
1

A n t  C o l o n i e s  f o r  t h e  Q A P

L. M. GAMBARDELLA, É. D. TAILLARD
IDSIA, Corso Elvezia 36, CH-6900 Lugano, Switzerland

luca@idsia.ch, eric@idsia.ch, http://www.idsia.ch
tel: +41-91-9119838, fax: +41-91-9119839

M. DORIGO
IRIDIA - CP 194/6, Université Libre de Bruxelles

Avenue Franklin Roosevelt 50, 1050 Bruxelles, Belgium
mdorigo@ulb.ac.be, http://iridia.ulb.ac.be/dorigo/dorigo.html

tel: +32-2-6503169, fax: +32-2-6502715

This paper presents HAS-QAP, a hybrid ant colony system coupled with a local search, applied to the
quadratic assignment problem. HAS-QAP uses pheromone trail information to perform modifications on
QAP solutions, unlike more traditional ant systems that use pheromone trail information to construct
complete solutions. HAS-QAP is analysed and compared with some of the best heuristics available for the
QAP: two versions of tabu search, namely, robust and reactive tabu search, hybrid genetic algorithm, and a
simulated annealing method. Experimental results show that HAS-QAP and the hybrid genetic algorithm
perform best on real world, irregular and structured problems due to their ability to find the structure of good
solutions, while HAS-QAP performance is less competitive on random, regular and unstructured problems.

Key words: Quadratic assignment problem, ant colony optimisation, ant systems, meta-heuristics.



2

INTRODUCTION

The quadratic assignment problem

The QAP is a combinatorial optimisation problem stated for the first time by Koopmans and
Beckman1 in 1957. It can be described as follows: Given two n × n matrices A=(aij) and

B=(bij), find a permutation π* minimising

∑∑
= =Π∈

⋅=
n

i

n

j
ij

n ji
baf

1 1
)(

)(min πππ
π

where Π(n) is the set of permutations of n elements. Shani and Gonzalez2 have shown that the

problem is NP-hard and that there is no ε-approximation algorithm for the QAP unless

P = NP. While some NP-hard combinatorial optimisation problems can be solved exactly for

relatively large instances, as exemplified by the travelling salesman problem (TSP), QAP

instances of size larger than 20 are considered intractable. In practice, a large number of real

world problems lead to QAP instances of considerable size that cannot be solved exactly. For

example, an application in image processing requires to solve more than 100 problems of size

n = 256 (Taillard3). The use of heuristic methods for solving large QAP instances is currently

the only practicable solution.

Heuristic methods for the QAP

A large number of heuristic methods have been developed for solving the QAP, using

various techniques. Very briefly, the most notable methods are the following: the simulated

annealing of Connolly4, the tabu searches of Taillard5, Battiti and Tecchiolli6 and Sondergeld

and Voß7, and the hybrid genetic-tabu search of Fleurent and Ferland8. More recently, another

promising method has been developed based on scatter search by Cung, Mautor, Michelon

and Tavares9. This new method embeds a tabu search.

This paper presents a hybrid ant-local search system for the QAP that often works better

than the above mentioned heuristics on structured problems. The paper is organised as

follows: In the next section ant systems in general are described. Our hybrid ant-local search

system is presented in the following section. Then, the performance of our algorithm is

analysed by comparing it to the best existing methods, and in the last section some

conclusions are drawn.

ANT SYSTEM

The idea of imitating the behaviour of ants for finding good solutions to combinatorial

optimisation problems was initiated by Dorigo, Maniezzo and Colorni10,11, and Dorigo12. The



3

principle of these methods is based on the way ants search for food and find their way back to

the nest13. Initially, ants explore the area surrounding their nest in a random manner. As soon

as an ant finds a source of food it evaluates quantity and quality of the food and carries some

of this food to the nest. During the return trip, the ant leaves a chemical pheromone trail on

the ground. The role of this pheromone trail is to guide other ants toward the source of food,

and the quantity of pheromone left by an ant depends on the amount of food found. After a

while, the path to the food source will be indicated by a strong pheromone trail and the more

the ants which reach the source of food, the stronger the pheromone trail left.

Since sources that are close to the nest are visited more frequently than those that are far

away, pheromone trails leading to the nearest sources grow more rapidly. These pheromone

trails are exploited by ants as a means to find their way from nest to food source and back.

The transposition of real ants food searching behaviour into an algorithmic framework for

solving combinatorial optimisation problems is done by making an analogy between 1) the

real ants’ search area and the set of feasible solutions to the combinatorial problem, 2) the

amount of food in a source and the objective function, and 3) the pheromone trail and an

adaptive memory. A detailed description of how these analogies can be put to work in the

TSP case can be found in Dorigo, Maniezzo and Colorni10,11. An up-to-date list of papers and

applications of ant colony optimisation algorithms is maintained on the WWW at the address:

http://iridia.ulb.ac.be/dorigo/ACO/ACO.html.

The present paper shows how these analogies can be put to work in the case of the

quadratic assignment problem (QAP). The resulting method, Hybrid Ant System for the QAP,

HAS-QAP for short, is shown to be efficient for solving structured QAP’s.

