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Abstract

This article review few statistical tests for comparing proportions.
These statistical tests are presented in a comprehensive way, so that OR
practitionners can easily understand them and use them correctly. A non-
parametric test is developped and shown to be more powerful than other
classical tests of the literature.

1 Introduction

In operations research, comparing two solution methods each other is frequently
needed. This is in particular the case when one wants to tune the parameters of
an algorithm. In this case, one wants to know wether a given parameter setting
is better than another one. In practice, for identifying the best setting, there
are several approaches. Without being exhaustive common techniques are the
following :

1. In the context of optimization, a set of problem instances is solved with
both methods that have to be compared. Then, the average, standard
deviation (an eventually other measures such as median, minimum, max-
imum, skewness, kurtosis, etc.) of the solution values obtained are com-
puted.

2. In the context of solving problems exactly, the average, standard deviation,
etc. of the computational effort needed to obtain the optimum solution
are computed.

3. The maximual computational effort is fixed, as well as a goal reach. The
number of times each method reach the goal is counted.

1



Naturally, there are many variants and other statistics that can be collected.
In the first comparison technique, the computational effort is not taken into
account. Either the last is very small, or both methods requires approximately
the same computational effort.

Very often in practice, the measures that are computed in the first and
second comparison techniques quoted above are very primitive. Sometimes they
are limited to the only average. This is evidently very insufficient for stating
that a solution method is statistically better than another one.

When the standard deviation is computed in addition to the average, it is
possible to perform a valid statistical test, as soon as the hypothesis of normal
distribution of the data is satisfied. The last hypothesis is far from being always
satisfied. For instance, an optimization technique that frequently finds globally
optimal solutions has a distribution with a truncated queue, since it is impos-
sible to go beyond the optimum. This situation is illustrated on Figure 1 that
provides the empirical distributions of solutions values obtained for two non-
deterministic optimization techniques (Robust taboo search[Taillard(1991)] and
POPMUSIC[Taillard & Voss(2002)]) for a problem instance of turbine runner
balancing.

This figure shows clearly that the distributions are asymetrical, left trun-
cated (this is a minimization problem; the vertical axis is placed on a lower
bound to the optimum) and that both distribution functions are different.
Therefore, the estimation of a parameter (the average) of an a-priori unknown
distribution function is not evident. Moreover, the probability that the esti-
mation of the average for standing between two bounds should be given, which
seems to be a difficult task to be undertaken.

For this reason, nonparametric statistics have been developped. Indeed, they
are based on weaker hypothesis. When the third comparison approach quoted
above is used (counting the number of successes), the sign test[Arbuthnott(1710)]
(see, e.g.[Conover(1999)]) could be convenient. The present article develops a
nonparametric statistical test that is more powerful than the sign test for com-
paring proportions. This test is perhaps a new one, since it is not developped in
the literature consulted, although it cannot be excluded that it appears some-
where, since there is a huge amount of articles dealing with contingency tables.

2 Comparing proportions

The central problem treated by the present article is the following: Let us
suppose that two populations A and B are governed by binomial distributions,
i.e. the probability of success of an occurence of A (respectively: B) is given
by pa (respectively: pb). From the OR user point of view, it is considered
that the result of the execution of a method is a random variable. Indeed,
either the method is nondeterministic which is typically the case of simulated
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Figure 1: Empirical distributions of solution values obtained by two non-
deterministic methods (POPMUSIC and taboo), obtained by solving a large
number of times the same problem instance.
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annealing, or the problem data can be viewed as random, the user being not
able to influence them. So, it is supposed that Method A (respectively: Method
B) has a probability of pa (respectively: pb) to be successfull.

The user would like to use the method which success probability is the higher.
Ideally, the user wants to know pa and pb to make a choice. Unfortunately, these
probabilities are unknown. The user could try to estimate them empirically.
In the following, it is considered that the user has proceeded to the following
experiment:

Sampling Method A (respectively Method B) has been run na (respectively:
nb) times and was successfull a (respectively: b) times.

