
1

MACS-VRPTW: A MULTIPLE ANT COLONY SYSTEM FOR

VEHICLE ROUTING PROBLEMS WITH TIME WINDOWS

Luca Maria Gambardella, Éric Taillard and Giovanni Agazzi
IDSIA, Corso Elvezia 36, 6900 Lugano, Switzerland

Tel +41 91 9119838
Fax +41 91 9119839

email: {luca,eric,agazzi}@idsia.ch.
http://www.idsia.ch

In D. Corne, M. Dorigo and F. Glover, editors

New Ideas in Optimization

McGraw-Hill, London, UK, pp. 63-76, 1999

Abstract

MACS-VRPTW, an Ant Colony Optimization based approach useful to solve vehicle
routing problems with time windows is presented. MACS-VRPTW is organized with a
hierarchy of artificial ant colonies designed to successively optimize a multiple objective
function: the first colony minimizes the number of vehicles while the second colony
minimizes the traveled distances. Cooperation between colonies is performed by
exchanging information through pheromone updating. We show that MACS-VRPTW is
competitive with the best known existing methods both in terms of solution quality and
computation time. Moreover, MACS-VRPTW improves some of the best solutions known
for a number of problem instances in the literature.

2

Chapter 5

MACS-VRPTW: A MULTIPLE ANT COLONY SYSTEM FOR

VEHICLE ROUTING PROBLEMS WITH TIME WINDOWS

5.1. Introduction

This chapter presents MACS-VRPTW, a Multiple Ant Colony System for Vehicle Routing Problems with Time

Windows. MACS-VRPTW is based on Ant Colony System (ACS) (Gambardella and Dorigo, 1996, Dorigo and

Gambardella, 1997a, 1997b), and, more generally, on Ant Colony Optimization (ACO), a new metaheuristic

approach inspired by the foraging behavior of real colonies of ants.

The basic ACO idea (see Chapter 2 in this book and (Dorigo, Di Caro and Gambardella, 1998) for a detailed

description of the ACO metaheuristic) is that a large number of simple artificial agents are able to build good

solutions to hard combinatorial optimization problems via low-level based communications. Real ants cooperate

in their search for food by depositing chemical traces (pheromones) on the floor. An artificial ant colony

simulates this behavior (Dorigo, Maniezzo and Colorni, 1991, 1996). Artificial ants cooperate by using a

common memory that corresponds to the pheromone deposited by real ants. This artificial pheromone is one of

the most important components of ant colony optimization and is used for constructing new solutions.

In the ACO metaheuristic, artificial pheromone is accumulated at run-time during the computation. Artificial

ants are implemented as parallel processes whose role is to build problem solutions using a constructive

procedure driven by a combination of artificial pheromone, problem data and a heuristic function used to

evaluate successive constructive steps.

Recently, many ACO algorithms have been proposed to solve different types of combinatorial optimization

problems. In particular, ACO algorithms have been shown to be very efficient when combined with specialized

local search procedures to solve the symmetric and asymmetric traveling salesman problems (TSP/ATSP,

Dorigo and Gambardella, 1997a, 1997b, Stützle, 1998, Stützle and Dorigo, 1999), the sequential ordering

problem (SOP, Gambardella and Dorigo, 1997), the quadratic assignment problem (QAP, Gambardella, Taillard

and Dorigo, 1999, Taillard and Gambardella, 1997), the bi-quadratic assignment problem and the p-median

problem (Taillard, 1998).

One of the most efficient ACO based implementations has been Ant Colony System (ACS), (Gambardella and

Dorigo, 1996, Dorigo and Gambardella, 1997a, 1997b) that introduced a particular pheromone trail updating

procedure useful to intensify the search in the neighborhood of the best computed solution. This chapter presents

an ACS extension able to solve the vehicle routing problem with time windows (VRPTW).

VRPTW is defined as the problem of minimizing time and costs in case a fleet of vehicles has to distribute

goods from a depot to a set of customers. The VRPTW considered in this chapter minimizes a multiple,

hierarchical objective function: the first objective is to minimize the number of tours (or vehicles) and the second

is to minimize the total travel time. A solution with a lower number of tours is always preferred to a solution with

3

a higher number of tours even if the travel time is higher. This hierarchical objectives VRPTW is very common

in the literature and in case problem constraints are very tight (for example when the total capacity of the

minimum number of vehicles is very close to the total volume to deliver or when customers time windows are

narrow), both objectives can be antagonistic: the minimum travel time solution can include a number of vehicles

higher than the solution with minimum number of vehicles (see e.g. Kohl et al., 1997).

To adapt ACS for these multiple objectives the idea is to define two ACS colonies, each dedicated to the

optimization of a different objective function. In MACS-VRPTW the colonies cooperate by exchanging

information through pheromone updating. MACS-VRPTW is shown to be competitive with the best existing

methods both in terms of solution quality and computation time. Moreover, MACS-VRPTW improves the best

solutions known for some problem instances of the literature.

This chapter is organized as follows: First, vehicle routing problems are introduced by presenting a formal

definition of the capacitated vehicle routing problem (CVRP) and the vehicle routing problem with time

windows (VRPTW). Second, ACS main characteristics are analyzed by explaining how ACS has been applied to

the traveling salesman problem (TSP). Then, ACS is extended to deal with VRPTW and the resulting MACS-

VRPTW is investigated by presenting its main components. Last, numerical results are reported and some

conclusions are drawn.

5.2 Vehicle Routing Problems

The most elementary version of the vehicle routing problem is the capacitated vehicle routing problem (CVRP).

