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Département d’informatique et de recherche op´erationnelle — Publication #1012

December 1995



ABSTRACT

The vehicle routing problem with time windows is used to model many realistic applications

in the context of distribution systems. In this paper, a parallel tabu search heuristic for solving this

problem is developed and implemented on a network of workstations. Empirically, it is shown that

parallelization of the original sequential algorithm does not reduce solution quality, for the same

amount of computations, while providing substantial speed-ups in practice. Such speed-ups could

be exploited to quickly produce high quality solutions, when the time available for computing a

solution is reduced, or to increase service quality by allowing the acceptance of new requests much

later, as in transportation on demand systems.

Keywords: Vehicle routing, time windows, tabu search, course grain parallelism, distributed
network.

RÉSUMÉ

Le probl̀eme de confection de tournées de v́ehicules avec fen̂etres de temps est utilisé pour

modéliser de nombreuses situations r´eelles dans le contexte des syst`emes de distribution. Dans cet

article, nous d´ecrivons une heuristique parall`ele de recherche avec tabous pour ce probl`eme, ainsi

que sa mise en oeuvre sur un réseau de stations de travail. Nous montrons empiriquement que cette

heuristique produit des solutions d’aussi bonne qualit´e que l’heuristique s´equentielle sur laquelle

elle est baśee, pour un m̂eme effort de calcul, tout en requérant des temps de calcul beaucoup

moindres. Cette r´eduction des temps de calcul peut s’av´erer très utile dans les situations o`u il faut

produire rapidement des solutions de tr`es bonne qualit´e, ou pour augmenter la qualit´e de service

dans les systèmes de transportà la demande en permettant l’acceptation de nouvelles requêtes plus

tardivement.

Mots-clés: Tournées de v´ehicules, fenˆetres de temps, recherche avec tabous, parall´elisme à gros
grains, réseau distribu´e.
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1. Introduction

The vehicle routing problem with time windows or VRPTW is a useful abstraction of many

real-world problems, like bank deliveries, postal deliveries or school bus routing. In these problems,

a time window is often associated with each customer location to constrain the time of service.

Formally, the VRPTW can be stated as follows. Given a fleet of identical vehicles housed at

a central depot and a set of customers requiring service (e.g., a quantity of goods to be delivered),

a set of feasible routes starting from and terminating at the depot must be constructed so that each

customer is visited exactly once, and the total distance traveled by the vehicles is minimized.

In order to be feasible, each route must also satisfy three types of constraints:

(a) The total load on a route cannot exceed the capacity of the vehicle servicing the route.

(b) The time of beginning of service at each customer location must occur before its time window’s

upper bound. However, a vehicle can arrive before the lower bound. In this case, the vehicle

must wait, thus introducing a waiting time on the route.

(c) The route of each vehicle must be serviced within the bounds of the time window associated

with the depot.

Two variants of this problem may be defined by introducing either hard or soft time windows

at the customer locations. In the latter case, the time of beginning of service at any given customer

location can occur after the time window’s upper bound (although the time window at the central

depot must still be strictly satisfied). The variant with soft time windows reduces to the hard one,

by adding a large penalty to the objective value when the time window constraints are not satisfied.

Our problem-solving methodology addresses problems with soft time windows (thus, problems

with hard time windows too).

Due to its wide applicability in practical settings, the VRPTW has been an area of intense

research during the last ten years. Excellent surveys may be found in Desrocherset al. (1988),
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Desrosierset al. (1992), and Solomon and Desrosiers (1988). Generally speaking, the methodolo-

gies for solving this problem can be classified as:

(a) exact algorithms

Kolen et al. (1987), Desrocherset al. (1992)

(b) route construction heuristics

Solomon (1987), Potvin and Rousseau (1993), Russell (1995)

(c) route improvement heuristics

Baker and Schaffer (1988), Potvin and Rousseau (1995), Solomonet al. (1988), Thompson

and Psaraftis (1993)

(d) composite heuristicsthat include both route construction and route improvement procedures

Kontoravdis and Bard (1995), Russell (1995)

(e) metaheuristics,like tabu search (Potvinet al., 1993; Rochat and Taillard 1995, Taillardet

al., 1995), simulated annealing (Chiang and Russell 1993), genetic algorithms (Blanton and

Wainwright, 1993; Potvin and Bengio, 1993, Thangiah, 1993) and hybrids (Thangiahet al.,

1994).