2.1 Classical parametric approaches

The classical approach (based on the central limit theorem) for comparing two
proportions is the following: Let Xa (respectively Xb) be the random variable
associated to the number of successes of Method A (respectively: Method B).
Then, the average of the random variable D = Xa/na − Xb/nb is d = pa − pb

and the variance of D is σ2
D = pa · qa/na + pb · qb/nb where qa = 1 − pa and

qb = 1 − pb. If na and nb are large enough (an empirical rule often used is
min(na · pa · qa, nb · pb · qb) > 5), then D is approximately normally distributed.

In order to compare the success rates of methods A and B, one makes the
following

Null hypothesis (one-sided test) Probability pa is lower or equal to prob-
ability pb, i.e. d = pa − pb ≤ 0.

Alternative hypothesis pa > pb.

We recall here that the principle of an hypothesis statistical test is to es-
timate the probability of the observations done in case the null hypothesis is
true. If this probability is higher than a significance level α then it cannot be
excluded that the null hypothesis is true. α is set to a small value, typically
0.05 or 0.01. If the probability of the null hypothesis is lower than α, then the
Alternative hypothesis (the logical negation of the null hypothesis) is accepted.
In conducting an hypothesis statistical test, the null hypothesis is chosen in such
a way that it is felt not to be true. So, in the above mentionned hypothesis, it
can be assumed that the experiment has shown a/na > b/nb. Note that there is
another symmetrical one-sided test with null hypothesis pb−pa ≤ 0. This other
test is equivalent to those above with roles of samples A and B inverted. Since
probabilities pa and pb are unknown, it is searched for probabilities that max-
imize the probability of null hypothesis to be true. This maximum occurs for
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p̂a = p̂b = p̂. It is considered that one can take the pooled estimate: p̂ = a+b
na+nb

.
The value observed for d is given by d̂ = a/na − b/nb and the variance can be
estimated by ŝ2 = p̂ · q̂/na + p̂ · q̂/nb, where q̂ = 1 − p̂.

The distribution of the null hypothesis for large na and nb is N(0, σ2
D). So,

the null hypothesis is not plausible, at significance level α if Φ(d̂/ŝ) < α, where
Φ is the cumulative normal distribution. In practice, the null hypothesis is
rejected at significance levels :

• α = 5% if d̂/ŝ > 1.645

• α = 1% if d̂/ŝ > 2.326

• α = 0.1% if d̂/ŝ > 3.09

The above mentionned statistical test is a simplification of the “Chi-square
Test for Difference in Probabilities, 2 × 2 contigency table” [Conover(1999)].
Indeed, in case of the two-sided test :

Null hypothesis pa = pb

Alternative hypothesis pa �= pb

Then it can be shown that, for large na and nb, the distribution of the test
statistic :

T =
(na + nb) · (ana − bnb)2

na · nb · (a + b) · (na + nb − a − b)

i.e. ( d̂
ŝ )2, can be approximated, under the null hypothesis, by the Chi-square

distribution with 1 degree of freedom.

In practice, the null hypothesis is rejected (and the alternative hypothesis
pa �= pb is accepted) at significance levels :

• α = 5% if T > 3.841

• α = 1% if T > 6.635

• α = 0.1% if T > 10.83

The interested reader may find more information about these approaches in
[Cramér(1946), Harkness & Katz(1964), Ott & Free(1969)].
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2.2 McNemar test for signifiance of changes

In many situations, both samples are of same size since one tries to test the
effect of a treatment by making an experience before and an experience after the
treatment. So, one has pairwise data that represents the condition of the subject
before and after the treatment. This situation occurs in the operations research
when one wants to know wether Method A is signifiantly more successful than
Method B by running both methods on the same data set.

Let a′ be the number of times pair (success, failure) has been observed (i.e.
success of Method A and failure for Method B) and b′ be the number of times
pair (failure, success) has been observed over the n′

a = n′
b = n observations.

Thus experiments that provide the same result for both methods (success, suc-
cess) or (failure, failure) are eliminated.

