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Abstract

The Heterogeneous Fleet Vehicle Routing Problem (HVRP) is a variant of the classical Vehicle Routing
Problem in which customers are served by a heterogeneous #eet of vehicles with various capacities, "xed
costs, and variable costs. This article describes a tabu search heuristic for the HVRP. On a set of benchmark
instances, it consistently produces high-quality solutions, including several new best-known solutions.

Scope and purpose

In distribution management, it is often necessary to determine a combination of least cost vehicle routes
through a set of geographically scattered customers, subject to side constraints. The case most frequently
studied is where all vehicles are identical. This article proposes a solution methodology for the case where the
vehicle #eet is heterogeneous. It describes an e$cient tabu search heuristic capable of producing high-quality
solutions on a series of benchmark test problems. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The purpose of this paper is to describe a tabu search algorithm for the Heterogeneous Fleet
<ehicle Routing Problem (HVRP) de"ned as follows. Let G"(<, A) be a directed graph where
<"Mv

0
, v

1
,2 , v

n
N is the vertex set and A"M(v

i
, v

j
): v

i
, v

j
3<, iOjN is the arc set. Vertex

v
0

represents a depot at which is based a #eet of vehicles, while the remaining vertices correspond
to cities or customers. Each customer v

i
has a non-negative demand q

i
. There are several vehicle

types. Denote by f
t
the "xed cost of a vehicle of type t, by g

t
its variable cost per distance unit,

and by Q
t
its capacity. The number of vehicles of each type is assumed to be unlimited. With

each arc (v
i
, v

j
) is associated a distance c

ij
. The HVRP consists of designing a set of vehicle

routes, each starting and ending at the depot, and such that each customer is visited exactly
once, the total demand of a route does not exceed the capacity of the vehicle assigned to it, and
the total cost is minimized. The HVRP includes as a special case the version of the classical
<ehicle Routing Problem (VRP) on which there is an unlimited number of identical vehicles. It is
therefore NP-hard.

Our version of the HVRP is the most commonly studied in the Operations Research literature.
Exceptions are the papers of Golden et al. [1] and of Salhi et al. [2] which both consider vehicle
independent variable costs, and the paper by Taillard [3] in which the number of vehicles of type
t is not unlimited, but equal to some constant m

t
. Our problem is therefore to determine the vehicle

#eet composition best suited to a particular setting while Taillard's problem is to make the best
possible use of a given #eet.

As far as we are aware, no exact algorithm has ever been developed for the HVRP. Several
approximation algorithms have been proposed, most derived from classical VRP heuristics, see,
e.g., Golden et al. [1], Gheysens et al. [4, 5], Desrochers and Verhoog [6], and Salhi and Rand [7].
The algorithm of Osman and Salhi [8] is di!erent in that it is based on tabu search. For a survey of
some of these methods, see Salhi and Rand [7].

In this study, we develop a new tabu search heuristics for the HVRP. It applies to planar
problems, i.e., to problems where vertices correspond to locations in the Euclidean plane. The
algorithm itself is described in Section 2, followed by computational results in Section 3, and by the
conclusion in Section 4.

2. Algorithm

The tabu search algorithm we propose for the HVRP is quite elaborate. First it makes
use of GENIUS, a generalized insertion heuristic developed for the Traveling Salesman
Problem (TSP) by Gendreau et al. [9]. Second, it incorporates several strategies, each of
which requires some explanations. Third, the algorithm is itself embedded within a so-called
Adaptive Memory Procedure (AMP), a search technique developed by Rochat and Taillard
[10] in the context of the VRP. We will therefore organize the presentation of the algorithm
as follows: brief description of GENIUS, components of the tabu search algorithm, step-by-
step description of the tabu search algorithm, embedding of the tabu search algorithm within
an AMP.
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2.1. The GENIUS algorithm