This paper is concerned with the design of a parallel tabu search for the VRPTW. Parallelization

provides benefits in practical settings where routes must be produced within a short time span.

In the local pick-up portion of less-than-truckload transportation, for example, new routes must

sometimes be quickly produced in response to a batch of new pick-up requests. Parallelization can

also increase service quality either by allowing a larger number of requests to be routed within

reasonable computation time, or by allowing the acceptance of new service requests much later,

as in transportation on demand systems.

The availability of parallel computers can be exploited to accelerate the computationally

intensive phases of the tabu search heuristic, to maintain different search paths in parallel or to
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tackle smaller subproblems through decomposition of the original problem.

In the first case, one processor typically runs the tabu search and asks other processors to

perform computationally intensive subtasks, like generating and evaluating the neighborhood of the

current solution. A high degree of synchronization is required to implement this type of parallelism.

Illustrative examples may be found in Crainicet al. (1995), Garciaet al.(1994), Taillard (1990,

1991, 1994). An alternative approach, exploiting the fine-grained parallelism of a Connection

Machine, is reported in Chakrapani and Skorin-Kapov (1993).

In the second case, multiple processors maintain many search threads (paths) in parallel. Each

tabu search process starts from a different initial solution or uses a distinctive set of parameter values

to explore a particular region of the search space. In this approach, the processors are much less

tightly coupled. A certain degree of synchronization is required when information is periodically

shared through a central processor to reinitialize the search processes (Maleket al., 1989; Rego

and Roucairol, 1995; Taillard, 1990, 1991, 1994). However, the implementation can be mostly

asynchronous, with processors communicating through a common repository that contains updated

information about the search. The processors get information from or put information in this

repository at any time along their respective search path (Crainicet al., 1993b).

In the third case, the main problem is decomposed into a number of smaller subproblems, each

subproblem being solved by a different tabu search process. This approach is proposed in Taillard

(1993) in the context of vehicle routing. Note that a classification scheme for parallel tabu search

approaches may be found in Crainicet al. (1993a).

In the following, Section 2 first introduces our tabu search approach to the VRPTW (Taillard

et al., 1995). Then, Section 3 explains how parallelism is exploited to accelerate and improve the

search. Section 4 illustrates the benefits of the parallel implementation over a sequential one using

benchmark problems. Finally, Section 5 provides concluding remarks.
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2. The problem-solving methodology

Our tabu search heuristic follows the general guidelines provided in Glover (1989, 1990).

However, it is embedded within an adaptive memory problem-solving methodology (Rochat and

Taillard, 1995) which can be summarized as follows:

Construct I different solutions with a stochastic insertion heuristic.

Apply the tabu search heuristic to each solution and store the resulting routes in the adaptive

memory.

While the stopping criterion is not met do:

Construct an initial solution from the routes found in the adaptive memory, and set this

solution as the current solution.

Improve the current solution using tabu search.

Store the routes of the current solution in the adaptive memory.

Apply a postoptimization procedure to each individual route of the best solution found.

Thus, a simple insertion heuristic provides the first starting solutions. The routes produced

by the tabu search from these initial solutions are then stored in the adaptive memory. As the

algorithm proceeds, the routes of the best solutions produced are kept in this memory to provide

a means to construct new starting solutions of high quality for the tabu search (through selection

and combination of routes stored in the memory). The algorithm stops when a certain number of

solutions have been constructed from the adaptive memory.

This problem-solving scheme lends itsef naturally to parallel implementations. First, many

tabu search processes can run concurrently using different initial solutions constructed from the

adaptive memory. Second, parallelism can be exploited through the decomposition/reconstruction

mechanism that partitions a problem into a number of subproblems.

In the following, the main components of this algorithm are briefly introduced (note that a
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complete description may be found in Taillardet al., 1995). Section 3 will then focus on the

parallel issues.

2.1 Initialization

A randomized insertion heuristic constructs the first I starting solutions. This heuristic works as

follows. First, a certain number of seed customers are selected to initialize a set of routes (with one

seed customer associated with each route). Then, the remaining unrouted customers are inserted

one by one into these routes in a random order. The insertion location for a given customer is

chosen by minimizing a weighted sum of detour and service delay (Solomon, 1987).