Null hypothesis

• Two-sided test : P (failure, success) = P (success, failure) = 1/2

• One-sided test : P (failure, success) ≤ P (success, failure)

Alternative hypothesis

• Two-sided test : P (failure, success) �= P (success, failure)

• One-sided test : P (failure, success) > P (success, failure)

Decision rule The null hypothesis is rejected at significance level α if :

• Two-sided test : 1
2n ·∑a′

i=0 Cn
i < α/2 or if 1

2n ·∑a′

i=0 Cn
i > 1− α/2, where

Cn
i = n!

i!·(n−i)!

• One-sided test : 1
2n · ∑a′

i=0 Cn
i < α

The advantage of McNemar test is that it can be applied to any sample
size, since it is based on the binomial distribution and not on the central limit
theorem.

3 A new test for comparing proportions

The drawback of McNemar test is that pairwise data are required. In practice
it is not always possible to have pairwise data. For instance, let us suppose that
Method B was run on nb problem instances randomly generated. The rules for
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problem generation are perfectly known, but the nb instances themselves have
not been published. So, the designer of Method A, who wants to compare his
method to Method B, can run his method as many times as he wants (na times).
However, if the code of Method B is not available, he only knows that Method
B was successfull b times over nb runs. If nb is not large, then the standard
test cannot be validly applied. Moreover, if the designer of Method A chooses
nb = na, then McNemar test might be not significant, even if Method B was
always sucessfull (b = nb), whilst he could choose a larger value for na (and
thus getting significant differences). Therefore, we developped a new statistical
test for comparing proportions. In the remaining of the paper we make the
following :

Assumptions

• The size of sample A is na ; a successes and na − a failures have been
observed.

• The size of sample B is nb ; b successes and nb − b failures have been
observed.

• Observations are mutually independent.

• The probability pa (respectively: pb) to have a success for population A
(respectively: B) doesn’t depends on the observations. Either pa < pb or
pb < pa or pa = pb for all observations (unbiased sample).

3.1 Two-sided test

The two-sided test is based on the following hypothesis :

Null hypothesis pa = pb = p

Alternative hypothesis pa �= pb

Under the null hypothesis, the probability T to observe a successes in a
sample of size na and b successes in a sample of size nb is given by :

T =
Cna

a · pa · (1 − p)na−a · Cnb

b · pb · (1 − p)nb−b

Cna+nb

a+b · pa+b · (1 − p)na+nb−a−b
=

Cna
a · Cnb

b

Cna+nb

a+b

This probability does not depend on p, but only on na, nb, a, b. Thus, T is
very simple to compute.
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Decision rule The null hypothesis (pa = pb) is rejected at significance level
α if T < α.

The test is in relation with Fishers’s exact test ([Finney(1948), Robertson(1960)],
see also [Gail & Gart(1973), Garside & Mack(1976), McDonald et al.(1977)])

3.2 One-sided test

For this test, let us suppose that the user wants to show that sample A has
a higher success proportion than population B (e.g. the user has observed
a/na > b/nb). This can be assumed without loss of generality since the role of
samples A and B can be reversed if the test is wanted to be conducted in the
other way.

Null hypothesis pa ≤ pb

Alternative hypothesis pa > pb

The probability S to observe a successes or more over na observations and

b successes or less over nb observations is given by :

S = (
na∑

i=a

Cna
i · pi

a · (1 − pa)
na−i)·(

b∑

j=0
Cnb

j · pj
b · (1 − pb)

nb−j)

This probability depends on proportions pa and pb which are unknown. Since the
null hypothesis is wanted to be rejected with the highest security, probability
S must be maximized over pa and pb, subject to the constrain that the null
hypothesis is satisfied, i.e. pa ≤ pb. It is clear that the maximum occurs for
pa = pb if a/na > b/nb.

Decision rule The null hypothesis is rejected at significance level α if :

Ŝ = max0<p<1(
na∑

i=a

b∑

j=0
Cna

i · Cnb
j · pi+j · (1 − p)na+nb−i−j) < α

3.2.1 Examples

Let us suppose that all na observations from the first sample where successes
and all nb observations from the second sample where failures (i.e. a = na and
b = 0). Supposing that both populations have the same probability p of success,
S = pna · (1 − p)0 · p0 · (1 − p)nb = pna · (1 − p)nb
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The probability p̂ that maximizes S is given by solving the equation :

dS

dp
= na · pna−1 · (1 − p)nb − nb · pna · (1 − p)nb−1 = 0

.