The CVRP is described as follows: n customers must be served from a unique depot. Each customer asks for a

quantity qi of goods (i = 1,..., n) and a vehicle of capacity Q is available to deliver goods. Since the vehicle

capacity is limited, the vehicle has to periodically return to the depot for reloading. In the CVRP, it is not

possible to split customer delivery. Therefore, a CVRP solution is a collection of tours where each customer is

visited only once and the total tour demand is at most Q. From a graph theoretical point of view the CVRP may

be stated as follows: Let G = (C,L) be a complete graph with node set C = (co, c1, c2,..., cn) and arc set L = (ci, cj):

ci, cj ∈ C, i ≠ j. In this graph model, co is the depot and the other nodes are the customers to be served. Each node

is associated with a fixed quantity qi of goods to be delivered (a quantity qo = 0 is associated to the depot co). To

each arc (ci, cj) is associated a value tij representing the travel time between ci and cj. The goal is to find a set of

tours of minimum total travel time. Each tour starts from and terminates at the depot co, each node ci (i = 1,..., n)

must be visited exactly once, and the quantity of goods to be delivered on a route should never exceed the

vehicle capacity Q.

One of the most successful exact approaches for the CVRP is the k-tree method of (Fisher, 1994) that succeeded

in solving a problem with 71 customers. However, there are smaller instances that have not been exactly solved

yet. To treat larger instances, or to compute solutions faster, heuristic methods must be used. Among the best

heuristic methods are tabu searches (Taillard, 1993, Rochat and Taillard, 1995, Rego and Roucairol, 1996, Xu

and Kelly, 1996, Toth and Vigo, 1998) and large neighborhood search (Shaw, 1998).

The CVRP can be extended in many ways. For example a service time si for each customer (with so = 0) and a

time limit over the duration of each tour can be considered. The goal is again to search for a set of tours that

4

minimizes the sum of the travel times. An important extension of the CVRP that is the subject of this chapter is

the vehicle routing problem with time windows (VRPTW). In addition to the mentioned CVRP features, this

problem includes, for the depot and for each customer ci (i = 0,..., n) a time window [bi, ei] during which the

customer has to be served (with b0 the earliest start time and e0 the latest return time of each vehicle to the depot).

The tours are performed by a fleet of v identical vehicles. The additional constraints are that the service

beginning time at each node ci (i = 1,..., n) must be greater than or equal to bi, the beginning of the time window,

and the arrival time at each node ci must be lower than or equal to ei, the end of the time window. In case the

arrival time is less than bi, the vehicle has to wait till the beginning of the time window before starting servicing

the customer.

In the literature the fleet size v is often a variable and a very common objective is to minimize v. This objective

is related to the real situation in which driver salaries are variable costs for the company or when the company

has to rent vehicles to perform deliveries.

Usually, two different solutions with the same number of vehicles are ranked by alternative objectives such as

the total traveling time or total delivery time (including waiting and service times). These objectives are also

used for companies owning a fixed fleet of vehicles.

A number of exact and heuristic methods exist for the VRPTW. Among exact methods, that of Kohl et al., 1997

is one of the most efficient and succeeded in solving a number of 100 customers instances. Note that exact

methods are more efficient in case the solution space is restricted by narrow time windows since less

combinations of customers are possible to define feasible tours. The most successful heuristic methods for the

VRPTW are adaptive memory programs (see Taillard et al., 1998 for an introduction to adaptive memory

programming), embedding tabu searches (Rochat and Taillard, 1995, Taillard et al., 1997, Badeau et al., 1997),

guided local search (Kilby, Prosser and Shaw, 1999) and large neighborhood search (Shaw, 1998); note that the

method of Taillard et al., 1997 can also be viewed as a kind of large neighborhood search.

5.3 Ant Colony System

This section introduces and presents the original Ant Colony System (ACS) (Gambardella and Dorigo, 1996,

Dorigo and Gambardella, 1997a, 1997b) applied to the traveling salesman problem (TSP) Indeed, MACS-

VRPTW has been proposed to solve a VRPTW where both the number of vehicles and the travel time have to be

minimized. This multiple objective minimization is achieved by using two artificial ant colonies based on ACS.

The TSP is the problem of finding a shortest closed tour which visits all the cities in a given set. ACS is applied

to the TSP by associating two measures to each arc of the TSP graph: the closeness ηij, and the pheromone trail

τij. Closeness, defined as the inverse of the arc length, is a static heuristic value, that never changes for a given

problem instance, while the pheromone trail is dynamically changed by ants at runtime. Therefore, the most

important component of ACS is the management of pheromone trails which are used, in conjunction with the

objective function, for constructing new solutions. Informally, pheromone levels give a measure of how

desirable it is to insert a given arc in a solution. Pheromone trails are used for exploration and exploitation.

Exploration concerns the probabilistic choice of the components used to construct a solution: a higher

5

probability is given to elements with a strong pheromone trail. Exploitation chooses the component that

maximizes a blend of pheromone trail values and heuristic evaluations.

ACS goal is to find a shortest tour. In ACS m ants build tours in parallel, where m is a parameter. Each ant is

randomly assigned to a starting node and has to build a solution, that is, a complete tour. A tour is built node by

node: each ant iteratively adds new nodes until all nodes have been visited. When ant k is located in node i, it

chooses the next node j probabilistically in the set of feasible nodes i
k (i.e., the set of nodes that still have to be

visited). The probabilistic rule used to construct a tour is the following: with probability q0 a node with the

highest τij⋅[ηij]
β, j∈ i

k is chosen (exploitation), while with probability (1-q0) the node j is chosen with a

probability pij proportional to τij⋅[ηij]
β, j∈ i

k (exploration, Equation 1).