2.2 The adaptive memory

The adaptive memory contains routes associated with the best solutions produced during the

search and is used to provide new starting solutions for the tabu search. This is done through

selection and combination of routes found in the memory. This way of combining components

of different solutions to create a new solution is reminiscent of the crossover operators of genetic

algorithms (Holland, 1975). However, the number of "parent" solutions is generally greater than

two in our case.

The route selection process for creating a new solution is probabilistically biased in favor of

the best routes in memory. That is, routes associated with better solutions have a higher probability

of being included in the new solution. Once the first route is selected, the routes with one or more

customers in common with this route are excluded from the selection process. Then, a second

route is selected among the remaining routes. This procedure is repeated until the set of selected

routes services all customers or until no admissible routes are found in memory. In the latter

case, Solomon’s I1 heuristic (Solomon, 1987) is applied to insert the remaining customers. If

this insertion procedure cannot accommodate all customers, an additional route is created for the

remaining unrouted customers.

The routes of any new solution produced by the tabu search are kept if the adaptive memory is
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not filled yet. Otherwise, the new solution must be better than the worst solution found in memory.

In this case, the routes associated with the worst solution are replaced by the new routes.

2.3 Decomposition/reconstruction (D&R)

Each starting solution is partitioned into� disjoint subsets of routes, with each subset or

subproblem being processed by a different tabu search (Taillard, 1993). When every subproblem

is solved, the new routes are simply merged together to form the new current solution. The

decomposition is based on the polar angle associated with the center of gravity of each route.

Using these polar angles, the domain is partitioned into sectors that approximately contain the same

number of routes.

� cycles of decomposition/reconstruction take place before the final solution is sent to the

adaptive memory. At each cycle, the decomposition (i.e., the subset of routes in each subproblem)

changes by choosing a different starting angle for constructing the sectors. Note that the solution

always improves from one D&R cycle to the next because the solution produced by the tabu search

at a given cycle is used to start the next cycle.

2.4 Tabu search

Each tabu search process is applied to the subset of routes produced through the decomposition

procedure. This tabu search can be summarized as follows:

Set the current solution to the initial subset of routes.

While the stopping criterion is not met do:

Generate the neighborhood of the current solution.

Select the best (non tabu) solution in this neighborhood and set it as the new current solution.

If the current solution is better than the best known solution then set the best known solution

to this solution;

if the current solution is a local optimum, reorder the customers within each route using
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Solomon’s I1 insertion heuristic.

Update the tabu list.

Return the best known solution

The main components of this tabu search are now briefly introduced:

(a) Objective

One important characteristic of the tabu search is its ability to explore solutions that violate

the upper bound of the time windows. In such a case, a penalty for lateness is incurred.

Accordingly, the objective to be minimized is:

����� �����	
� � ��

��
���

����	����


where	 is the number of customers andlatenessi is the lateness at customer�. The weighting

parameter� associated with the penalty is fixed. In the experiments of Section 4, where the

benchmark problems are of the hard time window type, this parameter was set to 100 to drive

the search to feasible regions.

(b) Stopping criterion

The search stops after a maximum number of iterations. This number increases from one D&R

cycle to the next, according to the following formula:

��

�
� �

��� �

�

�
�

In this formula,� and� are parameters and�� is the current D&R cycle,�� � �
 ���
 �� In

the experiments of Section 4,� and � are set to 30 and 3, respectively, and there are� � 6

cycles. Hence, 30 iterations are performed during the first D&R cycle. This number increases

to 40, 50, 60, 70 and 80 iterations during the second, third, fourth, fifth and sixth D&R cycle,

respectively (for a total of 330 iterations).

(c) Neighborhood

The tabu search exploits a neighborhood structure specifically designed for problems with
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time windows. The method for generating the neighborhood, called the CROSS exchange, is

illustrated in Figure 1. In this figure, the black square stands for the depot and the white circles

are customers along the routes (note that the depot is duplicated at the start and at the end of

a route). First, the two edges���
�
�

�
� and ���
 � �

�
� are removed from the first route while

the edges���
�
�

�
� and ���
 � �

�
� are removed from the second route. Then, the two segments

� �

�
� �� and� �

�
� ��, which may contain an arbitrary number of customers, are swapped by

introducing the new edges���
�
�

�
�
 ���
 � �

�
�, ���
�

�

�
� and ���
 � �

�
�.