The GENIUS algorithm consists of a tour construction phase (GENI } Generalized Insertion)
and of an improvement phase (US } Unstringing and Stringing). Starting from three arbitrary
selected vertices, GENI gradually constructs a tour by inserting at each step a new vertex into
a partial tour. Contrary to what happens in standard insertion heuristics, each GENI insertion is
accompanied by a local reoptimization of the tour. At a general step of the algorithm, the current
solution is a tour over a subset of <. For a given orientation of the tour, denote by v

i`1
the

successor of a vertex v
i
on the tour and by v

i~1
its predecessor. Also, let N

p
(v) be the set of the

p closest neighbours, already on the tour, of any vertex v. GENI constructs an initial solution made
up of any three vertices. It then inserts an unrouted vertex v at each subsequent step. For this, select
v
i
, v

j
3N

p
(v) and v

k
3N

p
(v

i`1
), with v

k
Ov

i
and v

k
Ov

j
. Two types of insertion are considered. In

Type I insertions, delete the arcs (v
i
, v

i`1
), (v

j
, v

j`1
) and (v

k
, v
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, v) (v, v

j
),
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). This implies that the two paths (v
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reversed. In Type II insertions, a fourth vertex v
l
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. Inserting v into the tour implies the deletion of arcs (v
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), (v
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, v

l
), (v
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and (v
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, v
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) and their replacement with (v

i
, v), (v, v

j
), (v

l
, v
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), (v
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, v
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), and (v
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). The two

paths (v
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) and (v
l
,2 , v

j
) are reversed. At each step, O (p4) choices of v

i
, v

j
, v

k
, v

l
are

therefore considered. The partial tour including v and corresponding to the best combination of
a vertex choice, an orientation of the tour and an insertion type is then selected. GENIUS is
obtained by performing after GENI a postoptimization phase called US (for Unstringing and
Stringing). In US, each vertex is in turn removed from the tour using the reverse of GENI, and
reinserted as in GENI, until no further improvement can be achieved. On test problems, GENIUS
has produced highly competitive results. Computation times are dependent on p. A choice of
p between 3 and 7 seems appropriate for n)500. For further details on GENIUS, the reader is
referred to [9].

2.2. Components of the tabu search algorithm

As for all tabu search algorithms, the success of the procedure we propose requires the
incorporation of several devices that exploit the characteristics of the problem at hand. Some of
these are borrowed from search strategies developed for the classical VRP Gendreau et al. [11],
while others are new. We examine these in turn.

2.2.1. Penalized objective function
One basic characteristic of tabu search is that is allows deteriorations of the objective functions

to occur during the search procedure. The idea behind this is to prevent the search to become
trapped in a poor quality local optimum. A natural extension of this principle is to allow some
infeasible solutions during the course of the search. More speci"cally, let f

1
(s) denote the objective

function value of a solution s, and by O(s), the total vehicle overcapacity, if any, associated with
this solution. The algorithm works with the arti"cial objective f

2
(s)"f

1
(s)#aO(s), where a

is a nonnegative penalty factor dynamically adjusted throughout the search. Initially, set
a :"1. Then, every m iterations, set a :"2a if all m previous solutions were infeasible, and a :"a/2 if
they were all feasible. In our implementation, we used m"6. This diversi"cation device, initially
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proposed by Gendreau et al. [11] has proved highly e!ective in a number of di!erent contexts
(see e.g., Cordeau et al. [12]) as it produces an interesting mix of feasible and infeasible solutions.

2.2.2. Initial solution
In a "rst phase, construct m vehicle routes, where m is selected in the interval [1, 4] according to

a discrete uniform distribution. If the problem in nonplanar, arbitrarily assign customers to
vehicles. Apply the following sweep procedure. De"ne a ray with one extremity at the depot and the
other at an arbitrary customer, and rotate it counterclockwise as long as the accumulated weight of
all customers in the current route does not exceed b +n

i/1
q
i
/3.7, where b is randomly selected in the

interval [1, 4]; then initialize a new route. Every time a customer is reached, it is inserted into the
current route by means of GENI. At the end of this phase, each route is reoptimized by means
of US.