[]
[]










 ∈

⋅

⋅

= ∑ ∈

otherwise 0

 if k
i

l ilil

ijij

ij

j

p k
i

�
1

β

β

ητ
ητ

 (1)

where β and q0 are parameters: β weighs the relative importance of the heuristic value, while q0 (0�q0���

determines the relative importance of exploitation versus exploration: the smaller q0 the higher the probability to

use the probabilistic rule described with Equation 1.

Once each ant has built a complete solution, this is tentatively improved using a local search procedure. Next,

the best solution found from the beginning of the trial is used to update the pheromone trails. Then, the process

is iterated by starting again m ants until a termination condition is met. ACS terminates when at least one of the

following conditions becomes true: a fixed number of solutions has been generated, a fixed CPU time has

elapsed, or no improvement has been achieved during a given number of iterations.

In ACS, pheromone trail is updated both locally and globally. Local updating is performed during solutions

construction while global updating is performed at the end of the constructive phase. Shortly, the effect of local

updating is to change dynamically the desirability of edges: every time an ant uses an edge the quantity of

pheromone associated to this edge is decreased and the edge becomes less attractive. On the other side, global

updating is used to intensify the search in the neighborhood of the best solution computed.

In ACS, only the best solution is used to globally modify the pheromone trail. This updating strategy

(Gambardella and Dorigo, 1995, Gambardella and Dorigo, 1996, Dorigo and Gambardella, 1997a, 1997b) has

been proved to be more efficient than the one used in Ant System (AS) (Dorigo, Maniezzo and Colorni, 1991,

1996) where all the constructed solutions are used to update the pheromone trails. The rationale is that in this

way a “preferred route” is memorized in the pheromone trail matrix and future ants will use this information to

generate new solutions in a neighborhood of this preferred route. The τij are updated as follows:

() gbjiJ
ijij

gb ψρτρτ ψ ∈∀+⋅−=),(1 (2)

6

where ρ (0≤ρ≤1) is a parameter and
gb

Jψ is the length of gbψ , the shortest path generated by ants since the

beginning of the computation. This global updating procedure is applied at the end of each cycle, that is, each

time the constructive phase has been completed.

Local updating is performed as follows: when an ant moves from node i to node j, the amount of pheromone trail

on arc (i,j) is decrease according to the following rule:

() 01 τρτρτ ⋅+⋅−=
ijij

 (3)

where τ
0 is the initial value of trails. It was found that

)(
1

0 hJn ψ
τ ⋅= is a good value for this parameter where hJψ

is the length of the initial solution produced by the nearest neighbor heuristic (Flood, 1956) and n is the number

of nodes.

An interesting aspect of the local updating is that while edges are visited by ants, Equation 3 makes their trail

diminish, making them less and less attractive, and favoring therefore the exploration of not yet visited edges

and diversity in solution generation.

5.4 MACS-VRPTW for vehicle routing problems with time windows

Although VRPs are a relatively direct extensions of the TSP, the first ant system for vehicle routing problems

has been designed only very recently by Bullnheimer et al. (1997, 1999) who considered the most elementary

version of the problem: the capacitated vehicle routing problem (CVRP). This chapter considers a more

elaborated vehicle routing problem with two objective functions: (i) the minimization of the number of tours (or

vehicles) and (ii) the minimization of the total travel time, where number of tours minimization takes precedence

over travel time minimization.

Figure 1. Architecture of the Multiple Ant Colony System for the Vehicle Routing Problem with Time Windows

MACS-VRPTW

ACS-TIMEACS-VEI

Artificial AntsArtificial Ants

Multiple Objectives

Single Objective

Single Solution

7

/* MACS-VRPTW: Multiple Ant Colony System for Vehicle Routing Problems with Time Windows */

Procedure MACS-VRPTW()

1. /* Initialization */

 /* gbψ is the best feasible solution: lowest number of vehicles and shortest travel time

 #active_vehicles(ψ) computes the number of active vehicles in the feasible solution ψ */

 gbψ ← feasible initial solution with unlimited number of vehicles produced

 with a nearest neighbor heuristic

2. /* Main loop */

 Repeat

 v ← #active_vehicles(gbψ)

 Activate ACS-VEI(v - 1)

Activate ACS-TIME(v)

 While ACS-VEI and ACS-TIME are active

 Wait an improved solution ψ from ACS-VEI or ACS-TIME

 gbψ ← ψ

 if #active_vehicles(gbψ) < v then

 kill ACS-TIME and ACS-VEI

 End While

 until a stopping criterion is met

Figure 2. The MACS-VRPTW procedure

This hierarchical objectives VRPTW is very common in the literature but sometimes it is mixed up with other

VRPTW variants that consider only one objective (for example, Kohl et al. 1997 consider instances built on the

same data set as hierarchical objectives VRPTW instances, but with travel time as unique objective).