For the special case a = na and b = 0, the pooled estimate p̂ = a+b
na+nb

is therefore the value that maximizes S over p. For instance, if na = 3 and
nb = 2, S = 108/3125 < 5%. So a success rate of 3/3 is significantly higher
(with confidence level of 95%) than a success rate of 0/2.

Unfortunately, for arbitrary values of a, na, b and nb, the pooled estimate is
not the value that maximizes S over p. For instance, for a = 3, na = 4 b = 0
and nb = 3, S < 4/100 for p = 3/7 and S > 4/100 for p = 6−2

√
2

7 .

This means that testing if a rate of 3/4 is significantly higher than a rate
of 0/3 with a confidence level of 96% whould lead to an erroneous conclusion if
the pooled estimate is used.

Although the difference in S values for the above example is not very large,
the pooled estimate of p may underestimate by more than 1/3 the S value
regarding to the maximum of S over p. This is exemplified by a success rate of
4/4 compared to a success rate of 56/100. The pooled estimated would provide
a S value lower than 4.5% while there is a value of p that provides a value of S
near 6%.

3.2.2 Computation of decision rule

In general, the analytic expressions of p̂ and Ŝ are at least hard to be found in
practice. Therefore, we have numerically estimated Ŝ and provide in Table 1
(and, respectively, in Table 2), for various values of na and nb and for a signif-
icance level of 5% (respectively 1%), the most extreme couples (a, b) for which
it is not plausible that an a/na rate of successes is lower than a b/nb rate.

Reading the tables Due to the large number of combinations of possible
values for a, b, na, nb it is not possible to tabulate the Ŝ values. Therefore,
tables 1 and 2 only provide couples (a, b) for which a success rate ≥ a/n is
significantly higher than a success rate ≤ b/m. The reader might have observed
values of a and b that are not tabulated. Let us suppose that the observed
success rate of Method A is 6/10 and the observed success rate of Method B
is 1/9 (meaning that a = 6, na = 10, b = 1, nb = 9). In Table 1, entry
na = 10 and nb = 9 contains the couple (5,1), meaning that a 5/10 success rate
is significantly higher than a 1/9 success rate at 5% significance level. Since
the success rate 6/10 > 5/10 it can be deduced that Method A is significantly
better than Method B (at signficance level below 5% ).
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na
nb 2 3 4 5 6 7 8 9 10 11 12 13

