ORSA Journal on Computing
Vol. 6, No. 2, Spring 1994

0899-1499 /94 /0602-0108 $01.25
© 1994 Operations Research Society of America

Parallel Taboo Search Techniques for the Job Shop
Scheduling Problem

Eric D. TAILLARD / DMA, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Email:
taillard@dma.epfl.ch

(Received: October 1991; revised: July 1992; accepted: December 1993)

We apply the global optimization technique called taboo search
to the job shop scheduling problem and show that our method
is typically more efficient than the shifting bottieneck proce-
dure, and also more efficient than a recently proposed simu-
lated annealing implementation. We also identify a type of
problem for which taboo search provides an optimal solution in
a polynomial mean time in practice, while an implementation of
the shifting bottleneck procedure seems to take an exponential
amount of computation time. included are computational re-
sults that establish new best solutions for a number of bench-
mark problems from the literature. Finally, we give a fast par-
allel algorithm that provides good solutions to very large
problems in a very short computation time.

The job shop scheduling problem, or J || C,,,, in the classi-
fication of Lawler et al.”! has been studied for a long time.
Recent works include those of Carlier and Pinson,*! Adams
et al.[!! van Laarhoven et al.®! and Applegate and Cook, !
who propose, respectively, a branch and bound method,
the shifting bottleneck procedure, an adaptation of simu-
lated annealing (SA), and some extensions of the shifting
bottleneck procedure for solving this problem.

The form of the problem may be roughly sketched as
follows: we are given n jobs, each composed of several
operations, that must be processed on m machines. Each
operation uses one of the m machines for a fixed duration.
The operations of a given job have to be processed in a
given order. The problem is to find a schedule of the
operations on the machines, taking the precedence con-
straints into account, that minimizes the make span (C,,,),
that is, the finish time of the last operation completed in the
schedule. This problem was shown to be NP-hard by Lawler
et al.’) The difficulty of this problem may be illustrated by
the fact that the optimal solution of an instance with 10 jobs
and 10 machines, proposed by Fisher and Thompson,”
was not found until 20 years after the problem was intro-
duced.

Branch and bound methods have the advantage of pro-
viding an optimal solution to this problem. Unfortunately,
the computing time becomes prohibitive when the number
of operations exceeds a few hundred. By contrast, the
method proposed by Applegate and Cook? is a faster
heuristic method that provides good solutions, but without
guaranteeing their optimality. Finally, the SA implementa-
tion of van Laarhoven et al®®! provides better solutions, but

the computing times are much higher. Its advantage is its
very simple implementation.

As a foundation for our comparative study using taboo
search, we especially thank D. Applegate and B. Cook for
making available their implementation of the shifting bot-
tleneck procedure (referred as bottle from now on) and
those of the extensions of this procedure (bottle-4, bottle-5,
and shuffle procedures). These extensions, discussed in the
paper of Applegate and Cook,”} provide better solutions
than the original method but need much higher computa-
tion times. ‘

This paper, to our knowledge, represents the first effort
to apply the taboo search technique (TS) to the job shop
problem. Our implementation investigates some new fea-
tures of TS including random taboo list length and fre-
quency-based memory. Section 1 gives the representation
of the job shop problem in graph theoretical terms. Then,
section 2 presents an implementation of TS for this prob-
lem. We discuss the effectiveness and the efficiency of this
method in section 3. In section 4, we give first some ways
of parallelizing TS and then give a general method for
parallelizing randomized algorithms that is relevant for
applying TS to the job shop problem. We discuss CPU
times required by our method in section 5 and provide
conclusions in section 6.

1. Representation of the Probiem in Terms of Graph Theory
It is useful to represent the job shop problem in graph
theoretical terms by creating a vertex for each operation.
We number the vertices from 1 to N, where N denotes the
total number of operations. Two fictitious vertices, 0 (be-
ginning) and N + 1 (end), are then added. An arc (i,/)
connects operations i and j if they belong to the same job,
and i has to be processed immediately before j. The ficti-
tious operation 0 is connected by an arc of length 0 to the
initial operation of every job; the final operation of every
job is connected to operation N + 1. The length of arc G,
is the duration of operation i. These arcs represent a set of
conjunctive constraints.