In the MACS-VRPTW algorithm (Figures 1 and 2) both objectives are optimized simultaneously by

coordinating the activities of two ACS based colonies. The goal of the first colony, ACS-VEI, is to try to

diminish the number of vehicles used, while the second colony, ACS-TIME, optimizes the feasible solutions

found by ACS-VEI. Both colonies use independent pheromone trails but collaborate by sharing the variable gbψ

managed by MACS-VRPTW. Initially, gbψ is a feasible VRPTW solution found with a nearest neighbor

heuristic. Then, gbψ is improved by the two colonies. When ACS-VEI is activated, it tries to find a feasible

solution with one vehicle less than the number of vehicles used in gbψ . The goal of ACS-TIME is to optimize the

total travel time of solutions that use as many vehicles as vehicles used in gbψ . gbψ is updated each time one of

the colonies computes an improved feasible solution. In case the improved solution contains less vehicles than

the vehicles used in gbψ , MACS-VRPTW kills ACS-TIME and ACS-VEI. Then, the process is iterated and two

new colonies are activated, working with the new, reduced number of vehicles.

8

5.4.1 ACS-TIME and ACS-VEI colonies

The working principles of ACS-VEI and ACS-TIME colonies are described in Figure 3 and Figure 4.

/* ACS-TIME: Travel time minimization. */

Procedure ACS-TIME(v)

/* Parameter v is the smallest number of vehicles for which a feasible solution has been computed */

1. /* Initialization */

 initialize pheromone and data structures using v

2. /* Cycle */

 Repeat
 for each ant k

 /* construct a solution kψ */

 new_active_ant(k, local_search=TRUE, 0)
 end for each

 /* update the best solution if it is improved */

 if ∃ k : kψ is feasible and kJψ <
gbJψ then

 send kψ to MACS-VRPTW

 /* perform global updating according to Equation 2*/

 () gbjiJ
ijij

gb ψρτρτ ψ ∈∀+⋅−=),(1

 until a stopping criterion is met

Figure 3. The ACS-TIME procedure

ACS-TIME colony (Figure 3) is a traditional ACS based colony whose goal is to compute a tour as short as

possible. In ACS-TIME m artificial ants are activated to construct problems solutions mψψ ,...,1 . Each solution

is build by calling the new_active_ant procedure, a constructive procedure explained in details in Section 5.4.3

that is similar to the ACS constructive procedure designed for the TSP. When mψψ ,...,1 have been computed,

they are compared to gbψ and, in case one solution is better, it is sent to MACS-VRPTW. MACS-VRPTW uses

this solution to update gbψ . After solutions generation, the global updates are performed using Equation 2 and

gbψ .

ACS-VEI colony (Figure 4) searches for a feasible solution by maximizing the number of visited customers.

ACS-VEI starts its computation using v-1 vehicles, that is, one vehicle less than the smallest number of vehicles

for which a feasible solution has been computed (i.e., the number of vehicles in gbψ). During this search the

colony produces unfeasible solutions in which some customers are not visited. In ACS-VEI, the solution

computed since the beginning of the trial with the highest number of visited customers is stored in the variable

VEIACS−ψ . A solution is better than VEIACS−ψ only when the number of visited customers is increased. Therefore

ACS-VEI is different from the traditional ACS applied to the TSP. In ACS-VEI the current best solution VEIACS−ψ

is the solution (usually unfeasible) with the highest number of visited customers, while in ACS applied to TSP

the current best solution is the shortest one.

9

/* ACS-VEI: Number of vehicles minimization. */

Procedure ACS-VEI(s)

 /* Parameter s is set to v-1, that is, one vehicle less than the smallest number of vehicles for which a feasible solution

 has been computed

 #visited_customers(ψ) computes the number of customers that have been visited in solution ψ */

1. /* Initialization */

 initialize pheromone and data structures using s

 VEIACS−ψ ← initial solution with s vehicles produced with a nearest neighbor

 heuristic. /* VEIACS−ψ is not necessary feasible */

2. /* Cycle */

 Repeat
 for each ant k

 /* construct a solution kψ */

 new_active_ant(k,local_search=FALSE,IN)

 ∀ customer j ∉ kψ : IN
j

← IN
j
+ 1

 end for each

 /* update the best solution if it is improved */

 if ∃ k : #visited_customers(kψ) > #visited_customers(VEIACS−ψ) then

 VEIACS−ψ ← kψ

 ∀ j: IN
j

← 0 /* reset IN */

 if VEIACS−ψ is feasible then

 send VEIACS−ψ to MACS-VRPTW

 /* perform global updating according to Equation 2 using both VEIACS−ψ and gbψ */

 () VEI-ACS
VEI-ACS

),(1 ψρτρτ ψ ∈∀+⋅−= jiJ
ijij

 () gbjiJ
ijij

gb ψρτρτ ψ ∈∀+⋅−=),(1

 until a stopping criterion is met

Figure 4. The ACS-VEI procedure

In order to maximize the number of customers serviced, ACS-VEI manages a vector IN of integers. The entry INj

stores the number of time customer j has not been inserted in a solution. IN is used by the constructive procedure

new_active_ant for favoring the customers that are less frequently included in the solutions. In ACS-VEI, at the

end of each cycle, pheromone trails are globally updated with two different solutions: VEIACS−ψ , the unfeasible

solution with the highest number of visited customers and gbψ , the feasible solution with the lowest number of

vehicles and the shortest travel time. Numerical experiments have shown that a double update greatly improves

the system performances. Indeed, the updates with VEIACS−ψ are not increasing the trails toward the customers that

are not included in the solution. Since gbψ is feasible, the updates with gbψ are increasing trails toward all

customers.

10

5.4.2 Solution model

MACS-VRPTW uses a solution model in which each ant builds a single tour (Figure 5). A solution is

represented as follows: First, the depot with all its connections to/from the customers is duplicated a number of

times equal to the number of available vehicles. Distances between copies of the depot are set to zero. This

approach makes the vehicle routing problem closer to the traditional traveling salesman problem.