The 2-opt* (Potvin and Rousseau, 1995) and the Or-opt (Or, 1976) are special cases of this

operator. The 2-opt* only exchanges two edges taken from two different routes, and is obtained

when�� and�� are directly connected to the depot. An Or-opt exchange moves a sequence of

three consecutive customers or less from one route to another. It can be obtained, for example,

by setting�� � �� and� �

�
� � �

�
so that an empty segment is removed from the second route.

Since the sequence removed from the first route must contain three customers at most,�� is

either� �

�
or the first successor of� �

�
or the second successor of� �

�
. In a few cases, a CROSS

exchange can lead to the removal of an entire route. For example, if� �

�
is the first customer

and�� is the last customer on the first route, while�� � �� and� �

�
� � �

�
, the first route is

entirely inserted between�� and� �

�
.

The orientation of the routes is preserved by a CROSS exchange, which is a nice feature for

problems with time windows. Furthermore, by selecting the exchange that leads to the largest

improvement to the current solution, the swapping of segments of routes that are close from a

spatial and temporal point of view is favored.
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Figure 1. The CROSS exchange

One drawback is the complexity of this method. Assuming that n customers are evenly

distributed among� routes, the complexity of the method is�
�
�
�

�
�

�
(Taillard et al., 1995).

This neighborhood being quite large, simplification and approximation procedures are proposed

in (Taillard et al., 1995) to reduce its size and speed up its evaluation without compromising

solution quality.

Exchanges that apply to a single route are also considered and are similar to the ones defined on

a pair of routes. Namely, two edges are removed from a given route, and the segment between

the two edges is moved at another locationwithin the same route. This approach generalizes

the Or-opt heuristic (Or, 1976), by allowing the relocation of segments of any arbitrary length.

(d) Tabu list

The tabu list is based on the objective value. This value is always an integer, because the real

distances were multiplied by��� and rounded to the nearest integer. For a tabu list of length

� , the current objective value (modulo� ) corresponds to the entry whose tabu status must
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be established. Obviously, this approach can filter out legitimate solutions. For example, two

solutions will "collide" at the same location within the list if their objective values differ by a

multiple of � . However, the list is large enough so that such an occurrence is very unlikely.

Note also that the tabu tenure is set to the number of iterations divided by 2.

(e) Diversification

Diversification is incorporated into the tabu search by penalizing frequently performed CROSS

exchanges (Taillardet al., 1995). Due to the penalty, these exchanges are ignored when the

neighborhood of the current solution is explored, thus driving the search in new regions of

the search space.

(f) Intensification

The customers within each individual route are reordered when a new best local optimum is

found. This reordering is based on Solomon’s I1 insertion heuristic (Solomon, 1987). In our

implementation, Solomon’s heuristic is applied 20 times with different parameter settings, and

the best route is kept at the end. This strategy can be seen as a form of intensification in the

neighborhood of an elite solution. Note that the original route is restored if the new route does

not contain all customers (due to the hard time window at the depot) or if the new route is

worse than the original route.

2.5 Postoptimization of each individual route

Each individual route in the final solution produced by our algorithm is optimized with a

specialized heuristic developed for the TSP with time windows (Gendreauet al., 1995). This method

is an adaptation of the GENIUS heuristic, originally devised for the classical TSP (Gendreauet

al., 1992). The postoptimization procedure only slightly improves the total distance of the final

solution (the improvement is typically much less than 1% on average), but it is not computationally

expensive as it runs for only a few seconds.
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3. Parallelization

When one is faced with the task of selecting an overall parallelization approach for any

algorithm, the nature of the parallel computing platform on which the algorithm will run is a

critical factor to account for. In our case, the computing environment is a network of workstations

connected with medium-speed links (a few megabits per second). It is thus a coarse grain, loosely

connected architecture and the parallel version of our algorithm was designed accordingly. In

an environment with a finer granularity a more standard parallelization technique based on loops

decomposition would almost certainly be more effective. In particular, it would speed up the

neighborhood evaluation which is by far the most time-consuming portion of the algorithm, with

its four levels of embedded loops.

A natural way to parallelize adaptive memory algorithms is a master-slave scheme in which

the master process manages the adaptive memory and generates solutions from it; these solutions

are then transmitted to slave processes that improve them by performing tabu search and return

the best solutions found to the master. Apart from its low communication overhead, this scheme

has one main advantage: it induces a multi-thread search strategy in which several distinct search

paths are followed in parallel. Computational experiments in other settings (see, for instance,

Crainic et al., 1993a, 1995) have shown that multi-thread search often produces better solutions

than single-thread approaches, due to a higher level of search diversification.