In a second phase, a vehicle is assigned to each route by solving a shortest path problem. Denote
by v

i1
,2 , v

it
the t customers of a route. De"ne an auxiliary graph G@"(<@,A@) where <@"

Mv
i1
,2 , v

it
N, A"M(v

ir
, v

is
) : 1)r(s)tN and assign to arc (v

ir
, v

is
) a cost d

rs
equal to the cost of

serving the sequence (v
0
, v

ir
,2 , v

is
, v

0
) using the cheapest feasible vehicle. Then the best combi-

nation of vehicles is obtained by determining a least cost path from v
i1

to v
it

on G@, using the
costs d

rs
.

2.2.3. Neighbourhood structure
At a general iteration, let s be the current solution and m the number of vehicle routes. To de"ne

neighbour solutions, randomly select min (n, 5m) vertices and successively attempt to insert them in
a route containing one of the their "ve closest neighbours. If a vertex v is moved from route r to
route s, a check is made whether it would be preferable, in terms of the arti"cial objective f

2
, to use

a di!erent vehicle in routes r and s (typically a smaller vehicle on route r and a larger one in route s).
Whenever it is pro"table to do so, a new vehicle is assigned. As is often done in tabu search [11}13],
f
2
is replaced with f @

2
"f

2
#*

.!9
Jmou

v
, where *

.!9
is the largest observed variation in f

2
between

two successive iterations, o is a scaling factor equal to 0.0001 in our implementation, and u
v
is the

number of times vertex v has been moved. This scheme diversi"es the search by penalizing solutions
involving frequently moved vertices. At each iteration, the best non-tabu move is performed and
route s is reoptimized using US.

2.2.4. Tabu status and aspiration criterion
Whenever a vertex v is moved from route r to route s at iteration j, it may not be reinserted into

route r until iteration j#h, where h is randomly selected on in some interval [h
1
, hM ]. In our

implementation, we used h
1
"5 and hM "10. This tabu tenure mechanism was "rst suggested by

Gendreau et al. [11] and virtually eliminates the probability of cycling. As is common in tabu
search, the algorithm uses an aspiration criterion that overrides the tabu status of a vertex
whenever moving it results in a new best value for f

2
.

2.2.5. Post-optimization and yeet change
The "rst phase of search process ends after u consecutive iterations, without improvement.

We have used u"20 for n(50 and u"30 for n*50. When the termination criterion is satis"ed,
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a second phase is entered on which two attempts are made to improve the best-known solutions.
The "rst is an exchange procedure that swaps two vertices belonging to two neighbour routes,
where centres of gravities of customers are used to compute distances between routes. The second
attempt is a #eet change procedure that works as follows. Consider a route r and split it into
two routes r@ and rA by using the best possible vehicle combination. If r contains at least "ve
customers, then we impose that r@ and rA must each contain at least two customers. Then, while
forbidding the fusion of two routes that have just been created as the result of a split, perform
the following operations as long as f

2
improves: select two routes in the neighbourhood of r@ and rA;

perform customer moves and exchanges between them, the limiting case being the fusion of the two
routes.

The second phase of the search process just described acts as a strong diversi"cation device.
In particular, it enables #eet changes that are not so frequently performed in the "rst phase,
especially if vehicle "xed costs are high. Splitting route r into r@ and rA in the second phase may
result on a worsening in f

2
, but when the "rst phase is reentered, better incumbents are often

identi"ed.

2.3. Step-by-step description of the tabu search algorithm

We are now in a position to provide a step-by-step description of our tabu search algorithm. In
our implementation, the value of g is equal to 5. The current number of routes is denoted by m.

