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Abstract. An unsupervised machine learning method based on asso-
ciation rule is studied for the Quadratic Assignment Problem. Parallel
itemsets and local search algorithms are proposed. The extraction of
frequent itemsets in the context of local search is shown to produce good
results for a few problem instances. Negative results of the proposed learn-
ing mechanism are reported for other instances. This result contrasts with
other hard optimization problems for which efficient learning processes
are known in the context of local search.
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1 Introduction

In the past few years, big data has captured the attention of analysts and
researchers since there is a strong demand to analyze large data collected from
monitoring systems to understand behaviors and identify hidden trends. Science,
business, industry, government and society have already undergone a change with
the influence of big data. In [27], the authors are exposing opportunities and
challenges that represent big data analytics.

On the one hand, with the increase of computational power, machine learning
has emerged as the leading research field in artificial intelligence for dealing with
big data and more generally with data science [13]. Machine learning techniques
have given rise to huge societal impacts in a wide range of applications such as
computer vision, natural language understanding and health.

On the other hand, metaheuristics such as genetic algorithms or local search
are iterative methods in operations research that have been successfully applied
to solve hard combinatorial optimization problems in the past. One of their main
goals is to support decision-making processes in complex scenarios and provide
near-optimal solutions to industrial problems.
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The hybridization of metaheuristics with machine learning techniques is a
promising research field for the operations research community [4]. The major
interest in using machine learning techniques is to extract useful knowledge from
the history of the search in order to improve the efficiency and the effectiveness
of a metaheuristic [7].

This paper focuses on the association rule learning, which is an unsupervised
machine learning method for discovering interesting relations between variables
in very large databases [3]. Agrawal et al. [1] proposed frequent itemset mining
for discovering similarities between products in a large-scale transaction data for
supermarket chain stores. Initially designed for data mining, finding association
rules is now widely generalized in many fields including web research, intrusion
detection and bioinformatics.

We propose to incorporate the extraction of frequent itemsets in the context
of local search metaheuristics. A similar work comes from Ribeiro et Al. in
[19] to improve a GRASP metaheuristic where the learning process consists of
extracting different patterns (i.e. subsets of frequent itemsets) from an elite set
of 10 solutions and takes few seconds to provide a new generation.

The motivation of our work goes further, and its application is more appropri-
ate to a big data context with gigabytes of data. The goal is to investigate if one
can learn anything from the execution of thousands of local search algorithms
to generate new sets of improved solutions. Hence, we propose reproducible
strategies based on the extraction of millions frequent itemsets, i.e. extending the
training phase to last one day and considering thousands of solutions performed
in parallel across many generations.

The quadratic assignment problem (QAP) is considered in this study. This
problem is hard to solve, even for instances of moderate size (less than 100
elements). This contrasts, for instance, with the travelling salesman problem
(TSP) for which fairly large instances can be solved optimally. For the TSP, the
set of edges composed by the union of a few locally optimal solutions of moderate
quality may contain a very large proportion of the edges of the best solution
known [24, 25]. A goal of this paper is to evaluate if learning with locally optimal
solutions is as successful for the QAP as it is for the TSP.

The objective values of solutions obtained by machine learning techniques for
hard optimization problems are generally far from the values that can be obtained
by direct heuristic algorithms. For the QAP, the reader is referred to [26] for a
comparison of different methods based on neural graph machine network.

The remaining of this paper is organized as follows. Section 2 describes some
technical background to understand the traditional local search algorithm, the
quadratic assignment problem used for the experiments and frequent itemsets in
associative rule learning. Section 3 introduces the extraction of frequent itemsets
and its parallelization for local search algorithms. The experimental results are
reported in Sect. 4. Finally, Sect. 5 concludes and proposes future research
avenues.
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2 Technical Background

2.1 The Quadratic Assignment Problem

To put in practice the different learning mechanisms proposed in this paper, the
popular quadratic assignment problem (QAP) [12] has been investigated.