The decomposition/reconstruction feature of our VRPTW algorithm (see subsection 2.3) allows

for another level of parallelization since the subproblems created by each decomposition can be

allocated to different processors. Our parallelization approach thus combines the master-slave

scheme described aboved with this decomposition/reconstruction procedure to yield a two-level

parallel organization. This allows for a higher degree of parallelization, as well as for a better

control of the processor load.
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The implementation involves the following processes:

– 1 Manager process that manages the adaptive memory and creates starting solutions for the

decomposition procedure.

– � Decomposition processes, each of which corresponds to a distinct search thread; these

processes decompose the problem into subproblems.

– 1 Dispatcher process that dispatches the work equally among processors.

– � Tabu processes that apply tabu search to subproblems.

– � Initialization processes that generate the first initial solutions using the modified Solomon’s

procedure described in subsection 2.1.

The Manager, Decomposition and Dispatcher processes require a computing time that is

negligible in regard to other processes. They may thus be located on the same processor. In

our implementations, a dedicated machine is often used to run these processes.

The most computationally expensive processes are the tabu searches and, in the first phase of

the algorithm, the processes that create the initial solutions. It is thus natural to create as many

Tabu processes as there are available processors (after allocating the first processor to the other

processes). TheInitialization processes can run on the same processors as the tabu search processes.

Hence, our implementation uses a total of�+1 processors.

In order to balance the processor workload during the initialization phase of the algorithm, it is

best to evenly distribute the� Initialization processes; this implies that� should be a multiple of

� . Similarly, during the tabu search phase, a full decomposition/reconstruction cycle for all search

threads requires solving� � � subproblems;� � � should thus also be a multiple of� . In our

tests, we have used�= 4, 8, 16,�= 16, and� � � = � .

Figure 2 illustrates our parallelization approach; it shows all the processes and their depen-

dencies: in this figure, the links represent the exchange of messages between processes. We now

describe more precisely each of the processes.
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Adaptive
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Decomposition

D D D D

Dispatcher
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Tabu Searches

Figure 2. Organization of the parallel search

Process Manager

Read problem data (from keyboard, file, etc.).

Send these data to the IInitialization processes.

Repeat I times:
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Wait for an initial solution.

Store this solution in the adaptive memory.

Send the initial solution to aDecomposition process.

While a stopping criterion is not met, repeat:

Wait for a solution from aDecomposition process.

Insert this solution in the adaptive memory.

Create a solution from routes found in the adaptive memory.

Send this starting solution to aDecomposition process (the one that has sent the last solution).

Post-optimize the routes of the best solution found (the routes at the top of the adaptive memory).

Write the post-optimized solution.

Process Initialization

Receive problem data from theManager process.

Generate an initial solution using the modified Solomon’s procedure(see 2.1).

Send this solution to theManager process.

Process Decomposition

Wait for a starting solution from theManager process.

Repeat	 times:

Decompose the current solution into� subproblems.

Send� resolution requests to theDispatcher process.

Wait for the� solutions to the subproblems.

Construct a complete solution by merging the� solutions of the subproblems.

Send the last complete solution constructed to theManager process.
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Process Dispatcher

Set tofree the label associated with eachTabu process.

Initialize the queue of waiting work to the empty set.

Loop:

Wait for a message.

If the message is a resolution request from aDecomposition process, insert the request in the

queue.

If the message is a subproblem solution, forward it to the appropriateDecomposition process

and label theTabu process that has sent the message tofree.

While there is a freeTabu process and the queue is not empty, repeat:

Remove a resolution request from the queue.

Send this request to a freeTabu process.

Label this process asworking.

Process Tabu

Loop:

Wait for a resolution request from theDispatcher process.

Solve this subproblem using tabu search(see 2.4).

Send the solution to theDispatcher process.

To simplify the description of the processes, we have not included the creation, identification,

destruction, etc. of processes. Moreover, in our current implementation, all messages go through

theManager process which is the only process directly connected to the screen and keyboard. This

was done for convenience reasons, in order to allow for an easy monitoring of the algorithm during

its development. As the total number of messages exchanged is low, this creates no difficulties,
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but should the flow of information increase (e.g., when the number of processes is large), it would

be better to adopt the communication scheme depicted in Figure 2.

4. Computational results

The proposed parallel heuristic was implemented on a network of seventeen SUN Sparc 5

workstations. Each process was programmed in C++ and process communications were handled

by the Parallel Virtual Machine (PVM) software.