All operations that have to be processed by the same
machine are fully connected together by edges (disjunctive
constraints). Figure 1a illustrates the case of a 3-machine
job shop with 3 jobs composed of 3, 2, and 2 operations.

Subject classifications: Scheduling, taboo search technique, complexity, parallel algorithms.

108

Parallel Taboo Search Techniques

Machine 2

a)

Machine 1

b)

Agws 1. a) Example of a 3-machine, 3-job problem; b)
feasible schedule of this problem.

The problem consists in orienting these edges and giving
them a length corresponding to the duration of the opera-
tion corresponding to their origin. This orientation has to be
chosen in such a way that the length of a longest path from
0to N + 1is minimized. A feasible solution corresponds to
an orientation of the edges of the graph without oriented
cycle. Figure 1b illustrates a feasible schedule of the exam-
ple of Figure la. The length of a longest path from 0 to
N + 1 cotresponds to the make span; an operation is said
to be critical if it belongs to a longest path.

The problem consists now in finding a longest path in a
graph. If one removes the redundant disjunctive arcs, every
operation (except the fictitious ones) has exactly 2 succes-
sors and 2 predecessors. We introduce the following addi-
tional notations. For every operation i (1 < i < N):

Job to which i belongs.
M; Machine which processes i.
d; Processing time of i.

PJ, (f it exists) operation belonging to job J; that pre-
cedes i. .

SJ; (If it exists) operation belonging to job J; that fol-
lows i.

PM; (If it exists) operation processed on machine M;
just before i.

SM, (If it exists) operation processed on machine M,

just after i.

r, (Release date) earliest beginning date of operation
i

(Length of the tail), length of a longest path from i
to N+ 1

qi

An operation is critical if and only if:
£ + 9= Cmax

For every operation i we have the following identities
(where we assume that d;, r;, and g; = 0 for the undefined
indices 1)

7, = max(rpy, + dppg,s Tpy, + dey)

q: = max(qsp,, 4s;,) + i

We now present an algorithm that computes in time
O(N) all values of r; using a variation of the labeling
algorithm of Bellman, adapted to our special graph. (The
computation of the g; values is similar.)

Algorithm te Calculate r,'s

0) Vi such that PM, and PJ; are undefined, introduce i
into Q, a set of operations for which 7; is calculable.
1) Repeat, until Q = &
2) Label i € Q.
Q < Q\{i}
Calculate ;.
if PMg;, is labeled or not defined then Q « Q U {S];}
if Plsy, is labeled or not defined then Q « QU
{SM,}.

2. implementation of Tahoo Search
Briefly stated, TS is a global iterative optimization method:
the search moves from one solution to another, in order to
improve the quality of the solutions visited. This supposes
a neighborhood structure. When the search arrives at a local
optimum, it does not terminate but moves beyond the local
optimum by choosing the best possible (allowed) neighbor.
In order to avoid cycling, the move that leads back to the
local optimum just left is forbidden. This is accomplished
in a short-term memory framework by keeping the forbid-
den (taboo) moves in a structure called taboo list. For a
taboo list of a given size, when an element is added to the
taboo list, another (the oldest one) is removed. The size of
the taboo list must be large enough to avoid cycling, but
small enough not to forbid too many moves. However, it
may happen that an interesting move (such as a move that
improves the best solution already found) is taboo. In order
to nevertheless perform such moves, an aspiration level is
defined (depending, for example, on the current solution
and the best solution found). Further, in order to diversify
the search, a long-term memory mechanism is implemented.
Taboo search has been applied to many scheduling prob-
lems, as related in Barnes and Laguna®) For additional
features of the method, as applied in a variety of combina-
torial optimization settings, the reader may refer to the
papers of Glover.*”!

110

Taillard

We now describe the structures we have used in our
implementation of TS:

NEIGHBORHOOD:

A neighboring solution in our approach is a solution
obtained by permuting two successive and critical opera-
tions that use the same machine. Van Laarhoven et al®!
have shown the following properties of this neighborhood:

e Starting with any feasible solution, the new one is feasi-
ble too.

e Starting with any feasible solution, it is possible to reach
an optimal solution.