The QAP [5] arises in many applications such as facility location or data
analysis. Let A = (aij) and B = (bij) be n × n matrices of positive integers. In
the context of local search, the most convenient solution representation is by a
permutation: The objective of the QAP is to find a permutation π of the set
{1, 2, . . . , n} that minimizes the function:

z(π) =
n∑

i=1

n∑
j=1

aijbπ(i)π(j)

The evaluation function has a O(n2) time complexity where n is the instance
size. A neighborhood based on exchanging 2 elements ( n×(n−1)

2 neighbors) has
been considered. Hence, for each iteration of a local search, (n−2)×(n−3)

2 neighbors
can be evaluated in O(1) and 2n − 3 can be evaluated in O(n) (∆ evaluations).
The requirement is a structure which stores previous ∆ evaluations in a quadratic
space complexity. Evaluating all the ∆ for the first time takes an effort in O(n3)
but an effort only in O(n2) for each of the next local search iteration [21].

A complete review of the most successful algorithms to solve the QAP is
proposed in [15].

2.2 Frequent Itemsets in Associative Rule Learning

In associate rule learning, the existence of very large databases requires deter-
mining groups of items that frequently appear together in transactions, called
itemsets [2]. From any itemset, one can determine an association rule that predicts
how frequently an itemset is likely to occur in a transaction.

For example, a retail organization provides thousands of products and services
[1]. The number of possible combinations of these products and services is
potentially huge. The enumeration of all possible combinations is impractical, and
methods are needed to concentrate efforts on those itemsets that are recognized
as important to an organization. The most used measure of an itemset is its
support, which is calculated as the percentage of all transactions that contain
the itemset. Itemsets that meet a minimum support threshold are referred to as
frequent itemsets.

An itemset which contains k items is a k-itemset. So, it can be said that an
itemset is frequent if the corresponding support count is greater than a minimum
support count.
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Fig. 1. Extraction of one frequent itemset of size 3. In all solutions, elements 8, 7 and 1
appear at positions 1, 2 and 4.

3 Frequent Itemsets for Local Search Algorithms

The motivation of this research work is to investigate if one can learn anything
from the solutions found in local search algorithms. One observation is that some
elements from local optima may be found at the exact same positions of the
global optimum, meaning that elements that frequently appear at particular
positions may also be discovered in good solutions.

One tool to achieve this is to extract all the frequent itemsets from a set
of solutions. In the context of combinatorial optimization, each itemset can
be represented by pairs of one element associated with one position. Figure 1
illustrates an extraction for a 3-itemset.

Once all frequent itemsets are known, a new generation of solutions can be
constructed from these itemsets.

3.1 Extraction and Combination of Frequent Itemsets

The global process used in this paper can be divided into two phases: the
extraction of frequent itemsets and their combination to generate new solutions.
Algorithm 1 gives an insight of how this global process works.

The initial set of solutions is obtained from the execution of multi-start local
search algorithms (lines 1 to 4). For each local search, the initial solution is
randomly generated and the selection of a better neighbor is done according to
the best improvement strategy (steepest descent).

In the main loop, the first phase consists in extracting all frequent itemsets
from the current set of solutions (line 6) with Apriori algorithm [2]. Since the
worst-case time complexity of Apriori algorithm is exponential according to the
number of items, min_sup and itemsets_limit are user-defined parameters to
control the number of candidate itemsets to retain in practice. The second phase
is a procedure that combines these itemsets to construct new solutions that can
be improved afterwards by the same local search algorithm (lines 7 to 10). The
process is repeated for a given number of generations.
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Algorithm 1 Extraction and combination of frequent itemsets
Require: instance_data, nb_solutions, nb_generations, min_sup and

itemsets_limit
1: for i← 1, . . . , nb_solutions do

2: solutions[i]← random_initialization()
3: solutions[i]← local_search(instance_data, solutions[i])
4: end for

5: for generation← 1, . . . , nb_generations do

6: all_itemsets← extract_itemsets(solutions, min_sup, itemsets_limit)
7: for i← 1, . . . , nb_solutions do

8: solutions[i]← combine_itemsets(all_itemsets)
9: solutions[i]← local_search(instance_data, solutions[i])

10: end for

11: end for

Ensure: solutions

3.2 Apriori Algorithm for Extracting Itemsets from a Set of

Solutions

The Apriori algorithm is used in this paper to extract all frequent itemsets from
a set of solutions. It was originally designed to operate on databases containing
transactions [2]. Basically, Apriori performs a bottom-up approach where frequent
subsets are extended one item at a time (groups of candidates) and tested with
the data. The algorithm finishes when no further successful extensions can be
discovered.