HYBRID ANT SYSTEM FOR THE QAP

This section presents the HAS-QAP algorithm and compares and analyses its main

components in relation to previous ant inspired systems. Very shortly, Hybrid Ant System for

the QAP is based on the schematic algorithm of Figure 1.

Pheromone trail

The most important component of an ant system is the management of pheromone trails. In

a standard ant system, pheromone trails are used in conjunction with the objective function

for constructing a new solution. Informally, pheromone levels give a measure of how

desirable it is to insert a given element into a solution. For example, in Dorigo and

Gambardella’s14 TSP application, links get a higher amount of pheromone if they are used by

ants which make shorter tours. Pheromone trails in this case are maintained in a pheromone
matrix T = (τij) where τij measures how desirable the edge between cities i and j is. For the

QAP, the set of the pheromone trails is maintained in a matrix T = (τij) of size n × n, where

the entry τij measures the desirability of setting πi = j in a solution.



4

There are two different uses of pheromone: exploration and exploitation. Exploration is a

stochastic process in which the choice of the component used to construct a solution to the

problem is made in a probabilistic way. Exploitation chooses the component that maximises a

blend of pheromone trail values and partial objective function evaluations.

After having built a new solution, a standard ant system updates the pheromone trails as

follows: first, all the pheromone trails are decreased to simulate the evaporation of

pheromone. Then, the pheromone trails corresponding to components that were chosen for

constructing the solution are reinforced, taking into consideration the quality of the solution.

Since the first implementation of an ant system (Dorigo, Maniezzo and Colorni10), it has

been changed in many ways to improve its efficiency. In the best ant system to date (Dorigo

and Gambardella14) update of pheromone trails is very loosely coupled with what happens

with real ants. Indeed, pheromone trails are not only modified directly and locally by the

artificial agents during or just after the construction of a new solution, but also globally,

considering the best solution generated by all the agents at a given iteration or even the best

solution ever constructed. In HAS-QAP, local updates of the pheromone trails are not

performed, but only a global update. This makes the search more aggressive and requires less

time to reach good solutions. Moreover, this has been strengthened by an intensification

mechanism. An inconvenience of such a process is the risk of an early convergence of the

algorithm. Therefore, a diversification mechanism that periodically erases all the pheromone

trails has been added.

Solutions manipulation

Another peculiarity of HAS-QAP is the use of the pheromone trails in a non-standard way:

in preceding applications of ant systems (Dorigo, Maniezzo and Colorni10,11, Dorigo and

Gambardella14), pheromone trails were exploited to build a completely new solution. Here,

pheromone trails are used to modify an existing solution, in the spirit of a neighbourhood

search. After an artificial agent has modified a solution, taking into account only the

information contained in the pheromone trail matrix, an improvement phase that consists in

performing a fast local search that takes into consideration only the objective function is

applied.

Adding local search to ant systems has also been identified as very promising by other

researchers: for the TSP, Dorigo and Gambardella14 succeeded in designing an ant system

almost as efficient as the best implementations of the Lin and Kernighan heuristic by adding a

simple 3-opt phase after the construction phase; for the sequential ordering problem (SOP)

Gambardella and Dorigo15 alternate an ant system with a local search specifically designed for

the SOP, obtaining very good results and new upper bounds for a large set of test problems.

In fact, many of the most efficient heuristic methods for combinatorial optimisation

problems are based on a neighbourhood search, either a greedy local search or a more

elaborate meta-heuristic like tabu search (e.g., see Battiti and Tecchiolli6, Cung et al.9,



5

Fleurent and Ferland8, Taillard5, Sondergeld and Voß7 for applications to the QAP) or

simulated annealing (see e. g. Burkard and Rendl16, and Connolly4).

Intensification and diversification

As said, in HAS-QAP each ant is associated with a problem solution that is first modified

using pheromone trail and later is improved using a local search mechanism. This approach is

completely different from that of previous ant systems where solutions were not explicitly

associated with ants but were created in each iteration using a constructive mechanism.

Therefore, in HAS-QAP, there is the problem of choosing, during each iteration, the

starting solution associated to each ant. To solve this problem two mechanisms, called

intensification and diversification, have been defined. Intensification is used to explore the

neighbourhood of good solutions more completely. When intensification is active, the ant

comes back to the solution it had at the beginning of the iteration if this solution was better

than the solution it had at the end of the iteration; in all other cases, the ant simply continues

working on its current solution. Diversification implements a partial restart of the algorithm

when the solutions seem not to be improving any more. It consists in a re-initialisation of

both the pheromone trail matrix and the solutions associated to the ants.

HAS-QAP DESCRIPTION

This section discusses the most salient aspects of HAS-QAP algorithm, which is presented

into details in Figure 2.

Initialisation of solutions

Initially, each ant is given a randomly chosen permutation. These permutations are initially

optimised using the same local search procedure that will be described later.

Pheromone trail initialisation

Initially no information is contained in the pheromone trail matrix: all pheromone trails τij

are set to the same value τ0. Since pheromone trails are updated by taking into account the

absolute value of the solution obtained, τ0 must take a value that depends on the value of the

solutions that will be visited. Therefore, we have chosen to set τ0 = 1/(Q·f(π*)), where π* is

the best solution found so far and Q a parameter. The re-initialisations of the pheromone trails

are done in the same way, but π* might have changed.