The permutation of non-critical operations, by contrast,
cannot improve the objective function and may create a
directed cycle in the graph, i.e., an infeasible solution. The
evaluation of the make span of neighboring solutions may
be done very quickly (in time O(N)). If critical operations a
and b (b = SM,) are permuted, the new values of changed
parameters may be calculated as follows:

]

ry = max(rppy, + dpp, 7oy, + dpy,)-

’

r, = max(ry + dy, rp;, + dp).

!

A
g, = max(q;, gs;,) + d,.

max{(qgp, 4s;,) + da-

Then the value C/,,, = max(r} + q;, 7, + 4,) gives the value
of the new longest path if it passes through a or b, or a
lower bound on the new value of the make span. Each step
of TS consists of examining the entire neighborhood (com-
plexity: O(N)) and of choosing the best allowed neighbor
(i.e., non-taboo or accepted with regard to the aspiration
level).

For creating an initial solution, we schedule one job after
the other, placing the successive operations of a job at the
first possible place in the partial schedule. So, the complex-
ity of creating an initial solution is O(N?). As the jobs are
chosen in index order (essentially random) for creating the
initial solution, the resulting initial solution is generally
very bad. However, a taboo search that is properly imple-
mented is characteristically able to find good solutions,
whatever the initial solution is. Starting with a better initial
solution normally only affects the search in the short term,
but not over long term.

TaBoO LisT:

Let k be the number of the iteration (i.e., the number of
moves already executed) at the point where operations a
and b = SM, are permuted. Changing the current succes-
sor of b (on a machine) is now forbidden if the number of
the current iteration is lower than k + L; L is a value called
length of the taboo list, which strongly depends on the
number of jobs and machines. For (hard) problems with
about as many jobs as machines, we have found in prelimi-
nary experiments that the taboo list length has to be set to
about (n + m)/2 for getting good results; conversely, for
(simple) problems with n > m, a taboo list length of N/2

provides good solutions. The transition between hard and
simple problems occurs (for random generated problems,
see next section) when the number of jobs becomes greater
than 4 to 5 times the number of machines. So we propose
setting:

L=(n+m/2)-e"/>" + N/2-e "/,

Such a taboo list length seems to be convenient if n > m,
but we have not performed extensive tests for problems
with m > n.

The taboo list is implemented as an integer vector con-
taining N iteration numbers (each set to — initially)
which creates a memory for each operation of the last time
it was swapped to become the new predecessor of another
operation. One also could use a list that forbids 4 to have b
as successor, for every possible 2 and b. However, such a
list may use a huge memory space if N is large.

In order to avoid cycling phenomena more effectively,
the size of the list is randomly and uniformly chosen
between two extreme values L,,;, and L,,, and changed
each time a number of iterations slightly greater (for exam-
ple 5%) than its maximal length has been performed. L,,;,
=10.8L) and L,,, = [1.2L] are convenient values for the
considered problems. Dynamic taboo lists have been sug-
gested by Glover,”} and we have used a list similar to the
preceding in an adaptation to flow shop sequencing,!'* but
this is the first time to our knowledge that the foregoing
random policy has been used.

ASPIRATION LEVEL:

The type of taboo list we have chosen may forbid inter-
esting moves. Thus, a move will be performed despite
being taboo if the length of the new longest path from 0 to
N + 1 passing through the permuted operations is shorter
than the value of the best solution found up to the current
iteration.

LoNG-TERM MEMORY:

For problems that need a great number of iterations, a
mechanism that prevents the repetition of the same (small)
exchanges over long term is useful. The mechanism we
choose is the following: we store for each operation the
number of times it was pushed earlier in the schedule in
order to compute the frequency at which each operation is
pushed earlier.

The more frequently an operation is pushed back, the
more we will penalize a move that pushes the operation
back again in the future: in the evaluation of the neighbor-
hood, we add the quantity P - f(b) to the value of a move
that swaps operations @ and b = SM,, where P is a new
parameter of our method and f(b) is the frequency at
which b has been pushed back. The value given to P
depends strongly on the problem size and on the problem
instance. If we call A7** the maximal increase of the objec-
tive function between two successive solutions met by the
search till iteration k, it turns out that P = 0.5- A7**- VN
provides good solutions for every problem tested. Intu-
itively, the formula that gives the value of P is “justified”
as follows: the penalty should be proportional to the value

m

Parallel Taboo Search Techniques

of the moves (this explains the factor A}**); as the number
of moves increases with the size of the problem, it can be
observed that the frequency at which each move is per-
formed decreases as the size of the problem grows; the
factor YN normalizes the decrease of the frequencies. We
have observed that the factor 0.5 in the computation of P
provides generally good results, whatever the problem
type and size are. Nevertheless, such a formula, as well as
the formula that gives the taboo list size, is not based on
theory.