Even if it is not the fastest method to directly extract k-itemsets in comparison
with other approaches [11, 18], its application seems the most appropriate since
all frequent itemsets of any size are required here. More important, Apriori does
not make any assumption of the size of the dataset and it perfectly fits in the
context of big data algorithms.

Algorithm 2 Apriori algorithm for the extraction of frequent itemsets
Require: solutions, min_sup and itemsets_limit
1: k := 1
2: Ck = generate_itemsets(solutions, ∅)
3: Lk = filter_itemsets(Ck, min_sup, ∅)
4: all_itemsets = Lk

5: while Lk ̸= ∅ do

6: Ck+1 = generate_itemsets(solutions, L_k)
7: Lk+1 = filter_itemsets(Ck+1, min_sup, itemsets_limit)
8: all_itemsets = all_itemsets ∪ Lk+1
9: k := k + 1

10: end while

Ensure: all_itemsets
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Algorithm 2 describes the major steps of Apriori used in the extract_itemsets
procedure of Algorithm 1. The first step consists in generating the list of all can-
didate itemsets of size 1 (lines 1 and 2). In the case of combinatorial optimization,
a 1-itemset is exactly a pair of one element associated with one position. The
candidate list is then pruned according to the minimum support (i.e. minimum
number of times that an itemset must appear in all solutions) defined by the
user (line 3). From the resulting filtered list of 1-itemsets, all candidate itemsets
of size 2 are investigated (line 6) where a 2-itemset represents two pairs of one
element associated with one position. The process is repeated with the filtered
list of 2-itemsets to produce all 3-itemsets and so on until a candidate list cannot
be built.

At each generation, all extracted k-itemsets are conserved in a list (lines 4
and 8) that will be later used to construct new solutions in the combine_itemsets
procedure of Algorithm 1.

Limiting the number of retained itemsets (e.g. keeping one million itemsets
that are among the most frequent ones) is necessary to reduce the computational
and space complexities when generating new candidates for further generations.

3.3 Combining Itemsets for Creating a New Set of Solutions

The goal of the combine phase is to create a new set of solutions from all the
frequent itemsets extracted during the previous generation.

Each solution is constructed by exploring all frequent itemsets. In this paper,
two main strategies are taken into account regarding how itemsets are explored:

1. Random exploration of all frequent itemsets (REFI). In this strategy, every re-
tained itemset has the same probability to be applied during the construction
of a new solution.

2. Exploration based on sorted frequent itemsets (ESFI). All itemsets are sorted
according to their support in decreasing order. The probability of applying
an itemset to a solution (i.e. fixing elements at different positions) depends
on the itemset support. For instance, a 2-itemset (e.g. element 5 at position
10 and element 1 at position 7) that appears in 2% of all previous solutions
has also a probability of 2% to be in a new solution.

If the current solution cannot be completely constructed from the exploration
of all itemsets, all unassigned elements will be randomly added at unassigned
positions.

3.4 Parallelization Techniques for Frequent Itemsets

Parallel Execution of Local Search Algorithms In a multi-start algorithm,
the execution of each local search being independent, all algorithms can be
parallelized according to a pool of executions (i.e. tasks waiting to be launched).
The same stands for the combination of itemsets during the construction of each
new solution.
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Regarding the parallel thread execution, a dynamic scheduling is carried out
since each local search may take a different amount of time.

A buffer is used to store a certain number of solutions that are being executed
in parallel (e.g. 1000 solutions). When a batch of solutions has been completed,
they are written to a file and the buffer can be reused for the next solutions.
Such a process allows limiting the space complexity in case a lot of solutions are
created (e.g. 1,000,000 solutions). The process is repeated until all local search
methods have been dealt with.

Parallel Extraction of Frequent Itemsets Let n be the number of itemsets of
size k. A new itemset being a combination of two previous itemsets, the number
of candidate itemsets of size k + 1 to examine is m = n × (n − 1)/2.

Since this extraction is independent for each itemset, all m itemsets in Apriori
can be performed in parallel.