Manipulation of solutions: pheromone trail based modification

Pheromone trail based modification is applied by each ant to its own permutation πk. It

starts with πk and produces a permutation �π k . It consists in repeating R of the following

swaps. First, an index r is chosen, randomly between 1 and n. Then, a second index s ≠ r is
chosen and the elements πr

k  and πs
k  are swapped in the current solution πk. The second index

is chosen according to one of two different randomly chosen policies. With a probability



6

given by a parameter q, s is chosen in such a way that τ τπ πr
k

s
k

s r
+  is maximum. This policy

consists in exploiting the pheromone trail. The second policy, chosen with probability (1-q),

consists in exploring the solution space by choosing the second index s with a probability

proportional to the values contained in the pheromone trail. More precisely, s is chosen with

probability:
τ τ

τ τ
π π

π π

r
k

s
k

r
k

j
k

j r

s r

j r

+

+
≠
∑ ( )

Manipulation of solutions: local search

Local search consists in applying a complete neighbourhood examination twice with first

improving strategy to a solution �πk  to produce a solution ~π k . The local search procedure is

shown in Figure 3, where ∆(π, i, j) is the difference in the objective function value when

exchanging the elements πi and πj in π. The evaluation of ∆(π, i, j) can be performed in O(n)

using the following formula:

∆( , , )π i j =

∑
≠

−−+−−

+−−+−−

jik
jkikkjki

jiijjjii

kikjikjk

jiijiijj

bbaabbaa

bbaabbaa

,

))(())((

))(())((

ππππππππ

ππππππππ

This procedure systematically examines all the possible swaps and immediately performs

an improving swap, if one is found. The order in which the swaps are examined is randomly

chosen. Therefore the local search procedure examines O(n2) swaps and can be executed in

O(n3); it does not necessarily reach a local optimum, but is fast and may produce different

solutions when starting with the same initial, not locally optimal solution. To speed-up the

local search, it is clear that it is not necessary to compute ∆(π, i, j) if i = j and the second

neighbourhood examination is useless if the first one did not find an improving move.

Intensification

The function of intensification is to explore the neighbourhood of good solutions more

completely. The intensification mechanism (see Figure 4) is activated when the best solution

produced by the search so far has been improved. When intensification is active each ant

starts its next iteration with the best permutation between kπ  and ~π k . This is different from

what happens when intensification is not active, in which case the permutation maintained is
~π k . The intensification flag remains active while at least one ant succeeds in improving its

solution during an iteration. The rationale for intensification is that it favours search in the

neighbourhood of the new best solution found. In fact, since pheromone trail updating is

governed by the value of the solution π* at a given iteration, the pheromone trail distribution

is determined by previous π*’s. When a new solution πk* is found such that f(πk*) < f(π*), πk*

becomes the new π*. In general it will take some iterations before the influence of the new π*



7

on pheromone trail distribution will have all its effect. Intensification focuses the search

around the new π* while information about the new π* grows into the pheromone trail matrix

T. In Figure 4 is shown the behaviour of a generic ant k according to the intensification

mechanism; on the horizontal axis are reported, iteration after iteration, three search steps:

initial solution, pheromone trail modification and local search. On the vertical axis is

measured the value of these permutations. At the beginning of iteration i, let us suppose that
intensification is not active: therefore, kπ (i + 1) ← ( )~π k i . At the end of iteration i + 1,

kπ (i + 2) is set again to ( )1~ +ikπ  and intensification is activated because the best known

solution has improved. At the end of iteration i + 2, kπ (i + 3) is set to kπ (i + 2) because
intensification is active and kπ (i + 2) is a better solution than ( )~π k i + 2 .

Pheromone trail update

The update of the pheromone trails is done differently from the standard ant system where

all the ants update the pheromone trails with the result of their computations. Indeed, this

manner of updating the pheromone trails determines a very slow convergence of the

algorithm (Dorigo and Gambardella14). To speed-up the convergence, the pheromone trails are

updated by taking into account only the best solution produced by the search to date. First, all
the pheromone trails are weakened by setting τij = (1 – α1)·τij, (1 ≤ i, j ≤ n) where 0 < α1< 1 is

a parameter that controls the evaporation of the pheromone trail: a value of α1 close to 0

implies that the pheromone trails remain active a long time, while a value close to 1 implies a

high degree of evaporation and a shorter memory of the system. Then, the pheromone trails

are reinforced by considering only π*, that is, the best solution generated by the system so far
and setting τiπi* = τiπi* + α2/f(π*) for all i.

Diversification

The aim of diversification is to constrain the algorithm to work on solutions with different

structure. The diversification mechanism is activated if during the last S iterations no

improvement to the best generated solution is detected. Diversification consists in erasing all

the information contained in the pheromone trails by a re-initialisation of the pheromone trail

matrix and in generating randomly a new current solution for all the ants but for one ant that

preserves the best solution produced by the search so far.

Complexity and memory requirement

The complexity of the HAS-QAP algorithm can be evaluated as follows: the most time

consuming part of the algorithm is the local search procedure. The complexity of this step is

O(n3) and it is repeated Imaxm times. Therefore the total complexity of HAS-QAP is

O(Imaxmn3). The memory size required by the algorithm is O(n2 + nm) since the data matrices

have to be stored as well as m permutations.