2 (3,0) (4,0) (5,0) (5,0) (6,0) (7,0) (7,0) (8,0) (9,0) (9,0) (10,0)
3 (2,0) (3,0) (3,0) (4,0) (4,0) (5,0) (5,0) (6,0) (6,0) (7,0) (7,0) (8,0)
3 (5,1) (6,1) (7,1) (8,1) (8,1) (9,1) (10,1) (11,1) (12,1)
4 (2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0) (7,0)
4 (3,1) (4,1) (5,1) (5,1) (6,1) (7,1) (7,1) (8,1) (9,1) (9,1) (10,1)
4 (6,2) (7,2) (8,2) (9,2) (10,2) (11,2) (12,2) (12,2)
5 (2,0) (2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0)
5 (3,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1) (7,1) (8,1) (8,1) (9,1)
5 (4,2) (5,2) (6,2) (7,2) (7,2) (8,2) (9,2) (10,2) (10,2) (11,2)
5 (8,3) (9,3) (10,3) (11,3) (12,3) (13,3)
6 (2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0)
6 (2,1) (3,1) (3,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1) (7,1) (7,1) (8,1)
6 (3,2) (4,2) (5,2) (5,2) (6,2) (7,2) (7,2) (8,2) (9,2) (9,2) (10,2)
6 (5,3) (6,3) (7,3) (8,3) (9,3) (9,3) (10,3) (11,3) (12,3)
6 (10,4) (11,4) (12,4) (13,4)
7 (2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (5,0)
7 (2,1) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1) (7,1) (7,1)
7 (3,2) (4,2) (4,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (8,2) (9,2)
7 (4,3) (5,3) (6,3) (6,3) (7,3) (8,3) (9,3) (9,3) (10,3) (11,3)
7 (6,4) (7,4) (8,4) (9,4) (10,4) (10,4) (11,4) (12,4)
7 (11,5) (12,5) (13,5)
8 (2,0) (2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0)
8 (2,1) (3,1) (3,1) (3,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1) (6,1)
8 (3,2) (4,2) (4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (8,2)
8 (3,3) (4,3) (5,3) (5,3) (6,3) (7,3) (7,3) (8,3) (9,3) (9,3) (10,3)
8 (5,4) (6,4) (7,4) (8,4) (8,4) (9,4) (10,4) (10,4) (11,4)
8 (7,5) (8,5) (9,5) (10,5) (11,5) (12,5) (12,5)
8 (13,6)
9 (2,0) (2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0)
9 (2,1) (2,1) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1)
9 (2,2) (3,2) (3,2) (4,2) (4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2)
9 (3,3) (4,3) (4,3) (5,3) (6,3) (6,3) (7,3) (7,3) (8,3) (9,3) (9,3)
9 (4,4) (5,4) (6,4) (6,4) (7,4) (8,4) (8,4) (9,4) (10,4) (10,4)
9 (5,5) (6,5) (7,5) (8,5) (9,5) (9,5) (10,5) (11,5) (12,5)
9 (8,6) (9,6) (10,6) (11,6) (12,6) (13,6)
10 (2,0) (2,0) (2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0)
10 (2,1) (2,1) (3,1) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1)
