 33 and 107

one instance was generated and solved with Pop(10),
Pop(70) and Pop(asc) without reduction. In addition,

Table 4
Experimental results for Pop_PFLP(10) on new PFLP instances

H L p maxd Cover #Points c(SFALP) % f(S) c(S) �cðSÞ Time (c) Time ð�cÞ
2 24 4 27 17 6624 1490 92.55 984 1092 1073.38 2.64 3.45

8 57 0 7664 542 97.22 367 382 385.87 4.88 7.24
3 16 4 30 50 7628 2292 88.73 1488 1708 1709.50 3.68 4.88

8 71 0 8536 1442 92.70 964 1056 1041.97 9.66 13.26
4 12 4 38 94 7939 2756 86.69 1758 2084 2047.57 4.23 5.47

8 75 0 8634 1424 93.06 917 1002 970.18 9.92 13.89
6 8 4 41 149 8422 3294 84.42 2057 2448 2467.60 4.91 6.21

8 86 0 9019 1746 91.54 1117 1234 1204.30 11.74 16.11
2 32 4 28 41 8077 3098 84.73 2017 2304 2305.59 4.42 5.73

8 60 0 8982 1424 92.51 989 1034 1026.28 10.16 14.34
4 16 4 41 199 9468 5524 75.49 3237 4092 4091.83 6.90 9.04

8 79 0 9893 3240 84.96 1986 2290 2306.77 18.06 24.81
8 8 4 48 338 9939 6616 71.16 3808 5130 5089.94 7.96 10.40

8 100 0 10,265 4210 81.35 2463 2974 2937.04 21.75 29.09
16 4 4 42 204 8422 3294 84.42 2057 2448 2467.60 4.91 6.18

8 88 0 9019 1746 91.54 1117 1234 1204.30 11.70 16.09
3 24 4 38 171 9615 5690 74.28 3396 4412 4337.85 6.82 8.68

8 77 0 10,211 4260 81.07 2500 2972 2974.71 21.07 27.65
4 18 4 42 274 10,007 6972 69.96 3967 5250 5247.95 8.12 10.31

8 80 0 10,423 4226 80.61 2561 3090 3025.07 21.52 30.21
6 12 4 48 406 10,497 7980 66.66 4403 6080 6026.08 9.14 11.68

8 100 0 10,776 5118 77.46 2976 3700 3609.35 25.29 34.31
8 9 4 52 446 10,517 8386 65.10 4609 6504 6442.12 9.57 12.06

8 114 0 10,781 5834 75.17 3279 4194 4151.34 27.71 36.82
2 42 4 34 88 9401 5652 74.15 3414 4296 4313.79 6.75 8.62

8 69 0 10,010 3046 84.48 2050 2226 2198.86 17.12 23.13
3 28 4 41 359 10,238 7776 67.12 4342 5972 5930.03 8.72 10.94

8 85 0 10,769 5892 74.58 3357 4188 4155.15 26.79 34.26
4 21 4 43 405 10,613 9188 62.86 4905 6996 7002.15 9.76 12.08

8 84 0 10,975 6236 73.29 3527 4452 4357.49 28.51 37.59
6 14 4 51 551 11,019 10,626 58.87 5432 8156 8008.33 11.18 14.28

8 107 0 11,245 7282 70.04 3956 5142 5091.87 31.73 41.83
2 48 4 37 126 9898 7356 68.17 4204 5496 5469.95 8.22 10.35

8 73 0 10,475 4236 79.52 2705 3018 2969.13 21.25 28.66
3 32 4 43 360 10,711 9932 60.44 5224 7648 7574.22 10.30 13.00

8 96 0 11,127 7792 68.13 4209 5542 5479.55 32.42 42.35
4 24 4 46 519 11,023 11,608 56.55 5738 8814 8792.38 11.56 14.54

8 93 0 11,313 7972 67.86 4244 5650 5558.00 33.88 44.69
6 16 4 57 774 11,363 13,262 51.98 6342 10,294 10152.59 12.82 15.90