Step 0 (Initial solution). Determine d initial solutions. In our implementation, d is equal to 6.
Initialize s* and sN *, the best known solutions with respect to f

1
and f

2
: s* :"sN * :"s. Initialize the

iteration count j :"1. Set a :"1. No vertex is tabu. Execute Steps 1 and 2 a total of g times.
Step 1 (Main search). Set j :"j#1. Evaluate f @

2
for all min (n, 5m) neighbours of s. If the best

solution s@ is feasible and f
1
(s@)(f

1
(s*), set s :"s* :"s@; if it is infeasible and f

2
(s@)(f

2
(sN *), set

s :"sN *:"s@. Otherwise, let s@ be the non-tabu solution minimizing f @
2
; set s :"s@. Apply US to the

routes of s di!erent from those of the previous solution. If j is a multiple of m, update the penalty
coe$cient a. If s* and sN * have not changed for u consecutive iterations, go to Step 2; otherwise,
repeat Step 1.
Step 2 (Postoptimization and -eet change). Attempt to improve upon s* by exchanging customers
between neighbour routes. On s*, perform the #eet change procedure, customer moves and
customer exchanges to obtain a diversi"ed solution s@. If f

1
(s@)(f

1
(s*), set s*:"s@.

2.4. Adaptive memory procedure

The adaptive memory procedure (AMP), also known as probabilistic diversi"cation and intensi-
"cation, was introduced by Rochat and Taillard [10] in the context of the VRP. It works with
a pool of full or partial solutions in a constantly updated memory. It is used as an initial solution
generator for the tabu search algorithm. At each step, the procedure extracts a number of elements
from the memory and combines some of their best structures to generate new solutions which are
then improved through a local search process.

To keep the size of the memory under control, its worst elements are periodically discarded and
replaced by new ones. The AMP can be viewed as a generalization of genetic search (see e.g.,
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Goldberg [14]) in which two o!spring are created from two parents; in the AMP, the o!spring are
created from several parents.

Like tabu search, the AMP is controlled by several problem dependent rules and parameters.
Here is how it was applied to the HVRP.

Step 0 (Memory initialization). The adaptive memory is a set ¹ of vehicle routes, where D¹D"300 in
our implementation. During the tabu search algorithm, vehicle routes are labeled according to the
objective value of the solution to which they belong and the D¹D routes containing at least two
vertices and having the lowest labels are inserted in the memory. Initialize the iteration count
k :"1.

Step 1 (New solution). Set k :"k#r1. Construct a new solution s by combining elements of ¹. For
this set ¹@ :"¹ and select a route from ¹@. The selection process is biased so as to give a larger
probability to routes having lower labels. Include route r into solution s and remove from ¹@ all
routes having at least one vertex in common with those of r. Repeat this operation as long as
¹@O0. If all vertices of < belong to s, go to Step 2. Otherwise include all missing vertices into s by
creating a return route for each of these vertices.

Step 2 (New solution improvement). Improve s by means of the tabu search algorithm described in
Section 2.3.

Step 3 (Memory update). Label the routes of s and insert them into ¹. Remove the worst elements
from ¹ to keep its size constant. If k(c, where c is a user controlled parameter, go to Step 2.
Otherwise terminate. In our implementation, we used c"7.

3. Computational results

We now summarize the results of tests performed to calibrate the various parameters used in our
algorithm and we present computational results on test problems.

3.1. Parameter calibration

Our algorithm, like most tabu search implementations, contains several user controlled para-
meters which require calibration. Parameter values were determined by using a sequential process
as opposed to a statistical experimental design scheme. Sensitivity analyses were performed for all
main parameters. No claim is made that our choice of parameter values is the best possible and
should be the same for all instances of the problem. However, they seem to work well on our test
problems, and they should also yield good results on instances of similar size and characteristics.
Our algorithm contains nine user controlled parameters:

f p neighbourhood size n GENIUS (Section 2.1)
f m update frequency for the penalty parameter a (Section 2.2.1)
f o scaling parameter in the continuous diversi"cation scheme (Section 2.2.3)
f h

1
and hM bounds for the tabu tenure (Section 2.2.4)

f u maximum number of tabu iterations without improvement (Section 2.2.5)
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f d number of initial solutions (Section 2.3)
f g number of executions of the main tabu search routine (Section 2.3)
f D¹D adaptive memory size (Section 2.4)
f c number of executions of the adaptive procedure (Section 2.4).