10 (2,2) (3,2) (3,2) (4,2) (4,2) (5,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2)
10 (3,3) (4,3) (4,3) (5,3) (5,3) (6,3) (6,3) (7,3) (7,3) (8,3) (9,3)
10 (3,4) (4,4) (5,4) (5,4) (6,4) (7,4) (7,4) (8,4) (9,4) (9,4) (10,4)
10 (4,5) (5,5) (6,5) (7,5) (7,5) (8,5) (9,5) (9,5) (10,5) (11,5)
10 (6,6) (7,6) (8,6) (9,6) (10,6) (10,6) (11,6) (12,6)
10 (9,7) (10,7) (11,7) (12,7) (13,7)
11 (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (3,0) (4,0)
11 (2,1) (2,1) (3,1) (3,1) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (5,1)
11 (2,2) (3,2) (3,2) (4,2) (4,2) (4,2) (5,2) (5,2) (5,2) (6,2) (6,2) (7,2)
11 (3,3) (4,3) (4,3) (5,3) (5,3) (6,3) (6,3) (7,3) (7,3) (7,3) (8,3)
11 (3,4) (4,4) (5,4) (5,4) (6,4) (6,4) (7,4) (7,4) (8,4) (9,4) (9,4)
11 (4,5) (5,5) (6,5) (6,5) (7,5) (8,5) (8,5) (9,5) (10,5) (10,5)
11 (5,6) (6,6) (7,6) (8,6) (8,6) (9,6) (10,6) (11,6) (11,6)
11 (7,7) (8,7) (9,7) (10,7) (11,7) (11,7) (12,7)
11 (10,8) (11,8) (12,8) (13,8)
12 (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (3,0) (3,0)
12 (2,1) (2,1) (3,1) (3,1) (3,1) (3,1) (4,1) (4,1) (4,1) (4,1) (5,1) (5,1)
12 (2,2) (3,2) (3,2) (3,2) (4,2) (4,2) (4,2) (5,2) (5,2) (6,2) (6,2) (6,2)
12 (2,3) (3,3) (3,3) (4,3) (4,3) (5,3) (5,3) (6,3) (6,3) (7,3) (7,3) (8,3)
12 (3,4) (4,4) (4,4) (5,4) (5,4) (6,4) (7,4) (7,4) (8,4) (8,4) (9,4)
12 (3,5) (4,5) (5,5) (5,5) (6,5) (7,5) (7,5) (8,5) (8,5) (9,5) (10,5)
12 (4,6) (5,6) (6,6) (7,6) (7,6) (8,6) (9,6) (9,6) (10,6) (11,6)
12 (5,7) (6,7) (7,7) (8,7) (9,7) (9,7) (10,7) (11,7) (12,7)
12 (7,8) (8,8) (9,8) (10,8) (11,8) (12,8) (12,8)
12 (11,9) (12,9) (13,9)
13 (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (3,0)
13 (2,1) (2,1) (2,1) (3,1) (3,1) (3,1) (3,1) (4,1) (4,1) (4,1) (4,1) (5,1)
13 (2,2) (3,2) (3,2) (3,2) (4,2) (4,2) (4,2) (5,2) (5,2) (5,2) (6,2) (6,2)
13 (2,3) (3,3) (3,3) (4,3) (4,3) (5,3) (5,3) (5,3) (6,3) (6,3) (7,3) (7,3)
13 (3,4) (4,4) (4,4) (5,4) (5,4) (6,4) (6,4) (7,4) (7,4) (8,4) (8,4)
13 (3,5) (4,5) (5,5) (5,5) (6,5) (6,5) (7,5) (8,5) (8,5) (9,5) (9,5)
13 (4,6) (5,6) (6,6) (6,6) (7,6) (8,6) (8,6) (9,6) (10,6) (10,6)
13 (5,7) (6,7) (7,7) (7,7) (8,7) (9,7) (10,7) (10,7) (11,7)
13 (6,8) (7,8) (8,8) (9,8) (10,8) (10,8) (11,8) (12,8)
13 (8,9) (9,9) (10,9) (11,9) (12,9) (13,9)
13 (12,10) (13,10)