8

NUMERICAL RESULTS

HAS-QAP is compared with a number of the best heuristic methods available for the QAP

such as the genetic hybrid method of Fleurent and Ferland8 (GH), the reactive tabu search of

Battiti and Tecchiolli6 (RTS), the tabu search of Taillard5 (TT) and a simulated annealing due

to Connolly4 (SA). For the comparison, a large subset of well known problem instances is

considered, with sizes between n = 19 and n = 90, and contained in the QAPLIB compiled by

Burkard, Karisch and Rendl
17

.

As shown by Taillard
3

, the quality of solutions produced by heuristic methods strongly

depends on the problem type, that is, on the structure of the data matrices A and B. Generally,

instances of problems taken from the real world present at least one matrix with very variable

entries, for example with a majority of zeros. For such problems, many heuristic methods

perform rather poorly, being unable to find solutions below 10% of the best solutions known,

even if an excessive computing time is allowed. Moreover, this occurs also for problems of

small size. Conversely, the same methods may perform very well on randomly generated

problems with matrices that have uniformly distributed entries. For such problems, almost all

heuristic methods are able to find high quality solutions (i.e., solutions approximately one per

cent worse than the best solution known).

For real world problems, Taillard3 found that GH was one of the best performing, in

particular in terms of the quality of the solutions obtained. For problems with matrices that

have uniformly distributed entries RTS and TT perform best. Therefore the performance of

HAS-QAP has been analysed by splitting the problem instances into two categories: (i) real

world, irregular and structured problems, and (ii) randomly generated, regular and

unstructured problems. The problems have been classified using a simple statistic known as

"flow-dominance"18,19. Let µA (respectively µB) be the average value of the off-diagonal

elements of matrix A (respectively B), and σA (respectively σB) the corresponding standard

deviation. A problem is put in category (i) if max(σA /µA, σB /µB) > 1.2 and in category (ii)

otherwise. In tables 1 and 3 is reported the flow dominance value for the tested problems.

All the algorithms used for comparisons were run with the parameter settings proposed by

their authors, except for GH, where a population of min(100, 2n) solutions was used instead

of 100 solutions in order to improve the method (see also Taillard3). It is important to note

that RTS is a method with self-adapting parameters (i.e., the only parameter set by the user is

the number of iterations) and the SA cooling scheme is also self-adapted, with the total

number of iterations set by the user.

The complexity of one iteration for each algorithm considered varies: SA has the lower

complexity with O(n) per iteration. TT and RTS have a complexity of O(n2) per iteration

while GH and HAS have a complexity of O(n3).

The time needed to execute one HAS-QAP iteration on a size n problem was

experimentally set to a value that corresponds, using the software implementations tested, to



9

approximately the time needed to perform 10n iterations of RTS and TT, 125n2 iterations of

SA and 2.5 iterations of GH.

In order to make fair comparisons between these algorithms, the same computational time

was given to each test problem trial by performing a number of iterations equal to Imax for

HAS-QAP, to 10nImax for RTS and TT, 125n2Imax for SA and 2.5Imax for GH.

In addition, results for two values of Imaxare provided: short runs with Imax=10 and long

runs with Imax=100. The reason to compare algorithms on short and on long runs is to evaluate

their ability in producing relatively good solutions under strong time constraints versus

producing very good solutions where more computational resources are available. In addition,

short runs are interesting when these methods are used to produce starting solutions for

different algorithms or to deal with problems of large size.

HAS-QAP parameters setting

For HAS-QAP the following parameter settings were used: R = n/3, α1 = α2= 0.1, Q = 100,

S = n/2, q = 0.9 and m = 10. These parameters were experimentally found to be good and

robust for the problems tested.

For parameter R, the number of swaps executed using pheromone trail information, R =

n/3 has been shown experimentally to be more efficient than n/2 and n/6. Starting from πk a

new permutation �π k  is generated by performing R pheromone trail driven exchanges, then

�π k  is optimised to produce permutation ~π k using the local search procedure. In case of

R ≥ n/2 the resulting permutation �π k  tends to be too close to the solution π* used to perform

global pheromone trail updating, which makes it more difficult to generate new improving

solutions. On the contrary, R ≤ n/6 did not allow the system to escape from local minima

because, after the local search, ~π k was in most cases the same as the starting permutation πk.

Same type of experiments and considerations have been made to define other parameters,

like α1=α2 and Q=100. In addition, the importance of diversification (parameter S) and

exploration (parameter q) was tested by running different experiments in which the

parameters S and q were set to S = ∞ (no diversification) and/or q = 1 (no exploration). In all

these cases, the algorithm performance was worse in comparison with the performance

obtained using the proposed values (S = n/2 and q = 0.9). For S close to n and S ≤ n/6

phenomena of stagnation and insufficient intensification have been observed. The choice of

setting the number of ants to m=10 is discussed in the following sections.

In general, experiments have shown that the proposed parameter setting is very robust to

small modifications.