Using a frequency-based memory, we have succeeded in
improving every best known solution of 50-job and 20-ma-
chine problems proposed by Taillard"®! (see Table 3) with-
out increasing the computation times.

3. Hficiency of Taboo Search

In this section, computational results are given first for well
known instances of problems and then for some types of
random problems.

A. FISHER-THOMPSON'SP®] 10-JoB-10-MACHINE PROBLEM:

Although this famous problem might not be a good test
of the general performance of a job shop scheduling method,
we applied our approach to see whether it could find an
optimal solution. The optimal solution of this problem was
ultimately proved to be 930 in 1988 by Carlier and Pinson.t]
We have run our TS algorithm 15 times (first without
frequency based memory), and we have found an optimal
solution of the problem every time. The length of the taboo
list was randomly changed every 15 iterations between 8
and 14.

The number of iterations necessary to find the optimal
solution using only the short-term memory is huge: be-
tween 2 - 10° and 35- 10° iterations. Adding a longer term
frequency-based memory sometimes makes it possible to
find an optimal solution much faster: performing 10 runs
with a cut-off limit of 107 iterations (i.e., some hours on a
personal work station) we found an optimal solution 8
times; in 2 cases, an optimal solution was found in less
than 5 minutes (2-10° iterations). But more intelligence
should be added to TS if one wants to get an efficient
method that provides sub-optimal solutions to small and
hard problems. Indeed, exact branch and bound algorithms
run faster at the present time than this implementation of
TS for such small problems. However, the mean make span
obtained after 10* iterations (i.e., some seconds on a per-
sonal workstation) is less than 3% above the optimal one.
The time needed to solve optimally another 10-job-10-ma-
chine problem will be discussed also in section 4c.

B. OTHER CLASSICAL PROBLEMS:
We have considered problems from 3 different sources:

1) 40 problems of 8 different sizes due to Lawrence!"”!
and that were communicated to us by E. Pinson: 10
jobs X 10 machines, 15 X 10, 20 X 10, 30 x 10, 10
X 5,15 x 5,20 X 5, and 15 X 15. Five problems of
each size have been considered.

2) 3 problems of size 20 X 15 due to Adams et al."]
that were communicated to us by D. Applegate.

3) 80 problems of 8 different sizes (15 X 15, 20 X 15,
20 X 20, 30 x 15, 30 X 20, 50 X 15, 50 x 20, and
100 X 20) due to Taillard.!*"]

We have repeated the experiments done by van
Laarhoven et al.®! on Lawrence’s!” problems, but by us-
ing sequential TS instead of SA; every problem was solved
5 times with independent trajectories (starting with the
same initial solution but another seed for the random
number generator used for the choice of the taboo list
lengths). The computers used to do CPU time comparisons
were identical (VAX 785).

The mean and the best make span obtained by TS after a
fixed amount of time were uniformly better than those of
SA. Figure 2 shows the comparison of the make spans
found for the five 10 X 10 problems. The full line is the
mean make span, and the dotted line is the best make span
found by TS; the triangles represent the mean make span,
and the circles the best make span found by SA. We can
observe that TS is capable of getting a solution with a given
make span about 10 times faster than SA; this is true for the
other classical problems considered.

In the same figure, we have also plotted the mean
solution value that the (generalized) shifting bottleneck
ptocedures (bottle, bottle-4, and bottle-5) provide. We see
that TS runs faster than these procedures in these instances.
For other instances (with 20 and 30 jobs) bottle procedure
sometimes runs slightly faster than TS. However, CPU time
comparisons are hard to perform because the code of Ap-
plegate and Cook?! runs more and more slowly with
increases in the constants that fix the sizes of arrays (maxi-
mal number of jobs and machines...).