On the one hand, an itemset is composed of two indexes of previous itemsets.
On the other hand, parallelization units such as threads are determined by a
unique id. Therefore, one mapping has to be considered to transform one index
into two ones.

Given id the index of a new itemset to generate, the index of the first previous
itemset i is equal to n − 2 − ⌊

√
8×(m−id−1)+1−1

2 ⌋ and the index of the second
previous itemset j is equal to id − i × (n − 1) + i×(i+1)

2 + 1.
This calculated mapping avoids an unnecessary use of mapping tables (con-

taining all indexes) that can rapidly become prohibitive in terms of memory.
Similarly, a buffer and a file are also required to reduce the space complexity.

4 Performance Evaluation

The computational results presented in this section have been obtained on a
PC running on Linux and equipped with an AMD Ryzen Threadripper 1950X
3.4Ghz (16 cores / 32 threads). The algorithms introduced in Section 2 have
been implemented in C++ using the OpenMP Library for the parallelization.
The candidate itemsets for one generation representing up to a dozen of gigabytes
of data, they are written in a file and a buffer storing 10,000 candidate itemsets
is reused accordingly.

This parallelization approach results in very good speed-ups (from 12× to 15×
according to the number of candidate itemsets). An efficient parallelization of a
local search on GPU is not evident and previous works have reported relatively
modest speed-ups due to memory access latency [16].

4.1 QAP instances

The QAPLIB repository [6] contains 136 instances and has been enriched by
hundreds other ones freely available on http://mistic.heig-vd.ch/taillard/
problemes.dir/qap.dir/qap.html. Since it was not practically possible to

http://mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html
http://mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html
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conduct our numerical experiments for all instances, only 11 QAP instances
have been carefully selected. All selected instances are widely studied in the
literature [15].

The selected instances cover a large panel of the flows/distances matrices
structures that can be found in the literature. Their size (n between 45 and 64)
is large enough so that an exact method cannot solve most of them on modern
computers.

The first 3 instances are from Skorin-Kapov [20] (sko49, sko56 and sko64).
No optimal solution has been proven yet for these instances. The distances are
Manhattan on a rectangular grid, and the flows are pseudo-random numbers.
These instances are similar to Nugent et al. [17] ones, but larger. Due to symmetries
in the distance matrix, multiples of 4 or 8 optimal solutions exists.

Then, 3 asymmetrical instances from Li and Pardalos (lipa50a, lipa60a and
lipa50b) were selected. These instances were generated so that the optimal
solutions are known [14].

Then, 2 symmetrical instances with flows and distances randomly, uniformly
generated have been selected (tai50a and tai60a) [21]. These instances are similar
to Roucairol’s ones, but larger.

Then, 2 asymmetrical instances non-uniformly generated (tai50b and tai60b)
comes from[22]. An instance for generating gray patterns (tai64c) proposed in
the same article has also been selected. This instance is not specially hard, but
has a very large number of optimal solutions, spread all over the solutions’ space.

Finally, a symmetrical and structured instance (tai45e01) proposed in [9] was
selected. This instance was generated in such a way that a number of local search
based methods have difficulties to find a moderately good solution.

4.2 Parameters for the Experiments

The algorithms of this paper rely on extracting most frequent itemsets from all
solutions then combining them to create a new set of solutions.

In Algorithm 1 the number of generations is set to 8 and 10,000 local searches
are executed per generation.

Regarding the combining phase, the first set of experiments are based on the
random exploration of frequent itemsets (REFI) whereas the second one is on
the exploration on sorted frequent itemsets (ESFI). A multi-start with 90, 000
local search algorithms from random solutions is also considered. Even if the
execution time differs, it is used as an indicator of comparison where no learning
process is implemented. Disregarding the time needed for selecting the itemsets
and building starting solutions, all the methods are indeed performing 90, 000
local searches.

The default minimum support for the extraction of itemsets is set to 0.1%
(i.e. keep itemsets which appear in 10 out of 10,000 solutions). The itemsets limit
is set to one million for each k-itemset. These parameters have been tuned in
such a way that each generation does not exceed one day of calculation.
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4.3 Quality of Solutions

For optimization problems, the main criteria to be evaluated is the quality of the
solutions. The last is measured relative to the value of the best solution known
to date (bvk), which is optimal for a few instances (lipa, tai64c and tai45e01)
or believed to be optimal for the other ones. The distribution of the quality of
the solutions is visualized with the proportion of runs having reached a solution
below a given percentage above best known.