Real world, irregular and structured problems

From the QAPLIB, 20 problems were selected which have values of the flow-dominance

statistic larger than 1.2. Most of these problems come from practical applications or have

been randomly generated with non uniform laws, imitating the distributions observed on real

world problems. As mentioned above, comparisons were run with the tabu searches of Battiti



10

and Tecchiolli6 (RTS) and Taillard5 (TT), and the genetic-hybrid method of Fleurent and

Ferland8 (GH). A simulated annealing due to Connolly4 (SA) that is cited as a good

implementation by Burkard and Çela20 was also considered. GH, TT and SA methods have

been re-programmed, while the original code has been used for RTS. Unfortunately, this code

only considers symmetric problems. Therefore, problems with an asymmetric matrix have not

been solved with RTS.

 Table 1 compares all these methods on short executions: Imax = 10 for HAS-QAP. In

particular, the average quality of the solutions produced by these methods is shown, measured

in per cent above the best solution value known; the last column of this table reports the

computing time (seconds on a Sun Sparc 5) used for each test problem trial. All the methods

were run 10 times. The best results are in italic boldface. To assess the statistical significance

of the differences among means the Mann-Whitney U-test  (Siegel and Castellan21) has been

run (this is the non-parametric counterpart of the t-test for independent samples; the t-test

cannot be used here because of the limited dimensions of the samples and for the nature of

data). For each problem, that is for each row of the table, the Mann-Whitney U-test was run

between the best result (italic boldface) and each of the results obtained with the other meta-

heuristics. Whenever the two results are not significantly different at the 0.1 level, this is

indicated in the table by boldface characters (e.g., in Table 1 for problem bur26b, GH resulted

to be the best meta-heuristic; SA and HAS-QAP were found to be not statistically different at

the 0.1 level; it can therefore be said that for this problem SA, GH, and HAS-QAP were the

best meta-heuristics). The same procedure was applied in the following tables.

 From Table 1, it is clear that methods like TT or SA are not well adapted for irregular

problems. Sometimes, they produce solutions more than 10% worse than the best solutions

known while other heuristic methods are able to exhibit solutions at less than 1% with the

same computing effort. For the problem types bur... and tai..b, HAS-QAP seems to be the

best method overall. The only real competitor of HAS-QAP for irregular problems is GH.

(Or, more precisely, the repetition of 25 independent tabu searches with 4n iterations: Indeed,

the genetic algorithm of Fleurent and Ferland8 is hybridised with TT; each solution produced

by this method is improved with 4n iterations of TT before being eventually inserted in the

population. After 25 iterations, the GH algorithm is still in the initialisation phase that

consists in building initial solutions issued from min(100, 2n) repetitions of TT starting with

random initial solutions), while SA is never really competitive.

In Table 2 are shown results obtained with HAS-QAP on longer runs, setting Imax = 100.

When all the 10 runs of HAS-QAP succeeded in finding the best solution known, it is added

in parentheses the average computing time (seconds) for reaching the best solution known;

the time for completing 100 iterations is roughly 10 times that for 10 iterations. From this

table, the same conclusions as for shorter runs can be drawn. As above, Mann-Whitney U-

tests was run and found that for all instances but two HAS-QAP was one of the best methods.



11

Randomly generated, regular and unstructured problems

For unstructured problems, the solutions produced by HAS-QAP are not as good as for

structured problems. This can be explained by the fact that relatively good solutions of these

problems are spread in the whole feasible solution set (see the entropy measure of local

optima reported in Taillard3).

The main strength of HAS-QAP, as well as of the GH algorithm, is its ability in finding

the structure of good solutions. If all the good solutions are concentrated in a close subset of

the feasible solutions, GH and HAS-QAP work well. On the contrary, these algorithms are

not performing well when a large number of relatively good solutions are spread all over the

solutions space. Tables 3 and 4, provide the same results as those of tables 1 and 2, but for

unstructured problems.

These tables show that TT, GH and SA perform best for sko.. problems and RTS performs

best for tai..a problems, while HAS-QAP is not so good and even the worst method for tai..a

problems.

Number of Ants

The application of the ant colony approach to a combinatorial problem like the QAP

makes sense only if it gives some performance advantage. It is interesting therefore to

experimentally evaluate the performance gain obtained, given a same amount of computation

time, by using a growing number of ants. To this purpose, for each of the four experimental

situations studied (short and long runs, structured and unstructured problems), the average

performance of HAS-SOP was analysed, when varying the number of ants. The average

performance of HAS-SOP was defined as the average over the problems reported in each of

the tables 1 to 4. To limit the computation time required to evaluate these averages,

experiments were run only on problems with n<60. The number of ants was set to m = {1, 5,

10, 20}. The results, reported in Table 5, show that the choice m=10 is always optimal but for

the case of short runs and unstructured problems.

CONCLUSIONS

Recent results in the application of heuristic methods to the solution of difficult

combinatorial problems seem to indicate that combining local optimisation with good

heuristic ways of generating starting solutions for the local searches can give rise to powerful,

although approximate, optimisation algorithms. Ant colony optimisation is a recent heuristic

loosely based on the observation of some aspects of ant colonies behaviour (Dorigo,

Maniezzo and Colorni10,11, Dorigo12). In this paper have been presented results on the quadratic

assignment problem obtained by HAS-QAP, an algorithm which interleaves an ant colony

algorithm with a simple local search. Comparisons with some of the best heuristics for the

QAP have shown that our approach is among the best as far as real world, irregular, and

structured problems are concerned. The only competitor was shown to be Fleurent and



12

Ferland’s8 genetic-hybrid algorithm. On the other hand, on random, regular, and unstructured

problems the performance of HAS-QAP was less competitive and tabu searches are still the

best methods. So far, the most interesting applications of ant colony optimisation were

limited to symmetric, asymmetric and constrained travelling salesman problems (Dorigo and

Gambardella14, Gambardella and Dorigo15). With this paper the spectrum of successful

applications of ant colony algorithms has been widened to include structured quadratic

assignment problems.