The heuristic was tested on the well-known VRPTW problems of Solomon (1987). This

benchmark is made up of 56 100–customer Euclidean problems, where customers locations are

distributed within a��
 ����� square and travel times between customers are equivalent to the

corresponding Euclidean distances. Six problem sets are defined, namely R1, R2, C1, C2, RC1 and

RC2. The customers are uniformly distributed in the problems of type R, clustered in groups in

those of type C, and mixed in problems of type RC. Furthermore, the time window is narrow at

the central depot for problems of type 1, so that many routes are required to service all customers.

Conversely, this time window is large for problems of type 2, so that only a few routes are required

to service all customers. Finally, a fixed service time, set at 90 time units for problems of type

C and 10 time units for problems of types R and RC, is incurred at each customer location. To

avoid precision problems during computations, the real Euclidean distances were multiplied by���

and rounded to the nearest integer (the feasibility of solutions produced by the algorithm was later

checked using real, double-precision distances).

Because the solutions of type 2 problems are made up of only a few routes, it is not possible

to decompose them into subproblems. We thus decided to restrict our tests to the 29 type 1

problems which allow the two-level parallelization scheme described in section 3. Our tests were

aimed at determining the effectiveness of our parallelization approach rather than at obtaining the

best possible solutions. For this reason, we kept the parameter settings of the sequential heuristic
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of Taillard et al. (1995) and the number of vehicles was fixed for each problem. In this way,

meaningful comparisons could be performed on the basis of the overall distance travelled.

In our tests, the first goal was to assess the quality of the solutions produced by the parallel

scheme for a fixed amount of computing effort. To do this, we used the number of calls to

the adaptive memory as a measure of the computing effort and we solved all problems with 1

(sequential procedure), 2, 4 and 8 search threads. In each case, problems were decomposed into

two subproblems and we therefore used 4, 8 and 16 processors to run theTabu processes. The

average objective value over the 29 problems is plotted against the number of calls to the adaptive

memory in Figure 3 for all four cases. As can be seen from this plot, the quality of the solutions

obtained is, for all practical purposes, insensitive to the number of search threads. Considering

the fact that Taillardet al.’s (1995) sequential procedure is one of the best heuristics currently

available for solving the VRPTW, this is an encouraging result. Among other things, it implies

that, by resorting to parallelism, one can greatly shorten the computing times required to solve

these difficult problems without incurring a degradation in the quality of the solutions produced.

An interesting side effect of this insensitivity of the results to the number of search threads is that one

can use the number of calls to the adaptive memory as a proxy to solution quality when assessing

the efficiency of our parallel implementation. We now turn our attention to this important topic.

Wallclock times for the four groups of runs were recorded after each call to the adaptive

memory. These times (in seconds) are reported in Table 1 for 20, 40 and 80 calls to the memory.

Table 1 Wallclock times in seconds for various numbers of processors

Number of calls to the adaptive memory
Number of processors

Number of search

threads 20 40 80

1 1 2645 4031 6796

5 2 877 1324 2223

9 4 459 691 1146

17 8 239 363 587
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One of the main difficulties in coming up with a correct assessment of the efficiency of our

parallel implementation is that the processor on which theManager, the Dispatcher and the

Decomposition processes are running (the “controller”) does not have as much work to do as

the others; in fact, it is idle most of the time. Because of this, efficiency measures based on the

total number of processors are deceptive and provide very little insight on the performance of the

implementation. This led us to use the number of “slave” processors (the processors running the

Initialization andTabu processes) as the basis for efficiency measures (i.e.,sequential time/(parallel

time� number of processors)). These are plotted in Figure 4. As observed in this figure, the

efficiency of the implementation degrades slightly with the number of processors. This is due to

the fact that parts of the algorithm do not run in parallel and that slave processors waste more

time waiting for the controller when the number of slaves increases. An intriguing feature of the

efficiency curves is the presence of “see-saw” patterns displaying peaks located at multiples of

the number of search threads. This is easily explained by the fact that the threads are somewhat

synchronized: the� Decomposition processes reconstruct their solutions and send them to the

Manager almost simultaneously. As time passes, the threads become less and less synchronized;

this reduces bottlenecks at the level of the controller and slave processors waste less time waiting

for a new subproblem to solve. This explains why a decrease in the amplitude of the patterns and

a slight increase in efficiency with time is observed.