Table 1: Couples (a, b) for which a success rate ≥ a/n is significantly higher
than a success rate ≤ b/m, for a confidence level of 95%.
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na
nb 2 3 4 5 6 7 8 9 10 11 12 13

2 (7,0) (8,0) (9,0) (10,0) (11,0) (12,0) (12,0)
3 (4,0) (5,0) (6,0) (7,0) (7,0) (8,0) (9,0) (9,0) (10,0) (11,0)
3 (12,1) (13,1)
4 (3,0) (4,0) (5,0) (5,0) (6,0) (6,0) (7,0) (8,0) (8,0) (9,0) (9,0)
4 (6,1) (7,1) (8,1) (9,1) (10,1) (11,1) (11,1) (12,1)
5 (3,0) (4,0) (4,0) (5,0) (5,0) (6,0) (6,0) (7,0) (7,0) (8,0) (8,0)
5 (5,1) (6,1) (7,1) (7,1) (8,1) (9,1) (10,1) (10,1) (11,1)
5 (9,2) (10,2) (11,2) (12,2) (13,2)
6 (3,0) (3,0) (4,0) (4,0) (5,0) (5,0) (6,0) (6,0) (7,0) (7,0) (8,0)
6 (4,1) (5,1) (6,1) (6,1) (7,1) (8,1) (8,1) (9,1) (9,1) (10,1)
6 (6,2) (7,2) (8,2) (9,2) (10,2) (10,2) (11,2) (12,2)
6 (11,3) (12,3) (13,3)
7 (2,0) (3,0) (3,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0) (7,0) (7,0)
7 (4,1) (5,1) (5,1) (6,1) (6,1) (7,1) (8,1) (8,1) (9,1) (9,1)
7 (5,2) (6,2) (7,2) (8,2) (8,2) (9,2) (10,2) (10,2) (11,2)
7 (8,3) (9,3) (10,3) (11,3) (12,3) (12,3)
7 (13,4)
8 (2,0) (3,0) (3,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0) (6,0)
8 (3,1) (4,1) (4,1) (5,1) (6,1) (6,1) (7,1) (7,1) (8,1) (8,1) (9,1)
8 (4,2) (5,2) (6,2) (6,2) (7,2) (8,2) (8,2) (9,2) (10,2) (10,2)
8 (6,3) (7,3) (8,3) (9,3) (9,3) (10,3) (11,3) (12,3)
8 (9,4) (10,4) (11,4) (12,4) (13,4)
9 (2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0)
9 (3,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1) (7,1) (7,1) (8,1) (8,1)
9 (4,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (9,2) (9,2) (10,2)
9 (5,3) (6,3) (7,3) (8,3) (8,3) (9,3) (10,3) (10,3) (11,3)
9 (7,4) (8,4) (9,4) (10,4) (11,4) (11,4) (12,4)
9 (10,5) (11,5) (12,5) (13,5)
10 (2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0)
10 (3,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1) (7,1) (7,1) (8,1)
10 (4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (8,2) (8,2) (9,2) (9,2)
10 (5,3) (6,3) (7,3) (7,3) (8,3) (9,3) (9,3) (10,3) (10,3)
10 (6,4) (7,4) (8,4) (9,4) (9,4) (10,4) (11,4) (12,4)
10 (8,5) (9,5) (10,5) (11,5) (12,5) (13,5)
10 (12,6) (13,6)
11 (2,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (5,0)
11 (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1) (6,1) (7,1) (7,1)
11 (3,2) (4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (8,2) (9,2)
11 (4,3) (5,3) (6,3) (6,3) (7,3) (8,3) (8,3) (9,3) (9,3) (10,3)
11 (5,4) (6,4) (7,4) (8,4) (8,4) (9,4) (10,4) (10,4) (11,4)
11 (7,5) (8,5) (9,5) (10,5) (10,5) (11,5) (12,5)
11 (9,6) (10,6) (11,6) (12,6) (13,6)
11 (13,7)
12 (2,0) (2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0)
12 (3,1) (3,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1) (7,1) (7,1)
12 (3,2) (4,2) (4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (8,2)
12 (4,3) (5,3) (5,3) (6,3) (7,3) (7,3) (8,3) (8,3) (9,3) (9,3)
12 (5,4) (6,4) (7,4) (7,4) (8,4) (9,4) (9,4) (10,4) (11,4)
12 (6,5) (7,5) (8,5) (9,5) (9,5) (10,5) (11,5) (11,5)
12 (8,6) (9,6) (10,6) (11,6) (12,6) (12,6)
12 (10,7) (11,7) (12,7) (13,7)
13 (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (5,0) (5,0)
13 (2,1) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1) (6,1) (7,1)
13 (3,2) (4,2) (4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (7,2) (8,2)
13 (4,3) (5,3) (5,3) (6,3) (6,3) (7,3) (7,3) (8,3) (9,3) (9,3)
13 (4,4) (5,4) (6,4) (6,4) (7,4) (8,4) (8,4) (9,4) (9,4) (10,4)
13 (5,5) (6,5) (7,5) (8,5) (8,5) (9,5) (10,5) (10,5) (11,5)
13 (7,6) (8,6) (9,6) (10,6) (10,6) (11,6) (12,6)
13 (8,7) (9,7) (10,7) (11,7) (12,7) (13,7)
13 (11,8) (12,8) (13,8)
14 (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (4,0) (5,0)
14 (2,1) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1) (6,1)
14 (3,2) (4,2) (4,2) (5,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2)
14 (3,3) (4,3) (5,3) (5,3) (6,3) (6,3) (7,3) (7,3) (8,3) (8,3) (9,3)
14 (4,4) (5,4) (6,4) (6,4) (7,4) (7,4) (8,4) (9,4) (9,4) (10,4)
14 (5,5) (6,5) (7,5) (7,5) (8,5) (9,5) (9,5) (10,5) (11,5)
14 (6,6) (7,6) (8,6) (9,6) (9,6) (10,6) (11,6) (11,6)
14 (7,7) (8,7) (9,7) (10,7) (11,7) (11,7) (12,7)
14 (9,8) (10,8) (11,8) (12,8) (13,8)
14 (12,9) (13,9)
15 (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (5,0)
15 (2,1) (3,1) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1)
15 (3,2) (4,2) (4,2) (4,2) (5,2) (5,2) (6,2) (6,2) (6,2) (7,2) (7,2)
15 (3,3) (4,3) (4,3) (5,3) (5,3) (6,3) (6,3) (7,3) (7,3) (8,3) (8,3)
15 (4,4) (5,4) (5,4) (6,4) (7,4) (7,4) (8,4) (8,4) (9,4) (9,4)
15 (5,5) (6,5) (6,5) (7,5) (8,5) (8,5) (9,5) (10,5) (10,5)
15 (5,6) (6,6) (7,6) (8,6) (8,6) (9,6) (10,6) (10,6) (11,6)
15 (7,7) (8,7) (9,7) (10,7) (10,7) (11,7) (12,7)
15 (8,8) (9,8) (10,8) (11,8) (12,8) (12,8)
15 (10,9) (11,9) (12,9) (13,9)
15 (13,10)