In Table 1, solutions obtained with TS are compared
with the best solutions provided by some authors on the
problems due to Lawrencel’®” and Adams et al!! for
which the optimal solution is not yet established. (The
names given to these problems are those given by Apple-
gate and Cook) It turns out that our TS implementation
has succeeded in improving every best-known solution.

Table 2 gives the percent above best-known solution
values obtained by the bottle procedures for the problems
of size up to 30 X 20 due to Taillard."! It was not possible

960 '
\
_3 950 ‘.‘ A Taboo search (mean)
= 940 “\ ------ Taboo search (best)
930 ‘\\ . Bottle procedures
920 X Y A Simulated annealing (mean)
910 N o o Simulated annealing (best)
\
900 1
890
880 1
870 1
Optimum T T Y
1 10 100 1000
CPU time (seconds on VAX 785)

Fgure 2. Performance of TS, SA, and bottle procedures on
10 X 10 problems.

112

Taillard

Table 1. Best Solution Values Found by Some Authors

Adams, Balas Applegate and

Size and Zawack!! Cook!? Taboo Search

Problem (Jobs, Machines) Upper Bound Upper Bound = Upper Bound
ABZ7 20,15 730 668 665
ABZ8 20,15 774 687 676
ABZ9 20,15 751 707 691
LA21 15,10 1084 1053 1047
LA27 20, 10 1291 1269 1240
LA29 20,10 1239 1195 1170
LA38 15,15 1255 1209 1202

Table II. Percent Above Best-Known Solutions Provided by Some Methods (Run Time of TS Restricted)

15 Jobs, 20 Jobs, 20 Jobs, 30 Jobs, 30 Jobs,

15 Machines 15 Machines 20 Machines 15 Machines 20 Machines
ABZ 9.0 10.1 10.0 83 13.1
TS (3790) 5.2 (5544) 7.3 (8941) 6.6 (8174) 11.9 (14169) 13.6
Bottle-4 45 5.6 6.2 4.8 84
TS. (42423)1.7 (64844) 2.6 (93176) 1.6 (105695) 2.1 (201542) 3.5
Bottle-5 34 44 4.8 4.3 7.3
TS (142989) 0.9 (215935) 1.5 (343927) 0.9 (426762) 1.1 (762446) 1.4
Shuffle 31 40 4.7 42 7.2

to treat bigger problems because of run-time errors gener-
ated by bottle procedures, probably due to the explosion of
the size of the search tree that these procedures use. The
performance of TS without long-term memory is shown
beside each bottle procedure, where the TS procedure is
restricted to the same time as the bottle procedure. The
numbers in parenthesis are the number of iterations per-
formed by TS. We see that TS produces much better solu-
tions than bottle-4 and bottle-5 procedures, even when
restricted to terminate before finding its best solution.
However, in some cases under this restriction, it may be
favorable to use the shifting bottleneck procedure as pro-
posed by Adams et al.l'! This suggests that one can create a
TS method utilizing this procedure as well as the simple
swap moves we incorporate.

In this table, we give also the performance of the shuffle
post-optimization procedure proposed by Applegate and
Cook.”l As these authors suggest, we use the starting
solution provided by the bottle-5 procedure. Then we run
shuffle with a set of parameters that allows the procedure to
end after a “reasonable” computation time (between some
seconds and some hours, depending heavily on the in-
stance of problem). The improvements provided by this
post-optimization procedure are very low in mean, espe-
cially for the biggest problems.

In sum neither the bottle procedures nor the shuffle
procedure (applied to the solution produced by bottle-5
procedure) succeeds in improving the best-known solu-

tions to any of Taillard’s!'™™ problems, and, hence, the
best-known solutions continue to be those found by TS.

Finally, we summarize in Table 3 the best-known value
for the problems proposed by Taillard.'*! Bold characters
indicate the problems for which the frequency-based mem-
ory TS version has provided better solutions. The problems
are given in the same order as they are published. Proven
optimal values are indicated with an asterisk in the table,
and we see that most of the 50 X 15 and 100 X 20 problems
have been solved to optimality. (Optimality is established
by attaining a lower bound, computed by a procedure
contained in the Applegate and Cook!! codes.)