The parameter p was set equal to 5, a value which has already produced good results on the VRP
[11] and which seems to o!er a good compromise between computing time and solution quality.
The value of m was set equal to six after some testing, but the performance of the algorithm is not
overly a!ected by the value of this parameter. Five values were considered for o: 0, 0.0001, 0.001,
0.01, and 1. Selecting too large a value tends to over penalize some good moves, while taking too
low a value may not have the desired e!ect. We found that selecting o"0.0001 yielded the best
results. The choice of a good tabu tenure interval is important. In particular, if h

1
is too large, too

many moves are tabu and good solutions can be forbidden. If hM is too small, the search is not
su$ciently diversi"ed and cycling can also occur. We tested [h

1
, hM ]"[5, 10], [10, 20] and

[15, 30] and found that [5, 10] was the best choice. Several values were tested for u, d and g.
Again, the aim is to "nd a good compromise between execution time and solution quality.
After testing, we have opted for u"20 for n)50, u"30 for n'50, d"6 and g"5. Memory
size was "xed at D¹D"300 after some testing. Selecting too large a value results in computational
ine$ciency. Selecting too small a value increases the risk of repeatedly producing the same
solution, thus hindering the desired diversi"cation e!ect. Finally, c was set equal to 7 after some
experimentation.

3.2. Results on test problems

The algorithm described in Section 2 was run with the same parameter values on twenty
instances described in the literature. The "rst 12 instances (Tables 1 and 2) are taken from Golden
et al. [1]. We use the same numbering system as these authors. These instances are described in
Table 1 and they contain "xed costs only (e.g., the columns g

A
to g

F
must be ignored as they only

contain unit values). In addition, we have also solved the eight instances used by Taillard (Table 3).
These correspond to instances 13}20 of Table 1, except that this time, columns f

A
to f

F
must be

ignored as these problems have no "xed costs, but only variable vehicle costs. In all test problems,
the distance matrix satis"es the triangle inequality.

These instances were solved on a Sun Sparc 10 station using ten di!erent runs of our tabu search
algorithm. We report in Table 2 results corresponding to the "rst twelve instances (without variable
costs), and we compare our solution values with those obtained by Osman and Salhi [8]
and by Taillard [3]. The column headings relative to our results are as follows:

f Average value: average solution value over ten runs;
f Best value: best solution value over ten runs;
f Seconds (best): CPU time corresponding to the best solution.

Values in bold characters correspond to best-known solutions. Values in parentheses
were obtained using a non-standard version of the algorithm. Full solutions are provided in
Appendix A.

M. Gendreau et al. / Computers & Operations Research 26 (1999) 1153}1173 1159



Table 1
Description of the 12 instances used as test problems

Inst. n A B C D E F
d

Q
A

f
A

g
A

Q
B

f
B

g
B

Q
C

f
C

g
C

Q
D

f
D

g
D

Q
E

f
E

g
E

Q
F

f
F

g
F

3 20 20 20 30 35 40 50 70 120 120 225
4 20 60 1000 80 1500 150 3000
5 20 20 20 30 35 40 50 70 120 120 225
6 20 60 1000 80 1500 150 3000

13 50 20 20 1.0 30 35 1.1 40 50 1.2 70 120 1.7 120 225 2.5 200 400 3.2
14 50 120 100 1.0 160 1500 1.1 300 3500 1.4
15 50 50 100 1.0 100 250 1.6 160 450 2.0
16 50 40 100 1.0 80 200 1.6 140 400 2.1
17 75 50 25 1.0 120 80 1.2 200 150 1.5 350 320 1.8
18 75 20 10 1.0 50 35 1.3 100 100 1.9 150 180 2.4 250 400 2.9 400 800 3.2
19 100 100 500 1.0 200 1200 1.4 300 2100 1.7
20 100 60 100 1.0 140 300 1.7 200 500 2.0

Table 2
Computational results for the 12 instances with "xed costs but without variable costs