The quality of the solutions for the instances are graphically illustrated
in Figure 2. All the solutions compared to the bvk are represented for the
90, 000 solutions found by the multi-start algorithm (dash-dotted line) and the 8
generations of REFI (plain line) and ESFI (dotted line) learning methods.

Fig. 2. Multi-start, ESFI and REFI distribution of solutions quality for lipa50a, lipa60a,
lipa50b (asymmetric with known optimal solutions), sko49, sko56, sko64 (Manhattan
distances on a square grid), tai50a, tai60a (uniformly generated), tai50b, tai60b
(asymmetric and randomly generated), tai64c, tai45e01 (structured).
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For the instance sko49, the distribution reveals that most solutions produced
by REFI and ESFI algorithms are, respectively, about 0.5% and 1% above the bvk
whereas multi-start produces solutions with a normal spread around 3% above the
bvk. A similar observation can be made for the instance sko56. The phenomenon
is more pronounced for the instance sko64 where the REFI algorithm was able
to produce solutions very close to the bvk.

The benefits of the learning phase are also prominent for the lipa50a instance,
where the multi-start from random solutions was unable to find the optimum. A
similar behavior stands for the lipa60a instance, except that REFI is the only
algorithm able to reach the known optimum.

Regarding the lipa50b instance, the difference of quality is very important
since most REFI and ESFI solutions are optimal whereas multi-start solutions
are between 15 and 20% above the bvk. For the 11 selected instances, this is the
only one for which learning with itemsets is highly successful.

For the tai50a instance, there is a moderate trend indicating that most
of the REFI and ESFI runs are able to learn something. Unsurprisingly, the
learning is less pronounced for randomly, uniformly generated instances. A similar
observation can be made for the tai60a instance.

Regarding the instance tai50b, most ESFI and REFI solutions are between
0.5 and 1% above the bvk. The multi-start algorithm produces solutions that are
spread 7.3% above the bvk with a standard deviation of 3.3%.

A similar observation can be made for the instance tai60b. The multi-start
algorithm solutions are spread 8% above the bvk with a standard deviation of
3.4%. For this type of instances, learning with itemsets is possible, but not as
successful as it is for lipa..b instances.

Regarding the structured instance tai45e01, the ESFI and REFI algorithms
are completely unable to learn something interesting. These algorithms are just
focusing on solutions that are very far from the optimal one. The learning
techniques based on the frequent itemsets seem to be inefficient for dealing with
such structured instances. The population of solutions just converges too early.
We were rather surprised by this result, since various metaheuristics combining a
local search with a learning mechanism are perfectly able to reach the optimum,
for instance GRASP with path relinking, late acceptance local search, genetic
hybrids or ant systems [9].

For tai64c, most solutions being below 1% above the bvk, it is not clear that
a learning algorithm outperforms a simple multi-start. It might be explained by
the fact that the instance has multiple global optima, and it is easy to solve it
optimally [8].

4.4 Additional Information for the Positions of Solutions

Another criterion to assess is the similarity of the solutions produced by the
algorithms with a target solution with bvk. The similarity can be measured by the
number of elements in that are at the same position. These results are reported
in Table 1. The third column provides the mean and the standard deviation of
the number of positions identical to the target solution. The next two columns
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are the percentage of solutions under 5% above the bvk including those sharing
at least 10% of common positions with the target. The next column provides
the percentage of different solutions. This proportion gives an indication of the
population diversity. Finally, the number of itemsets revealing all the patterns
discovered during the exploration phase is reported.

Table 1 shows for the sko49 instance that the number of positions identical
to the target is almost non-existent for all algorithms (between 1 and 2 on the
average). It is an easy instance since more than 98% of solutions are under 5%
above the bvk, including the simple multi-start from random solutions. As shown
in Figure 2, the learning mechanism helps to improve the last percentages above
the bvk.

A similar observation can be made for sko56. The main difference is that
among all the solutions that are under 5% above the bvk, there is a significant
percentage of solutions (61.88% for REFI and 24.61% for ESFI) that share more
than 10% of common positions with the target. The same remark occurs for the
instance sko64 but the diversity of REFI solutions is pretty low (3.04%).