Acknowledgements — Marco Dorigo is a Research Associate with the Belgian FNRS. This research has been funded by the
Swiss National Science Foundation contract 21–45653.95 titled “Co-operation and learning for combinatorial optimisation.”



13

REFERENCES
1 Koopmans T C and Beckmann M J (1957). Assignment problems and the location of economics activities.

Econometrica 25: 53–76.

2 Shani S and Gonzalez T (1976). P-complete approximation problems. Journal of the ACM 23: 555–565.

3 Taillard É D (1995). Comparison of iterative searches for the quadratic assignment problem. Location Science 3: 87–
105.

4 Connolly D T (1990). An improved annealing scheme for the QAP. Eur J Op Res 46: 93–100.

5 Taillard É D (1991). Robust taboo search for the quadratic assignment problem. Parallel Computing 17: 443–455.

6 Battiti R and Tecchiolli G (1994). The reactive tabu search. ORSA J on Computing 6: 126-140.

7 Sondergeld L and Voß S (1996). A star-shaped diversification approach in tabu search. In: Osman I H and Kelly
J P (eds). Meta-Heuristics: Theory and Applications. Kluwer Academic Publishers: Boston/London/Dordnecht, pp 489–
502.

8 Fleurent C and Ferland J (1994). Genetic hybrids for the quadratic assignment problem. DIMACS Series in Mathematics
and Theoretical Computer Science 16: 190–206.

9 Cung V-D, Mautor T, Michelon P and Tavares A (1997). A scatter search based approach for the quadratic assignment
problem. Proceedings of the IEEE International Conference on Evolutionary Computation and Evolutionary
Programming. (ICEC’ 97), Indianapolis, USA, pp 165-170.

10 Dorigo M, Maniezzo V and Colorni A (1991). Positive feedback as a search strategy. Technical Report 91-016,
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy.

11 Dorigo M, Maniezzo V and Colorni A (1996). The ant system: Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics–Part B 26: 29–41.

12 Dorigo M (1991). Ottimizzazione, apprendimento automatico, ed algoritmi basati su metafora naturale (Optimisation,
learning and natural algorithms). Doctoral dissertation, Dipartimento di Elettronica e Informazione, Politecnico di
Milano, Italy.

13 Beckers R, Deneubourg J L and Goss S (1992). Trails and U-turns in the selection of the shortest path by the ant Lasius
niger. Journal of Theoretical Biology 159: 397–415.

14 Dorigo M and Gambardella L M (1997). Ant colony system: A cooperative learning approach to the traveling salesman
problem. IEEE Transactions on Evolutionary Computation 1: 53–66.

15 Gambardella L M and Dorigo M (1997). HAS-SOP: Ant colony optimization for sequential ordering problems. Tech.
Rep. IDSIA–11–97, IDSIA, Lugano, Switzerland.

16 Burkard R E and Rendl F (1983). A thermodynamically motivated simulation procedure for combinatorial optimization
problems. Eur J Op Res 17: 169–174.

17 Burkard R E, Karisch S and Rendl F (1991). QAPLIB — A quadratic assignment problem library. Eur J Op Res 55:
115–119.
Electronic update: http://www.diku.dk/~karisch/qaplib/ (29.1.1997).

18 Liggett R S (1981). The quadratic assignment problem: An experimental evaluation of solution strategies. Mgmt Sci 27:
442–458.

19 Scriabin M and Vergin R C (1975). Comparison of computer algorithms and visual based methods for plant layout.
Mgmt Sci 22: 172–181.

20 Burkard R E and Çela E (1996). Quadratic and three-dimensional assignments: An annotated bibliography. Technical
report 63, Discrete Optimisation Group, Technische Universität Graz, Austria.

21 S. Siegel and N.J. Castellan, Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill, 1956.



14

FIGURE 1. The HAS-QAP algorithm structure.

Generate m initial solutions, each one associated to one ant

Initialise the pheromone trail

For Imax iterations repeat

For each ant k = 1,..., m do

Modify the solution associated to ant k using the pheromone

trail

Apply a local search to the modified solution

Associate a new starting solution to ant k using an

intensification mechanism

End For

Update the pheromone trail

Apply a diversification mechanism

End For



15

FIGURE 2. The HAS-QAP algorithm.