Figure 5. Feasible (left) and unfeasible (right) solutions for a vehicle routing problem with four duplicated

depots and four active vehicles

So, both in the TSP and in this model a feasible solution is a path that visits all the nodes exactly once. Figure 5

shows a vehicle routing problem solution represented as a single tour. Duplicated depots (d0,...,d3) are black

points while clients are white points. All duplicated depots have the same coordinates but they have been split to

clarify the picture. An advantage of such a solution representation is that the trails in direction of the duplicated

depots are less attractive than in case of a single depot (due to the pheromone update rules). This positively

affects the quality of the solutions produced by the constructive procedure.

5.4.3 Solution constructive procedure

ACS-VEI and ACS-TIME use the same new_active_ant constructive procedure that is presented in details in

Figure 6. This constructive procedure is similar to the ACS constructive procedure designed for the TSP: Each

artificial ant starts from a randomly chosen copy of the depot and, at each step, moves to a not yet visited node

that does not violate time window constraints and vehicle capacities. The set of available nodes, in case the ant is

not located in a duplicated depot, also includes not yet visited duplicated depots. An ant positioned in node i

chooses probabilistically the next node j to be visited by using exploration and exploitation mechanisms. The

attractiveness ηij is computed by taking into account the traveling time tij between nodes i and j, the time window

[bj,ej] associated to node j and the number of times INj node j has not been inserted in a problem solution. When

the new_active_ant is called by ACS-TIME, the variables IN are not used and the corresponding parameter is set

to zero.

d0

d1

d2
d3

d0

d1

d2
d3

11

/* new_active_ant: constructive procedure for ant k used by ACS-VEI and ACS-TIME */

Procedure new_active_ant(k, local_search, IN)

1. /* Initialization*/

put ant k in a randomly selected duplicated depot i

〉〈← ikψ

current_time
k

← 0, load
k

← 0

2. /* This is the step in which ant k builds its tour. Tour is stored in kψ */

Loop

/* Starting from node i compute the set
i

k of feasible nodes (i.e., all the nodes j still to be visited and such that

 current_timek and loadk are compatible with time windows [bj,ej] and delivery quantity qj of customer j)

 ∀ j ∈
i

k compute the attractiveness ηij as follows: */

 delivery_time
j
 ← max(current_time

k
 + tij, bj

)

 delta_time
ij
 ← delivery_time

j
 - current_time

k

 distance
ij
 ← delta_time

ij
*(e

j
 - current_time

k
)

 distance
ij
 ← max(1.0, (distance

ij
 - IN

j
))

 η
ij
 ← 1.0/ distance

ij

 Choose probabilistically the next node j using η
ij
 in exploitation

 and exploration (Equation 1) mechanisms

〉〈+← jkk ψψ

current_time
k
 ← delivery_time

j

load
k
 ← load

k
 + q

j

If j is a depot then current_timek
← 0, load

k
← 0

 τij ← (1-ρ)· τij + ρ· τ
0
 /* Local pheromone updating (Equation 3) */

i ← j /* New node for ant k */

Until
i

k = {} /* no more feasible nodes are available */

3. /* In this step path kψ is extended by tentatively inserting non visited customers */

kψ ← insertion_procedure(kψ)

4. /* In this step feasible paths are optimized by a local search procedure.

 The parameter local_search is TRUE in ACS-TIME and it is FALSE in ACS-VEI*/

 if local_search = TRUE and kψ is feasible then

 kψ ← local_search_procedure(kψ)

Figure 6. The new_active_ant constructive procedure used by ACS-VEI and ACS-TIME

Each time an ant moves from one node to another, a local update of the pheromone trail is executed according to

Equation 3. Last, at the end of the constructive phase, the solution might be incomplete (some customers might

have been omitted) and the solution is tentatively completed by performing further insertions. The insertion is

executed by considering all the non visited customers sorted by decreasing delivery quantities. For each

12

customer it is searched for the best feasible insertion (shortest travel time) until no further feasible insertion is

possible.

In addition, ACS-TIME implements a local search procedure to improve the quality of the feasible solutions.

The local search uses moves similar to CROSS exchanges (Taillard et al., 1997). This procedure is based on the

exchange of two sub-chains of customers. One of this sub-chain may eventually be empty, implementing a more

traditional customer insertion.

5.5 Numerical results

This section reports computational results showing the efficiency of MACS-VRPTW. MACS-VRPTW has been

tested on a classical set of 56 benchmark problems (Solomon, 1987) composed of six different problem types

(C1,C2,R1,R2,RC1,RC2). Each data set contains between eight to twelve 100-node problems. The names of the

six problem types have the following meaning. Sets C have clustered customers whose time windows were

generated based on a known solution. Problem sets R have customers location generated uniformly randomly

over a square. Sets RC have a combination of randomly placed and clustered customers. Sets of type 1 have

narrow time windows and small vehicle capacity. Sets of type 2 have large time windows and large vehicle

capacity. Therefore, the solutions of type 2 problems have very few routes and significantly more customers per

route.

Experiments are made by executing, for each problem data, 3 runs that are stopped after a fixed computation

time. Solutions are then averaged for each problem type and the result is reported in the tables. Experiments

have been done with the following parameter settings: m=10 ants, q0=0.9, β=1 and ρ=0.1. The code was written

in C++.