8 117 0 11,564 9504 63.66 4799 6770 6700.37 37.69 48.90

Values for %, f(s) and c(S) are obtained by using c(S) as the objective. Values for �cðSÞ are obtained by using �cðSÞ as the objective to minimize. It can be
noted that FALP produces solutions that are between 29% and 43% (average: 36%) worse than Pop_PFLP(10) in terms of c(S) objective.
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several of these instances were solved with Pop(10) consid-
ering p = 4 and p = 8. A computer with 6 GB RAM (Pen-
tium Xeon 3.2 GHz) was used to avoid swapping when
solving large instances. The speed of this computer is sim-
ilar to the Pentium M Centrino used in the previous sec-
tions. To give an idea of the difficulty of the instances,
solutions found with all POPMUSIC variants have about
32% (respectively: 63% and 90%) of labels that can be
placed without overlap for p = 2 (respectively: p = 4 and
p = 8). These proportions remain sensibly the same, what-
ever the problem size, meaning that the quality of the solu-
tions does not degrade as problem size increases. So,
problem instances with p = 2 appears to be more difficult
to solve than instances with p = 4 or p = 8. This just dem-
onstrates the fact that the same set of points is easier to
label when the number of possible label positions increases.

Fig. 14 shows the evolution of POPMUSIC computa-
tional time as a function of n. The time does not include
the production of the initial solution. This time is only a
small % of the total computational time. Fig. 14 shows that
POPMUSIC computational time grows almost linearly with
n as predicted. Computational time increases less than lin-
early with p due to the decrease in problem difficulty.

Exponential regressions, conducted on problem sizes
n P 1000 (n P 3162 for Pop(asc)), provide expected com-
putational time modeled as c1 � nc2 , where c2 is a constant
value that can be estimated between 1.02 (for Pop(10),
p = 8) and 1.12 (for Pop(asc), p = 2). In Fig. 14, the lines
are extrapolated computational time while measures are
represented by geometrical patterns. Purposely, we have
generated only one problem instance for each n and exe-
cuted only one run for each instance. This allows putting

Table 5
Experimental results for variants of algorithms Pop(asc) and Tabu(50n) on new PFLP instances

H L p Pop_PFLP(asc) Tabu(50n)

% f(S) c(S) �cðSÞ Time % f(S) c(S) �cðSÞ Time

2 24 4 93.10 911 982 983.57 62.03 92.20 1030 1076 1077.57 92.68
8 97.61 315 318 320.19 82.24 97.13 379 394 396.17 107.29

3 16 4 89.18 1429 1608 1609.75 96.30 88.29 1546 1724 1725.75 205.19
8 93.43 867 912 914.45 168.12 92.54 985 1056 1058.42 363.41

4 12 4 87.12 1701 1956 1957.84 145.47 86.12 1833 2092 2093.83 276.59
8 94.09 780 832 834.67 184.05 92.87 941 1014 1016.63 348.56

6 8 4 84.87 1998 2346 2347.89 167.87 83.80 2140 2554 2555.89 399.60
8 92.38 1006 1082 1084.84 220.27 91.40 1136 1216 1218.83 454.16

2 32 4 85.26 1947 2158 2159.87 162.18 84.25 2080 2310 2311.88 322.56
8 93.47 863 872 874.79 175.62 92.44 999 1062 1064.74 416.74

4 16 4 75.92 3180 3936 3938.23 339.30 74.31 3392 4248 4250.27 849.92
8 85.85 1868 2086 2089.55 486.72 84.56 2039 2238 2241.51 1043.46

8 8 4 71.76 3729 4964 4966.39 593.19 69.23 4063 5634 5636.44 1225.38
8 82.23 2347 2744 2747.91 720.32 80.54 2570 3020 3023.88 1431.32

16 4 4 75.15 3282 4098 4100.24 335.84 73.21 3538 4466 4468.26 939.22
8 85.39 1930 2160 2163.59 517.12 83.95 2119 2376 2379.59 1119.59