C. RANDOM PROBLEMS:

For additional numerical experiments, we have chosen
the following type of problems (the same type as Fisher-
Thompson’s®!):

® There are exactly m operations per job, one per machine.

e The processing times are randomly generated, uniformly
distributed between 1 and 99 (integers).

e The sequence of operations of a job on the machines is
independent from the other jobs.

Slight changes of our implementation suffice in order to
treat many other types of problems (any number of opera-
tions per jobs, release date for each operation, set-up times
depending on the previous operation on the same machine,
open shop problems...).

Parallel Taboo Search Techniques

Table III. Best-Known Solutions Values of Taillard’s™*® Problems

15 Jobs, 20 Jobs, 20 Jobs, 30 Jobs, 30 Jobs, 50 Jobs, 50 Jobs, 100 Jobs
15 Machines 15 Machines 20 Machines 15 Machines 20 Machines 15 Machines 20 Machines 20 Machines
1231* 1376 1663 1770 2064 2760* 2921 5464*
1253 1381 1626 1853 1983 2756* 3002 5181*
1224 1367 1574 1855 1896 2717* 1835 5568*
1181 1355 1660 1851 2031 2839* 2775 5339*
1235 1366 1598 2007 2032 2689 2800 5392*
1243 1371 1679 1844 2057 2781* 2914 5342*
1228 1480 1704 1822 1947 2943* 2895 5436*
1221 1432 1626 1714 2005 2885* 2835 5394*
1289 1361 1635 1824 2013 2655* 3097 5358*
1262 1373 1614 1723 1973 2723* 3075 5213
For these problems, when n > 6m (m =2...10), for § 1000000 5
many thousand problem instances of various different sizes, § 100000 1 .
we have always found a schedule which saturates a ma- H . ° N
chine. So we conjecture that the optimal make span, when g 10000 4 ¢ ° s ®
m/n — 0, is surely given by: H o* o, *°
s 1000 § . am
Cmax = max (Z d;) 100 4 a a a) § machines
jElom M= ® 1)200jobs
10 4 e
The independence of the sequences is important, because | ol
it is clear that, in the case of a general flow shop (which is a " 10 100 1000

special case of a job shop problem for which the operations
of every job uses the machines in the same order), the
optimal make span is not given by this formula.

We were first interested in the mean number of itera-
tions needed by TS to find an optimal schedule that satu-
rates a machine for such problems. Figure 3 shows the
dependence of the number of iterations, as a function of:

a) the number of jobs, for 5 machines;
b) the number of machines, for 200 jobs; and
¢) the number of machines, for n/m = 10.

Graphically, we see that this dependence is polynomial
(logarithmic scales!), and we see that 20 X 5 problems are
harder than those of size 30 X 5. Fisher and Thompson®!
previously mentioned that squared problems (n = m) were
harder than rectangular ones (m < n), but it is surprising
that these may be solved in polynomial mean time. As an
iteration may be done in time O(nm), the mean complexity
of our TS implementation is O(n** m*%8) for these prob-
lems. This complexity can be deduced by linear regression
over the logarithm of the number of iterations needed to
solve problems with n > m.

In Figure 4 we have plotted the mean CPU time needed
by TS and bottle procedure, as a function of n, to solve
simple problems with m = 5. It turns out that the mean
complexity of the bottle procedure (as implemented by
Applegate and Cook®!) seems to be exponential; this fact is
not surprising if one knows that this procedure solves
potentially difficult sub-problems of size n by a branch and
bound technique. (However, it is not clear whether the
sub-problems created are more difficult than the original

Number of jobs (a and ¢) or machines (b}

Agure 3. Mean number of iterations to solve optimally
random problems.

:

Exponential curve ,"

g

Polynomial curve

CPU time (seconds)

Bottle procedure

Taboo search

1000
Number of jobs

Agure 4. CPU time needed by TS and bottle procedures to
solve optimally random problems with m = 5.

problem or whether the branch and bound implementation
is poorly adapted for the sub-problems. Perhaps the num-
ber of sub-problems also grows exponentially.)