Table 1. Performance comparison among the best VRPTW algorithms for different computational time (in
seconds). RT=Rochat and Taillard (1995), SW = Shaw (1998), KPS = Kilby, Prosser and Shaw (1999), CW =
Cordone and Wolfler-Calvo (1998), TB= Taillard et al. (1997)

Table 1 compares MACS-VRPTW with a number of the best methods available for the VRPTW. The methods

considered are: the adaptive memory programming of Rochat and Taillard, 1995 (RT), the large neighbourhood

R1 C1 RC1 R2 C2 RC2
VEI DIST TIME VEI DIST TIME VEI DIST TIME VEI DIST TIME VEI DIST TIME VEI DIST TIME
12.55 1214.80 100 10.00 828.40 100 12.46 1395.47 100 3.05 971.97 100 3.00 593.19 100 3.38 1191.87 100

MACS- 12.45 1212.95 300 10.00 828.38 300 12.13 1389.15 300 3.00 969.09 300 3.00 592.97 300 3.33 1168.34 300
VRPTW 12.38 1213.35 600 10.00 828.38 600 12.08 1380.38 600 3.00 965.37 600 3.00 592.89 600 3.33 1163.08 600

12.38 1211.64 1200 10.00 828.38 1200 11.96 1385.65 1200 3.00 962.07 1200 3.00 592.04 1200 3.33 1153.63 1200
12.38 1210.83 1800 10.00 828.38 1800 11.92 1388.13 1800 3.00 960.31 1800 3.00 591.85 1800 3.33 1149.28 1800
12.83 1208.43 450 10.00 832.59 540 12.75 1381.33 430 3.18 999.63 1600 3.00 595.38 1200 3.62 1207.37 1300

RT 12.58 1202.00 1300 10.00 829.01 1600 12.50 1368.03 1300 3.09 969.29 4900 3.00 590.32 3600 3.62 1155.47 3900
12.58 1197.42 2700 10.00 828.45 3200 12.33 1269.48 2600 3.09 954.36 9800 3.00 590.32 7200 3.62 1139.79 7800
12.45 1198.37 900 12.05 1363.67 900

SW 12.35 1201.47 1800 12.00 1363.68 1800
12.33 1201.79 3600 11.95 1364.17 3600

KPS 12.67 1200.33 2900 10.00 830.75 2900 12.12 1388.15 2900 3 966.56 2900 3.00 592.29 2900 3.38 1133.42 2900
CW 12.50 1241.89 1382 10.00 834.05 649 12.38 1408.87 723 2.91 995.39 1332 3.00 591.78 292 3.38 1139.70 946

12.64 1233.88 2296 10.00 830.41 2926 12.08 1404.59 1877 3.00 1046.56 3372 3.00 592.75 3275 3.38 1248.34 1933
TB 12.39 1230.48 6887 10.00 828.59 7315 12.00 1387.01 5632 3.00 1029.65 10116 3.00 591.14 8187 3.38 1220.28 5798

12.33 1220.35 13774 10.00 828.45 14630 11.90 1381.31 11264 3.00 1013.35 20232 3.00 590.91 16375 3.38 1198.63 11596

13

search of Shaw, 1998 (SW), the guided local search of Kilby, Prosser and Shaw, 1999 (KPS), the alternate K-

exchange Reduction of Cordone and Wolfler-Calvo, 1998 (CW) and the adaptive memory programming of

Taillard et al., 1997 (TB). Table 1 provides 3 columns for each data set: the average number of vehicles (main

goal), the average tour length and the computation time (in seconds). The computational times cannot be directly

compared for different reasons. First, the authors have used different computers; second, some methods (RT and

TB) were designed to solve harder problems than the VRPTW and implementations specifically designed for the

VRPTW might be faster.

Table 2. Average of the best solutions computed by different VRPTW algorithms. Best results are in boldface.
RT=Rochat and Taillard (1995), TB= Taillard et al. (1997), CR=Chiang and Russel (1993), PB=Potvin and
Bengio (1996), TH= Thangiah et al. (1994)

R1 C1 RC1 R2 C2 RC2
VEI DIST VEI DIST VEI DIST VEI DIST VEI DIST VEI DIST

MACS-
VRPTW

12.00 1217.73 10.00 828.38 11.63 1382.42 2.73 967.75 3.00 589.86 3.25 1129.19

RT 12.25 1208.50 10.00 828.38 11.88 1377.39 2.91 961.72 3.00 589.86 3.38 1119.59
TB 12.17 1209.35 10.00 828.38 11.50 1389.22 2.82 980.27 3.00 589.86 3.38 1117.44
CR 12.42 1289.95 10.00 885.86 12.38 1455.82 2.91 1135.14 3.00 658.88 3.38 1361.14
PB 12.58 1296.80 10.00 838.01 12.13 1446.20 3.00 1117.70 3.00 589.93 3.38 1360.57
TH 12.33 1238.00 10.00 832.00 12.00 1284.00 3.00 1005.00 3.00 650.00 3.38 1229.00

MACS-VRPTW was executed on a Sun UltraSparc 1 167MHz, 70 Mflop/s (Dongarra, 1997), RT used a 15

Mflop/s Silicon Graphics computer, SW used a 63 Mflop/s Sun UltraSparc, KPS used a 25Mflops/s DEC Alpha,

CW used a 18 Mflop/s Pentium and TB used a 10 Mflop/s Sun Sparc 10. Table 1 provides computational results

for MACS-VRPTW when stopped after 100, 300, 600, 1200 and 1800 seconds. The RT, SW and TB iterative

methods were also stopped after different computation times while KPS and CW provide results for a unique

computation time.