/* initialisation */
Generate m random initial permutations π1(1), …, πm(1), each one
associated to an ant
Improve π1(1), …, πm(1) with the local search procedure
Let π* be the best solution
Initialise the pheromone trail matrix T
Activate intensification
/* main loop */
For i = 1 to Imax repeat

/* solution manipulation */
For each permutation πk(i) (1 ≤ k ≤ m) do
 Apply R pheromone trail swaps to πk(i) to obtain ( )�πk i

Apply the local search procedure to ( )�πk i  to obtain ( )~π k i

End For
/* intensification */
For each ant k do

If intensification is active
Then

 πk(i+1) ← best permutation between πk(i) and ( )~π k i

Else

πk(i+1) ← ( )~π k i

End For
If ∀ k πk(i+1)= πk(i)then deactivate intensification

If ∃ k such that f( ( )~π k i ) < f(π*)
Then

Update π*, the best solution found so far
Activate intensification

/* pheromone trail updating */
Update the pheromone trail matrix
/* diversification */
If S iterations have been performed without improving π* then

Perform a diversification
End For



16

FIGURE 3. The complete neighbourhood examination procedure with first improving strategy.

I = ∅ .
While  I  < n repeat

Choose i, uniformly random, 1 ≤ i ≤ n, i ∉  I
J = {i}

While  J  < n repeat
Choose j, uniformly random, 1 ≤ j ≤ n, j ∉  J
If ∆(π, i, j) < 0, exchange πi and πj in π
J = J ∪  {j}

I = I ∪  {i}



17

FIGURE 4. Intensification mechanism.

so
lu

tio
n 

i

ph
er

om
on

e 
tr

ai
l

m
od

ifi
ca

tio
n 

i

lo
ca

l s
ea

rc
h 

i 

so
lu

tio
n 

i+
1

ph
er

om
on

e 
tr

ai
l

m
od

ifi
ca

tio
n 

i+
1

lo
ca

l s
ea

rc
h 

i+
1

so
lu

tio
n 

i+
2

ph
er

om
on

e 
tr

ai
l

m
od

ifi
ca

tio
n 

i+
2

lo
ca

l s
ea

rc
h 

i+
2

so
lu

tio
n 

i+
3

ph
er

om
on

e 
tr

ai
l

m
od

ifi
ca

tio
n 

i+
3

iterations

so
lu

ti
o

n
 q

u
al

it
y

ant k

best known



18

TABLE 1. Quality of various heuristic methods for irregular problems and short runs measured in per cent
above the best solution value known. Best results are in boldface. Last column reports the computing time
given to each method that corresponds to the time needed to perform 10 HAS-QAP iterations. All the results
are averaged over 10 runs.

Problem
name

flow
dom.

n Best known
value

TT RTS SA GH HAS-QAP Seconds

bur26a 2.75 26 5426670 0.208 — 0.185 0.060 0.027 5
bur26b 2.75 26 3817852 0.441 — 0.191 0.090 0.106 5
bur26c 2.29 26 5426795 0.170 — 0.137 0.004 0.009 5
bur26d 2.29 26 3821225 0.249 — 0.379 0.003 0.002 5
bur26e 2.55 26 5386879 0.076 — 0.228 0.003 0.004 5
bur26f 2.55 26 3782044 0.369 — 0.224 0.006 0.000 5
bur26g 2.84 26 10117172 0.078 — 0.139 0.006 0.000 5
bur26h 2.84 26 7098658 0.349 — 0.368 0.003 0.001 5
chr25a 4.15 25 3796 15.969 16.844 27.139 15.158 15.690 4
els19 5.16 19 17212548 21.261 6.714 16.028 0.515 0.923 2
kra30a 1.46 30 88900 2.666 2.155 1.813 1.576 1.664 8
kra30b 1.46 30 91420 0.478 1.061 1.065 0.451 0.504 9
tai20b 3.24 20 122455319 6.700 — 14.392 0.150 0.243 3
tai25b 3.03 25 344355646 11.486 — 8.831 0.874 0.133 5
tai30b 3.18 30 637117113 13.284 — 13.515 0.952 0.260 9
tai35b 3.05 35 283315445 10.165 — 6.935 1.084 0.343 15
tai40b 3.13 40 637250948 9.612 — 5.430 1.621 0.280 24
tai50b 3.10 50 458821517 7.602 — 4.351 1.397 0.291 50
tai60b 3.15 60 608215054 8.692 — 3.678 2.005 0.313 90
tai80b 3.21 80 818415043 6.008 — 2.793 2.643 1.108 225



19

TABLE 2. Quality of various heuristic methods for irregular problems and long runs measured in per cent above
the best solution value known. Best results are in boldface. Last column reports the computing time given to each
method that corresponds to the time needed to perform 100 HAS-QAP iterations (in parenthesis the average time
needed to HAS-QAP to find the best known solution). All the results are averaged over 10 runs.