3 24 4 74.81 3327 4220 4222.23 373.63 73.00 3565 4582 4584.29 924.09
8 81.84 2398 2776 2779.61 604.55 80.57 2566 2932 2935.59 1390.86

4 18 4 70.33 3918 5068 5070.43 442.18 67.47 4296 5862 5864.49 1245.52
8 81.29 2471 2846 2849.99 708.57 79.84 2662 3082 3085.98 1489.45

6 12 4 67.11 4344 5890 5892.55 635.40 63.56 4812 6848 6850.67 1702.11
8 78.45 2846 3422 3426.30 1017.04 76.58 3093 3736 3740.33 1890.08

8 9 4 65.62 4540 6294 6296.61 784.77 62.01 5017 7364 7366.70 1969.58
8 76.00 3169 3924 3928.33 972.40 74.36 3386 4308 4312.39 2219.83

2 42 4 74.54 3362 4134 4136.24 370.31 73.19 3540 4448 4450.28 889.66
8 85.70 1889 1974 1977.61 576.91 84.55 2040 2128 2131.56 999.98

3 28 4 67.34 4313 5826 5828.52 431.65 64.44 4696 6736 6738.61 1587.63
8 75.09 3289 4000 4004.17 1034.79 73.63 3482 4282 4286.16 2155.98

4 21 4 63.03 4882 6840 6842.71 618.81 61.95 5025 8428 8430.71 2221.33
8 74.20 3407 4192 4196.59 1137.65 72.57 3623 4510 4514.60 2322.39

6 14 4 59.21 5387 7906 7908.89 670.03 58.23 5516 9924 9926.99 3030.45
8 70.82 3854 4880 4884.94 1660.72 68.35 4180 5546 5551.02 2852.81

2 48 4 68.82 4118 5268 5270.42 479.02 67.07 4349 5730 5732.49 1229.80
8 80.70 2549 2778 2782.05 889.74 79.22 2744 2956 2960.01 1445.53

3 32 4 60.87 5167 7388 7390.81 659.05 60.02 5280 9248 9250.83 2543.14
8 69.07 4085 5250 5254.72 1810.27 66.96 4363 5732 5736.79 2976.49

4 24 4 56.75 5711 8576 8579.03 625.10 56.10 5797 10,770 10773.06 3342.41
8 68.89 4108 5344 5349.20 1901.56 65.53 4552 6120 6125.23 3128.55

6 16 4 52.23 6309 10,066 10069.19 762.60 51.89 6354 12,498 12501.32 4327.42
8 64.52 4686 6438 6443.68 1899.16 58.98 5417 8166 8171.85 4961.51

All values were obtained by running these algorithms using c(S) as the objective (also for the �cðSÞ column).
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in evidence the variations of computational effort. We see
in Fig. 14 that the variations are negligible as soon as the
size of the problem instance is over a few thousand. For
Pop(asc), the increase in computational time is almost
quadratic for small problem instances.

7. Conclusions

This article exploits the POPMUSIC frame within the
context of point feature label placement. The results
obtained show that POPMUSIC is very efficient for this
problem, since it is much faster than the best methods pre-
viously published while providing higher-quality solutions.
POPMUSIC requires an initial solution as input. The latter
can be obtained with a fast constructive method. Another
feature that POPMUSIC requires is a basic optimization
process that is able to produce a good solution to problem
instances of small size. The use of a tabu search previously
proposed by other authors was generally convenient for
this purpose. Once both of these features are available,
the implementation of a POPMUSIC-based algorithm is
very easy.

Typically, the time complexity of POPMUSIC grows
almost linearly with problem size. So, POPMUSIC is ideal
for dealing with large problem instances such as those orig-
inating from real life. Therefore, we have proposed a set of
instances with more than 13,000 points to label.

We have discovered that the tabu search we have
embedded in our POPMUSIC algorithm is not able to deal
efficiently with cartographic preferences, even for problem
instances of very moderate size. Therefore, a good optimi-
zation procedure for labeling with cartographic preferences
should be developed in the future.
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