In Table 1 is shown that MACS-VRPTW is very competitive: for C1 and RC2 types it is clearly the best method

and it is always among the best methods for the other problem sets. A characteristic of MACS-VRPTW is that it

is able to produce relatively good solutions in a short amount of time.

Table 2 reports the average of the best solutions obtained in all our experiments. Similar results were also

provided by other authors. In addition to the methods of Rochat and Taillard, 1995 (RT) and Taillard et al., 1997

(TB) already compared in Table 1, Table 2 includes the results of the hybrid method of Chiang and Russel (CR,

1993), the genetic algorithm of Potvin and Bengio (PB, 1996) and the hybrid method of Thangiah et al. (TH,

1994). With the exception of RC1 type problem, MACS-VRPTW has been able to produce the best results for

all other problem types.

During this experimental campaign, the best solution known of a number of problem instances have been

improved. The value of these new best solutions are reported in Table 3. In addition to the VRPTW instances the

ACS-TIME colony has been tested on CVRP instances. In Table 3 are also reported new best solution value for

CVRP problem instances tainnn used in Rochat and Taillard (1995), where nnn stands for the number of

customers.

14

Table 3. New best solution values computed by MACS-VRPTW.
RT=Rochat and Taillard (1995), S = Shaw (1998), TB= Taillard et al. (1997)

Old Best New Best
Problem source vehicles length vehicles length
r112.dat RT 10 953.63 9 982.140
r201.dat S 4 1254.09 4 1253.234
r202.dat TB 3 1214.28 3 1202.529
r204.dat S 2 867.33 2 856.364
r207.dat RT 3 814.78 2 894.889
r208.dat RT 2 738.6 2 726.823
r209.dat S 3 923.96 3 921.659
r210.dat S 3 963.37 3 958.241
rc202.dat S 4 1162.8 3 1377.089
rc203.dat S 3 1068.07 3 1062.301
rc204.dat S 3 803.9 3 798.464
rc207.dat S 3 1075.25 3 1068.855
rc208.dat RT 3 833.97 3 833.401

tai100a.dat RT 11 2047.90 11 2041.336
tai100c.dat RT 11 1406.86 11 1406.202
tai100d.dat RT 11 1581.25 11 1581.244
tai150b.dat RT 14 2727.77 14 2656.474

5.6 Conclusions

This chapter introduced MACS-VRPTW, a new Ant Colony Optimization based approach to solve vehicle

routing problems with time windows. In particular, MACS-VRPTW has been designed to solve vehicle routing

problems with two objective functions: (i) the minimization of the number of tours (or vehicles) and (ii) the

minimization of the total travel time, where number of tours minimization takes precedence over travel time

minimization. MACS-VRPTW introduces a new methodology for optimizing multiple objective functions. The

basic idea is to coordinate the activity of different ant colonies, each of them optimizing a different objective.

These colonies work by using independent pheromone trails but they collaborate by exchanging information.

This is the first time a multi-objective function minimization problem is solved with a multiple ant colony

optimization algorithm.

MACS-VRPTW is shown to be competitive with the best existing methods both in terms of solution quality and

computation time and has been able to improve the best solutions known for a number of problem instances of

the literature.

Acknowledgments

This research has been partially supported by the Swiss National Science Foundation project “Adaptive Memory

Programming for Dynamic Optimization Problems”.

15

References

P. Badeau, M. Gendreau, F. Guertin, J.-Y. Potvin, É. D. Taillard, A Parallel Tabu Search Heuristic for the
Vehicle Routing Problem with Time Windows, Transportation Research-C 5, 1997, 109-122.

B. Bullnheimer, R. F. Hartl, C. Strauss, An Improved Ant System Algorithm for the Vehicle Routing Problem,
Technical Report POM-10/97, Institute of Management Science, University of Vienna, Austria, 1997. Accepted
for publication in Annals of Operations Research.

B. Bullnheimer, R. F. Hartl, C. Strauss, Applying the Ant System to the Vehicle Routing Problem, in Meta-
heuristics: Advances and Trends in Local Search for Optimization, S.Voss, S. Martello, I.H. Osman and C.
Roucairol (eds.), Kluwer Academic Publishers, Boston, 1999, 285-296.

W. C. Chiang, R. Russel, Hybrid Heuristics for the Vehicle Routing Problem with Time Windows, Working
Paper, Department of Quantitative Methods, University of Tulsa, OK, USA, 1993.

R. Cordone, R. Wolfler-Calvo, A Heuristic for the Vehicle Routing Problem with Time Windows. To appear in
Journal of Heuristics.

J. J. Dongarra, Performance of Various Computers Using Standard Linear Equations Software, Technical Report
CS-89-85, Computer Science Department, University of Tennesse, USA, 1997.

M. Dorigo, V. Maniezzo, A. Colorni, Positive Feedback as a Search Strategy. Technical Report 91-016,
Dipartimento di Elettronica, Politecnico di Milano, Italy, 1991.

M. Dorigo, V. Maniezzo, A. Colorni, The Ant System: Optimization by a Colony of Cooperating Agents, IEEE
Transactions on Systems, Man, and Cybernetics–Part B 26, 1996, 29-41.

M. Dorigo, G. Di Caro, L. M. Gambardella, Ant Algorithms for Discrete Optimization, Technical Report
IRIDIA/98-10, Université Libre de Bruxelles, Belgium, 1998. Accepted for publication in Artificial Life.