Problem
name

n Best known value TT RTS SA GH HAS-QAP Seconds

bur26a 26 5426670 0.0004 — 0.1411 0.0120 0 50 (10)
bur26b 26 3817852 0.0032 — 0.1828 0.0219 0 50 (17)
bur26c 26 5426795 0.0004 — 0.0742 0 0 50 (3.7)
bur26d 26 3821225 0.0015 — 0.0056 0.0002 0 50 (7.9)
bur26e 26 5386879 0 — 0.1238 0 0 50 (9.1)
bur26f 26 3782044 0.0007 — 0.1579 0 0 50 (3.4)
bur26g 26 10117172 0.0003 — 0.1688 0 0 50 (7.7)
bur26h 26 7098658 0.0027 — 0.1268 0.0003 0 50 (4.1)
chr25a 25 3796 6.9652 9.8894 12.4973 2.6923 3.0822 40
els19 19 17212548 0 0.0899 18.5385 0 0 20 (1.6)
kra30a 30 88900 0.4702 2.0079 1.4657 0.1338 0.6299 76
kra30b 30 91420 0.0591 0.7121 0.1947 0.0536 0.0711 86
tai20b 20 122455319 0 — 6.7298 0 0.0905 27
tai25b 25 344355646 0.0072 — 1.1215 0 0 50 (12)
tai30b 30 637117113 0.0547 — 4.4075 0.0003 0 90 (25)
tai35b 35 283315445 0.1777 — 3.1746 0.1067 0.0256 147
tai40b 40 637250948 0.2082 — 4.5646 0.2109 0 240 (51)
tai50b 50 458821517 0.2943 — 0.8107 0.2142 0.1916 480
tai60b 60 608215054 0.3904 — 2.1373 0.2905 0.0483 855
tai80b 80 818415043 1.4354 — 1.4386 0.8286 0.6670 2073



20

TABLE 3. Quality of various heuristic methods for regular problems and short runs measured in per cent above
the best solution value known. Best results are in boldface. Last column reports the computing time given to each
method that corresponds to the time needed to perform 10 HAS-QAP iterations. All the results are averaged over
10 runs.

Problem
name

flow
dom.

n Best known
value

TT RTS SA GH HAS-QAP Seconds

nug20 0.99 20 2570 0.101 0.911 0.327 0.047 0.156 3
nug30 1.09 30 6124 0.271 0.872 0.500 0.249 0.565 9
sko42 1.06 42 15812 0.187 1.116 0.301 0.477 0.654 25
sko49 1.07 49 23386 0.198 0.978 0.406 0.368 0.661 45
sko56 1.09 56 34458 0.347 1.082 0.504 0.515 0.729 69
sko64 1.07 64 48498 0.221 0.861 0.390 0.631 0.504 105
sko72 1.06 72 66256 0.478 0.948 0.323 0.616 0.702 153
sko81 1.05 81 90998 0.304 0.880 0.289 0.628 0.493 222
sko90 1.06 90 115534 0.386 0.748 0.418 0.632 0.591 307
tai20a 0.61 20 703482 0.769 0.705 1.209 0.732 1.483 3
tai25a 0.60 25 1167256 1.128 0.892 1.766 1.371 2.527 5
tai30a 0.59 30 1818146 0.871 1.044 1.434 1.160 2.600 9
tai35a 0.58 35 2422002 1.356 1.192 1.886 1.455 2.969 15
tai40a 0.60 40 3139370 1.284 0.996 1.750 1.590 3.063 24
tai50a 0.60 50 4941410 1.377 1.241 2.296 1.841 3.487 50
tai60a 0.60 60 7208572 1.544 1.248 1.942 1.867 3.686 88
tai80a 0.59 80 13557864 1.170 0.749 1.773 1.344 2.996 220
wil50 0.64 50 48816 0.137 0.504 0.149 0.253 0.211 47



21

TABLE 4. Quality of various heuristic methods for regular problems and long runs measured in per cent above
the best solution value known. Best results are in boldface. Last column reports the computing time given to
each method that corresponds to the time needed to perform 100 HAS-QAP iterations (in parenthesis the
average time needed to HAS-QAP to find the best known solution). All the results are averaged over 10 runs.

Problem
name

n Best known
value

TT RTS SA GH HAS-QAP Seconds

nug20 20 2570 0 0.911 0.070 0 0 30 (3.6)
nug30 30 6124 0.032 0.872 0.121 0.007 0.098 83
sko42 42 15812 0.039 1.116 0.114 0.003 0.076 248
sko49 49 23386 0.062 0.978 0.133 0.040 0.141 415
sko56 56 34458 0.080 1.082 0.110 0.060 0.101 639
sko64 64 48498 0.064 0.861 0.095 0.092 0.129 974
sko72 72 66256 0.148 0.948 0.178 0.143 0.277 1415
sko81 81 90998 0.098 0.880 0.206 0.136 0.144 2041
sko90 90 115534 0.169 0.748 0.227 0.196 0.231 2825
tai20a 20 703482 0.211 0.246 0.716 0.268 0.675 26
tai25a 25 1167256 0.510 0.345 1.002 0.629 1.189 50
tai30a 30 1818146 0.340 0.286 0.907 0.439 1.311 87
tai35a 35 2422002 0.757 0.355 1.345 0.698 1.762 145
tai40a 40 3139370 1.006 0.623 1.307 0.884 1.989 224
tai50a 50 4941410 1.145 0.834 1.539 1.049 2.800 467
tai60a 60 7208572 1.270 0.831 1.395 1.159 3.070 820
tai80a 80 13557864 0.854 0.467 0.995 0.796 2.689 2045
wil50 50 48816 0.041 0.504 0.061 0.032 0.061 441



22

TABLE 5. Performance of HAS-QAP as a function of the
number m of ants. Performance is measured as the average of
the quality values reported in table 1 to 4 for the problems
with n<60. Best results are in boldface.

Number of ants

1 5 10 20

Irregular problems

short run 1.99 1.51 1.14 1.30
long run 0.63 0.33 0.23 0.34

Regular problems

short run 1.51 1.54 1.59 1.69
long run 0.89 0.91 0.85 0.88