Instance n Osman Taillard Average Best Seconds
number and Salhi

[8]
[3] value value (best)

3 20 965 (961.03) 961.03 961.03 164
4 20 6445 (6437.33) 6441.01 6437.33 253
5 20 1009 (1008.59) 1008.72 1007.05 164
6 20 6516 (6516.47) 6517.98 6516.46 309

13 50 2437 2413.78 2424.88 2408.41 724
14 50 9125 9119.03 9121.98 9119.03 1033
15 50 2600 2586.37 2590.68 2586.37 901
16 50 2745 2741.50 2743.96 2741.50 815
17 75 1762 1747.24 1752.29 1749.50 1022
18 75 2412 2373.63 2392.57 2381.43 691
19 100 8685 8661.81 8682.50 8675.16 1687
20 100 4166 4047.55 4100.20 4086.76 1421

Using the same conventions, we display in Table 3 our computational results for instances with
variable costs, but no "xed costs, and we compare them with those of Taillard [3].

Results presented in Tables 2 and 3 indicate that our algorithm always generates solutions that
are almost as good as those of Osman and Salhi [8] and Taillard [3] or even better. Given that no
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Table 3
Computational results for the eight instances with variable costs, but without "xed costs

Instance n Taillard Average Best Seconds
number [3] value value (best)

13 50 1494.58 1494.21 1491.86 626
14 50 603.21 603.33 603.21 669
15 50 1007.35 1001.80 999.82 736
16 50 1144.39 1137.01 1136.63 852
17 75 1044.93 1046.36 1031.00 1453
18 75 1831.24 1812.00 1801.40 1487
19 100 110.96 1117.09 1105.44 1681
20 100 1550.36 1553.72 1541.18 1706

strong lower bounds are available for the HVRP, comparisons with other authors is the only way
we have to compare solutions. On the "rst set of instances, our results are better than that of
Osman and Salhi, but are outperformed by those of Taillard, though not by a wide margin. Our
algorithm has a better performance on instances with variable costs, but without "ned costs.
Here, our average solution values are better than those of Taillard in half the cases, and our
algorithm always succeeds in obtaining a best known solution. On the smaller instances (n"50),
our computation times vary between 600 and 1050 s; using the same machine, Taillard obtained
times smaller by 50%, between 350 and 570 s. On larger instances (n"75 and 100), our computa-
tion times vary between 700 and 1700 s, while those of Taillard are higher, between 2000 and
12500 s.

To better understand the comparison of our results with those of Taillard, it is important
to know that Taillard's algorithm generates a large family of routes and then selects some of
them by solving a set partitioning problem. With this approach, the interaction between ve-
hicles in only considered in a global sense when the set partitioning is solved. This method works
particularly well on instances containing only vehicle "xed costs since these costs become
critical at the set partitioning stage. Our algorithm is more global and is able to oscillate
between various #eet compositions. It therefore tends to perform better on instances that
combine "xed and variable vehicle costs. Our method also takes more time than Taillard's
algorithm when n"50, but is faster when n"75 and 100. This is a direct consequence of the fact
that the set partitioning phase of Taillard's algorithm becomes rather time consuming when
n becomes large.

4. Conclusion

We have described an e$cient and competitive tabu search algorithm for the HVRP. This
problem is particularly di$cult to solve using a local search technique since a natural tendency of
the search process is to move towards a local optimum with the wrong #eet composition. To
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circumvent this di$culty it is necessary to diversify the search by embedding within the algorithm
a #eet change mechanism. We believe this feature of our tabu search implementation is largely
responsible for its success.

Appendix A

We now present the full solutions obtained with our algorithm for the Golden et al. [1] and the
Taillard [3] instances.

A.1. Solutions for the 12 Golden et al. [1] instances

In these instances, the solution cost is the sum of the total vehicle cost and of the total distance
traveled.
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A.2. Solutions for the 12 Taillard [3] instances

In these instances, the solution cost is the scalar product of the variable vehicle cost vector and of
the distance vector.
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