M. Dorigo, L. M. Gambardella, Ant Colony System: A Cooperative Learning Approach to the Traveling
Salesman Problem, IEEE Transactions on Evolutionary Computation 1, 1997a, 53-66.

M. Dorigo, L. M. Gambardella, Ant Colonies for the Traveling Salesman Problem, BioSystems 43, 1997b, 73-
81.

M. L. Fisher, Optimal Solution of Vehicle Routing Problems Using Minimum K-trees, Operations Research 42,
1994, 626-642.

M. M. Flood, The Traveling Salesman Problem, Operations Research 4, 1956, 61-75.

16

L. M. Gambardella, M. Dorigo, Ant-Q: a Reinforcement Learning Approach to the Traveling Salesman
Problem, Proceedings of ML-95, Twelfth International Conference on Machine Learning, A. Prieditis and S.
Russell (eds.), Morgan Kaufmann, 1995, 252–260.

L. M. Gambardella, M. Dorigo, Solving Symmetric and Asymmetric TSPs by Ant Colonies, Proceedings of the
IEEE Conference on Evolutionary Computation, ICEC96, IEEE Press, 1996, 622-627.

L. M. Gambardella, M. Dorigo, HAS-SOP: Hybrid Ant System for the Sequential Ordering Problem, Technical
Report IDSIA-11-97, IDSIA, Lugano, Switzerland, 1997.

L. M. Gambardella, É. D. Taillard, M. Dorigo, Ant Colonies for the Quadratic Assignment Problems, Journal of
Operational Research Society, 50, 1999, 167-176.

P. Kilby, P. Prosser, P. Shaw, Guided Local Search for the Vehicle Routing Problems With Time Windows, in
Meta-heuristics: Advances and Trends in Local Search for Optimization, S.Voss, S. Martello, I.H. Osman and
C.Roucairol (eds.), Kluwer Academic Publishers, Boston, 1999, 473-486.

N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, F. Soumis, K-Path Cuts for the Vehicle Routing
Problem with Time Windows, Technical Report IMM-REP-1997-12, Technical University of Denmark, 1997.

J.-Y. Potvin, S. Bengio, The Vehicle Routing Problem with Time Windows - Part II: Genetic Search, INFORMS
Journal of Computing 8, 1996, 165-172.

C. Rego, C. Roucairol, A Parallel Tabu Search Algorithm Using Ejection Chains for the Vehicle Routing
Problem, in Meta-heuristics: Theory and applications, I.H. Osman, J. Kelly (eds.), Kluwer Academic
Publishers, Boston, 1996, 661-675.

Y. Rochat, É. D. Taillard, Probabilistic Diversification and Intensification in Local Search for Vehicle Routing,
Journal of Heuristics 1, 1995, 147-167.

M. Solomon, Algorithms for the Vehicle Routing and Scheduling Problem with Time Window Constraints,
Operations Research 35, 1987, 254-365.

P. Shaw, Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems,
Proceedings of the Fourth International Conference on Principles and Practice of Constraint Programming
(CP '98), M. Maher and J.-F. Puget (eds.), Springer-Verlag, 1998, 417-431.

T. Stützle, Local Search Algorithms for Combinatorial Problems - Analysis, Improvements, and New
Applications, PhD Thesis, Intellectics Group, Department of Computer Science, Darmstadt University of
Technology, Germany, 1998.

T. Stützle, M. Dorigo, ACO Algorithms for the Traveling Salesman Problem, Evolutionary Algorithms in
Engineering and Computer Science: Recent Advances in Genetic Algorithms, Evolution Strategies,
Evolutionary Programming, Genetic Programming and Industrial Applications, P. Neittaanmaki, J. Periaux, K.
Miettinen and M. Makela, (eds.), John Wiley & Sons, 1999.

17

É. D. Taillard, Parallel Iterative Search Methods for Vehicle Routing Problems, Networks 23, 1993, 661-673.

É. D. Taillard, FANT: Fast Ant System, Technical Report IDSIA-46-98, IDSIA, Lugano, Switzerland, 1998.

É. D. Taillard, P. Badeau, M. Gendreau, F. Guertin, J.-Y. Potvin, A Tabu Search Heuristic for the Vehicle
Routing Problem with Soft Time Windows, Transportation Science 31, 1997, 170-186.

É. D. Taillard, L. M. Gambardella, Adaptive Memories for the Quadratic Assignment Problem, Technical
Report IDSIA-87-97, IDSIA, Lugano, Switzerland, 1997.

É. D. Taillard, L. M. Gambardella, M. Gendreau, J.-Y. Potvin, Adaptive Memory Programming: A Unified
View of Meta-Heuristics, Technical Report IDSIA-19-98, IDSIA, Lugano, Switzerland, 1998. Also published in
EURO XVI Conference Tutorial and Research Reviews booklet (semi-plenary session), Brussels, July 1998.

S. R. Thangiah, I. H. Osman, T. Sun, Hybrid Genetic Algorithm Simulated Annealing and Tabu Search Methods
for Vehicle Routing Problem with Time Windows, Technical Report 27, Computer Science Department,
Slippery Rock University, 1994.

P. Toth, D. Vigo, The Granular Tabu Search (and its Application to the Vehicle Routing Problem), Technical
Report, Dipartimento di Elettronica, Informatica e Sistemistica, Università di Bologna, Italy, 1998.

J. Xu, J. Kelly, A Network Flow-Based Tabu Search Heuristic for the Vehicle Routing Problem, Transportation
Science 30, 1996, 379-393.