Efficiency curves with respect to the total number of processors (see Figure 5) show that

efficiency is better for a larger number of processors. This is a clear indication of the under-

utilization of the controller. This also suggests that one may consider moving the processes resident

on the controller to one of the slaves. When this is done, one must be careful to give high-priority

to the processes that were previously on the controller, for otherwise a significant degradation

in performance can take place. In such a situation, the efficiency may even decrease when the

processes are moved. This is illustrated in Figure 6 where the efficiency for various configurations
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with 16 and 17 processors is plotted. In this figure, the upper bound curve corresponds to the

efficiency of the 17–processor implementation measured as if 16 processors were used: this is

indeed the best we can possibly do since it corresponds to a situation where the moved processes

require no CPU time at all.

From this figure, it can be observed that when high-priority is given to the controlling processes,

it is possible to achieve a quite satisfactory performance. Figure 7 illustrates the effects of doing

away with the controller for smaller numbers of slave processors.
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Figure 3. Objective function value evolution for different number of search threads
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5. Conclusion

A tabu search heuristic for the VRPTW has been developed and implemented on a network

of Sparc workstations. Results on benchmark problems show that parallelization of the original

sequential algorithm did not reduce solution quality, for the same amount of computations, while

providing substantial speed-ups.

Parallel implementations, such as the one described in this paper, could be useful in practice

when routes must be produced within a short time span. Another important class of applications

include dynamic settings, like vehicle dispatching, where new service requests occur in real-time

and must be inserted within the planned routes of a fleet of vehicles in movement. The time

available to dispatch a request to a vehicle is typically limited in these applications. Hence, the

parallel tabu search could be used to improve the planned routes of the vehicles between meaningful

events, like the arrival of a vehicle at a customer location or the occurrence of a new request. In the

first case, the best solution in the adaptive memory would indicate the vehicle’s next destination.

Obviously, the other solutions stored in memory would need to be modified accordingly. In the

second case, the new request could be quickly inserted within each solution found in the adaptive

memory. In this way, the starting solutions provided to the tabu search for further improvement

would contain the new request.

Clearly, management of the solutions in such a dynamic setting (e.g., discarding customers that

have already been serviced, modifying the routes to account for the occurrence a new request, etc.)

asks for a certain number of adjustments to our current problem-solving methodology. This is the

line of research that we are currently investigating.

22



References

Baker E.K. and Schaffer J.R. (1988) Solution Improvement Heuristics for the Vehicle Routing and

Scheduling Problem with Time Window Constraints.American Journal of Mathematical and

Management Sciences, 6, 261-300.

Blanton J.L. and Wainwright R.L. (1993) Multiple Vehicle Routing with Time and Capacity

Constraints using Genetic Algorithms. In Forrest S. (Ed)Proc. of the Fifth International Conf.

on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 452-459.

Chakrapani J. and Skorin-Kapov J. (1993) Massively Parallel Tabu Search for the Quadratic

Assignment Problem.Annals of Operations Research, 41, 327-341.

Chiang W.C. and Russell R.A. (1993) Hybrid Heuristics for the Vehicle Routing Problem with Time

Windows. Working paper, Department of Quantitative Methods, University of Tulsa, Tulsa, OK.

Forthcoming inAnnals of Operations Research.

Crainic T.G., Toulouse M. and Gendreau M. (1993a) Towards a Taxonomy of Parallel Tabu Search

Algorithms. Technical report CRT-933, Centre de recherche sur les transports, Université de
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Montréal, Montŕeal, Canada. Forthcoming inORSA Journal on Computing.

Potvin J.Y. and Rousseau J.M. (1993) A Parallel Route Building Algorithm for the Vehicle Routing

and Scheduling Problem with Time Windows.European Journal of Operational Research, 66,

331- 340.

Potvin J.Y. and Rousseau J.M. (1995) An Exchange Heuristic for Routing Problems with Time

Windows. Forthcoming inJournal of the Operational Research Society.

Rego C. and Roucairol C. (1995) A Parallel Tabu Search Algorithm using Ejection Chains for the

VRP. In Proc. of the Metaheuristics International Conf., Breckenridge, CO, July, pp. 253-259.

Rochat Y. and Taillard E. (1995) Probabilistic Diversification and Intensification in Local Search for

Vehicle Routing. Technical report CRT-95-13, Centre de recherche sur les transports, Universit´e
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