Table 2: Couples (a, b) for which a success rate ≥ a/n is significantly higher
than a success rate ≤ b/m, for a confidence level of 99%.
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Software and codes Codes for computing Ŝ values are publically available
on the web site http://ina.eivd.ch/projects/stamp. There are several im-
plementations : one in JavaScript that is directly interpreted by most browsers,
one in C++ and one in Java, thus intended for researchers that want to include
the code in their own softwares.

4 Numerical results

The power of an hypothesis statistical test is defined as the probability of reject-
ing a false null hypothesis. So, the higher the power of an hypothesis statistical
test is, the more subtle differences in the samples the test can discriminate and
the better the test is considered.

This section empirically shows that the new test we propose is more powerful
than McNemar ones and, for large samples, slightly more powerful than standard
tests. If abusively applied to small samples, the standard test is also shown to
reject a true null hypothesis with a probability higher than the significance level,
showing that the standard test cannot be safely applied to small samples.

In order to show this, we proceed as follows : We choose a significance level
of α = 0.01 (which is very common in practice) and na = nb = n so that
McNemar test could be applied. For each n, we found the lowest value of a for
which one-sided McNemar test indicates that a proportion of a/n is significantly
higher than a proportion of (n − a)/n = b/n. So, for any given n a value a is
found. For both values of n and a, we find the largest value b′ for which our
new one-sided test indicates that a proportion of a/n is significantly (with same
α = 0.01 level) larger than a proportion of b′/n. Finally, we find the largest
integer value b” for which T =

√
2n(a−b”)√

(a+b”)(2n−a−b”)
> 2.326, i.e. the largest value

b” for which the standard test rejects the null hypothesis, (even if it is abusively
applied to small n).

So, for each of the McNemar, new and standard one-tailed test, we fixed the
same values of a and compared the respective values of b, b′ and b”, for various
values of n, that are needed at most for the repective test to indicate significant
different proportions.

These values are plotted on Figure 2 as a function of n. On this figure,
we can see that the McNemar test is not able to discriminate proportions at
α = 1% level for sample sizes n < 6. The new test proposed in this paper is able
to distinguish proportion even for samples of size 3. For the same sample size n
and proportion of success a/n our new test is able to discriminate proportions
b′/n much higher than the corresponding b/n proportions of McNemar test. For
n > 14, our new test is able to discriminate proportions b′/n slightly higher than
proportions b”/n if a standard parametric test is applied. Finally, for n < 7, a
standard parametric test, abusively applied, may underestimate the probability
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Figure 2: Values of a and b for which a proportion of a/n is shown to be
significantly higher than a proportion of b/n at level α = 0.01, for McNemar,
standard and new statistical test proposed in this paper.

of occurence of the null hypothesis, if the last is true, leading to erroneous
conclusions. For instance, if the null hypothesis is true and proportions of both
samples is 1/2, it is easy to show that the probability of observing 3/3 successes
for one sample and 0/3 for the other is 1/64, thus above 1%, whilst T > 2.326

Very similar figures can be drawn for various significant levels α and two-
tailed tests.

5 Conclusions

The nonparametric statistical test developped in this article is shown to be much
more powerful than the classical McNemar nonparametric test. The power of
the nonparametric statistical test developped is comparable to standard para-
metric test. This result is very positive, since it is commonly believed that
parametric tests are significantly more powerful than nonparametric ones. The
tables provided in this article are not available in the literature and can be very
useful for OR practitionners to compare proportions in a very easy way, since
no computation has to be undertaken. Indeed, the user has only to count the
number of positive elements in the samples to be compared.
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