D. BIG PROBLEMS:

Since finding optimal solutions for big problems with
n > m is very time consuming, it is of interest to find good
solutions rapidly. The solutions of the greedy algorithm we
used for generating the initial solution for TS are more than
8% above the optimal solution (or more precisely a lower

114

Taillard

bound to the optimal solution) for problems with 5 or 10
machines, with 1,000 to 100,000 jobs, and with processing
times randomly generated between 80 and 100 (see Figure
5). Generating such a solution takes a time proportional to
O(n*m), and this complexity is relatively high. For such
problems, it is possible to generate better solutions in
O(n - g(m)), where g(m) is a function depending on the
procedure used in step 2 of the following “divide and
conquer” algorithm:

Algorithm Generating Good Solutions to Big Problems:

1) Divide up the original problem into p sub-problems,
each including about n/p jobs, p proportional to 7 and
depending on m (each job of the original problem ap-
pears once in the set of sub-problems).

2) Find a good schedule for every sub-problem, treating
each as an independent problem.

3) Construct the global schedule by putting one sub-prob-
lem after the other and by scheduling in one time every
operation of a sub-problem.

The larger the number of sub-problems into which the
initial problem is divided in step 1, the faster the sub-prob-
lems will be solved in step 2 (assuming that the sub-prob-
lems are big enough to remain simple); but step 3 will
become harder and the final schedule will be worse. The
way of creating sub-problems may be arbitrary or more
elaborate. (For example, if each job has a due date as
subsidiary data, it seems reasonable to create sub-problems
with jobs having approximately the same due dates.)

Since solving every sub-problem optimally by TS may
take a great amount of time, solving them in a summary
way may accelerate the computation without degrading the
final solution too much. For example, one could use a TS
that runs, at most, half the mean number of iterations
needed to find an optimal schedule of the operations of
each sub-problem.

An optimal sequence of sub-problems for step 3 will
result by solving optimally an asymmetric traveling sales-
man problem with p + 1 cities: the distance from city i to
city j (i,j = 1,..., n) is given by the minimum amount of
time between the beginning of sub-problem i and the

Greedy, m = 10
t-. | mmmmems Greedy, m = 5
) Parallel, m = 10

Parallel, m=$

+ Sequential, m = 10
- Sequential, m = 5

Percent above optimal solution

0
1000

100000
. Number of jobs

figwe 5. Performances of some algorithms for big problems.

10000

beginning of sub-problem j (as sequenced in step 2); the
distance from city i to city p + 1 is the make span of
sub-problem i and the distance from city p + 1 tocity i is
0 (i=1,...,n). The make span of the whole problem is
clearly given by the length of the traveling salesman’s tour
if the sub-problems are sequenced as the corresponding
cities in the tour, the first sub-problem treated being the
one that corresponds to the city that follows city p + 1. In
Figure 5, we give the performance (percent above a lower
bound to the optimal solution as a function of the number
of jobs) of this (parallel) algorithm if the sub-problems are
sequenced in an arbitrary order (sizes of sub-problems:
25 X 5 and 50 X 10). This provides motivation for using
(fast) heuristic methods for solving this asymmetric travel-
ing salesman problem.

A parallelization of the most time-consuming part of the
algorithm, step 2, is straightforward, and it is easy to
derive a parallel algorithm that generates good solutions in
O(log n - g(m)) time using O(n/log n) processors: each
processor solves O(log n) sub-problems in time O(g(m)),
and the computation of the make span of the whole prob-
lem may be done in time O(mlog n) if the sub-problems
are sequenced in an arbitrary order in step 3 and if the

. connections between the processors create a tree (where

g(m) is larger than m).

If the sub-problems are solved sequentially in step 2, one
could suppress step 3 by adding release dates to each
operation: these release dates correspond to the ending
date of the last operation on each machine of the previous
sub-problem scheduled (if any). We see in Figure 5 that this
sequential algorithm is slightly better than the parallel one
that sequences the sub-problems in an arbitrary order. (The
plot of the parallel algorithm with m = 5 is almost covered
by the plot of the sequential one with m = 10.)

4, Paralielization of TS

As TS can be time consuming, it is of interest to use
parallel computers to reduce the computing times. Conse-
quently we propose some adaptations of our algorithm to
parallel computers in this section.