Regarding lipa50a and lipa60a instances (asymmetric with known optimal
solutions), the number of shared positions of REFI and ESFI with the target is
prominent (around 10 and 30). But it is not a difficult instance since 100% of
solutions are under 5% above the bvk. The learning phase is also determinant
for improving the last percentages above the bvk.

The lipa50b case (high values for matrix entries) is interesting since only
0.41% of multi-start solutions are under 5% above the bvk. The benefits of
learning mechanisms are meaningful for this instance since most REFI and ESFI
solutions converge to the target.

For tai50a and tai60a instances, Table 1 shows that the number of positions
identical to the target is also almost non-existent. Indeed, the produced solutions
that share 10% of common positions with the target and that are under 5%
above the bvk is less than 1%. The number of itemsets (patterns) discovered for
both tai50a and tai60a is lower than the other instances.

Things are quite different for the tai50b (asymmetric and randomly generated)
where the percentage of different solutions is rather low (less than 40%), meaning
that many solutions converge to the same local optima. On the one hand, the
solutions produced by REFI share an important number of common positions
with the target (22.9 in average). On the other hand, ESFI has very little in
common with the target. In both cases, the number of discovered itemsets is
rather high (more than 100 millions) and 85% solutions are under 5% above the
bvk. It is really significant in comparison with a multi-start where only 26.7%
solutions are within the same quality.

A similar observation can be made for the tai60b instance. Even if the number
of positions shared with the target is pretty low (less than 2.5), more than 94% of
produced solutions by a learning algorithm are under 5% above the bvk, whereas
a simple multi-start has only 21.91% under this level. Interestingly this instance
has generated the highest number of different patterns.
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Table 1. Additional results for the positions of produced solutions for sko49, sko56,
sko64, lipa50a, lipa60a, lipa50b tai50a, tai60a, tai50b, tai60b, tai45e01 and tai64c
instances : number of positions that are identical (mean and standard deviation) to a
target solution, percentage of solutions under 5% above the best value known (bvk)
and, for those that share at least 10% of common positions with the target, percentage
of different solutions and total number of itemsets discovered.

instance algorithm
# positions % solutions under % different

solutions # itemsetsidentical to 5% above the bvk
the target all pos > 10%

sko49
REFI 1.31.5 99.80% 3.85% 51.35% 66.8× 106

multi-start 1.81.7 98.32% 7.20% 100.00% -
ESFI 1.11.4 99.74% 2.69% 69.78% 58.9× 106

sko56
REFI 7.64.9 99.92% 61.88% 46.13% 83.1× 106

multi-start 2.02.0 99.27% 6.01% 100.00% -
ESFI 4.12.2 99.93% 24.61% 83.80% 58.9× 106

sko64
REFI 7.47.2 100.00% 49.74% 3.04% 136.4× 106

multi-start 2.22.0 99.94% 3.55% 100.00% -
ESFI 4.62.3 99.99% 17.16% 67.41% 84.3× 106

lipa50a
REFI 30.321.1 100.00% 71.57% 45.46% 79.9× 106

multi-start 1.31.5 100.00% 1.87% 100.00% -
ESFI 22.416.9 100.00% 70.06% 59.93% 101.4× 106

lipa60a
REFI 32.727.0 100.00% 66.31% 50.06% 176.7× 106

multi-start 1.21.4 100.00% 0.61% 100.00% -
ESFI 10.18.2 100.00% 53.88% 77.09% 63.8× 106

lipa50b
REFI 50.00.0 100.00% 100.00% 0.00% 37.6× 106

multi-start 1.93.7 0.41% 0.41% 99.59% -
ESFI 49.16.2 98.03% 98.03% 1.97% 23.0× 106

tai50a
REFI 1.91.4 79.93% 0.71% 88.39% 20.5× 106

multi-start 1.11.2 48.76% 0.25% 100.00% -
ESFI 1.61.3 76.29% 0.64% 100.00% 40.2× 106

tai60a
REFI 1.81.4 88.77% 0.49% 99.99% 33.0× 106

multi-start 1.21.2 66.41% 0.09% 100.00% -
ESFI 1.61.3 85.50% 0.26% 100.00% 24.2× 106

tai50b
REFI 22.911.4 87.58% 78.93% 12.86% 106.0× 106

multi-start 2.12.6 26.70% 4.28% 100.00% -
ESFI 1.21.7 86.11% 1.56% 38.59% 108.2× 106

tai60b
REFI 1.83.5 97.67% 3.70% 24.40% 123.4× 106

multi-start 3.13.1 21.91% 6.89% 100.00% -
ESFI 2.52.0 94.27% 1.88% 25.53% 226.9× 106

tai45e01
REFI 0.93.6 0.02% 0.02% 10.68% 33.2× 106

multi-start 3.35.0 0.01% 0.01% 96.76% -
ESFI 0.53.1 0.03% 0.03% 9.48% 109.4× 106

tai64c
REFI 30.015.1 99.98% 55.01% 100.00% 71.6× 106

multi-start 10.413.7 99.98% 6.14% 100.00% -
ESFI 22.817.3 99.98% 33.73% 94.41% 45.1× 106
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Regarding the instance tai45e01, the diversity of the population of solutions
is also significantly low. It represents less than 11% of different solutions even
if the number of itemsets is significant. The number of positions identical to
the target is even lower than a multi-start with 90, 000 random solutions. The
number of solutions under 5% above the bvk is close to 0%. It seems that the
learning mechanisms studied in this article are not really efficient for such a
structured instance. The itemsets produced are just focusing on bad quality local
optima, very far from the global optimum. It can be noticed that both REFI and
SEFI got the optimal solution at the first generation, but this solution was lost
for the remaining generations.

The structured tai64c is easy to solve since 12, 715 different global optima
were found during the different runs. Since global optima are spread all over the
solutions’ space, it is not clear whether something can be learned with itemsets
or not. Anyway, since 99.98% solutions are under 5% above the bvk for all
algorithms, the benefits of a learning process are not really meaningful in the
context of optimization.

5 Conclusions

The main interest in combining the unsupervised association rule learning with
metaheuristics is to discover useful knowledge about the history of the search in
order to enhance the produced solutions.

In this paper, we proposed to incorporate the extraction of frequent itemsets
for parallel local search algorithms in a big data context. The global process can
be iterated through two phases: the extraction of millions frequent itemsets and
their combination for generating new solutions.

For the QAP, learning mechanisms through association rule learning have
shown significant improvements in comparison with a multi-start from random
solutions for a number of problem instances of the literature. From this point
of view, the REFI and ESFI developed in this paper have been revealed to be
competitive but for one problem instance. It has to be mentioned that a uniform
selection of itemsets reveals superior to a selection biased with the frequency of
appearance.

The drawback of this learning is that they take a full day on a single machine
to train one generation of solutions. In comparison, the dedicated robust taboo
search [21] or the fast ant systems [23] will find better solutions in just a few
minutes.

However, in the context of big data, one day of calculation on a single machine
is still reasonable regarding usual machine and deep learning trainings that may
take a couple of weeks on a cluster of GPU-based machines [10].

In contrast with metaheuristics dedicated to a specific optimization problem,
the advantage of these learning techniques is that they are rather simple to design
and do not require a priori knowledge of the problem at hand. However, for the
QAP, the quality of the solution produced with these learning techniques is not
competitive compared to state-of-the-art metaheuristics.
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A research avenue could be a finer tuning of parameters (i.e. minimum support,
itemsets limit and number of solutions) to see how they can influence the search
process and to control the duration of the execution according to the scenario.
For example, a low minimum support allows limiting the training phase to
couple minutes, while a higher number of solutions will make it last a week.
Another perspective could be to investigate how machine learning can enhance
state-of-the-art metaheuristics for the QAP.

The general conclusion of this paper is that there is still a long way till
general learning techniques will surpass more direct optimization techniques
for the QAP. This contrasts with works on other optimization problems like
the travelling salesman. Indeed, for this problem, a few dozen of a very fast
randomized local search is able to extract most of the components of target
solutions. Since learning techniques can be very efficient for this optimization
problem, it would be interesting to study its behavior for in other problems where
a permutation is search for, such as the flowshop scheduling problem.
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