A. COMPUTATION OF THE LONGEST PATH:

Using a profiler program, we have observed that the
most consuming part of our TS algorithm is the computa-
tion of the longest paths. If we consider the algorithm of
section 2 to calculate the r;’s, we see that step 2 may be
computed in parallel for every element in Q. So, this
algorithm may be expressed as follows: let A; be the
maximal number of operations on a path from 0 to i
(i=0...N+1, Ap=0). So A;=max(Apy, Ap)+ 1
Given the values of A; we might use the following algo-
rithm to calculate the r/’s:

a) For k = 1 to max; A; do
b) Compute r; for the operations such that A; =k

Operation b, which corresponds to operation 2 of the
algorithm of section 2 if Q is handled as a queue (first in,

115

Parallel Taboo Search Techniques

first out), may be computed in parallel, so we have a
theoretic speed-up S of:
N

max A;
i

S =

This speed-up depends on the problem and on the
schedule; the bounds on S are 1 in the worst case and m in
the best case (for example, in a general flow shop problem).

In practice, the values of A; need to be calculated, and
the operations for which this value is identical need to be
grouped; this requires additional work. Thus, we propose a
different parallel approach for computing the longest path
in which we allocate one process to each of the m ma-
chines. The principle used may be expressed as follows:

Process machine J.

0) Send to process machine Mg; the provisional value r; +
d; and label i, for every operation i that may be pro-
cessed initially by machine j (that is, considering the
first operations of jobs).

1) Repeat, until every r; has been computed:

2) Wait for a provisional value of the earliest beginning
time of an operation i such that M; = j; this value is
communicated by another process.

3) Store this value

4) For every operation i for which the provisional value
is known and r; is computable (i.e., 7y is already
computed), label i, calculate r;, send to process ma-
chine Mg (if it exists) the provisional value r; + d;.

An implementation on a distributed machine (MIMD,
Transputer for example) works well, since only the values
for the operations on machine j must be known by the
process machine j. Here, the speed-up of the algorithm is
bounded by the previously defined value S.

We have implemented this parallel method on Transput-
ers, involving one process per machine, where every pro-
cess runs on a single processor. Figure 6 gives the speed-up
obtained using m processors connected in ring.

20 Machines

10 Machines

6 Machines

31 4

2 Machines

l&) 120
Number of jobs
Agure 8. Speed-up of the Transputer’s implementation.

Q 20 4 60 80

The reason for the relatively bad performance of this
algorithm for a high number of processors is due to two
factors. First, the parallel formulation has a speed-up lim-
ited by the value of S. Second, the interconnecting topology
is not appropriate for a complete interconnecting. Hence,
the transmission times are large compared to the computa-
tion times.

In the case of a general flow shop sequencing problem,
the configuration is ideal for our implementation since
machine j has to transmit information only to machine j + 1.
In this case, the speed-ups are much better and do not
depend on the problem and on the current solution: We
have observed speed-ups of 14 with 15 processors. The
communication times remain significant, but, if the compu-
tations become harder (for example, if there are set-up
times or if the processing times are not fixed, ...), then this
implementation may become interesting.

B. DETERMINING CRITICAL OPERATIONS:

In order to determine the critical operations, our TS
needs first to calculate the g,’s. This may be done in parallel
with the computation of the 7/s. Determining a longest
path from 0 to N + 1 may be done as follows:

a) Calculate r; Vi

b) Calculate g; Vi

o) Calculate C,,,, = max;(r; + gq,)

d) Determine the critical operations, ie., {ilr; +4;=
Cmax}'

A second parallel level appears here, because it is possi-
ble to perform steps a and b independently; however, an
efficient implementation supposes a common memory,
since steps ¢ and d need simultaneous accesses to variables
r, and g;. So a PRAM (parallel random access machine) is
well suited for this process. We have tried to implement
such a parallelization on a Cray-2 with 2 processors. But
such a computer is not designed to treat applications with
frequent synchronizations, and we have observed that the
time needed to synchronize two tasks executed on different
processors can be greater than the computation time of the
r/s. So, such a big computer is not useful to treat the
problems we are considering. However, other computers
might speed up significantly the search with such a paral-
lelization.

C. GENERAL METHOD OF PARALLELIZING RANDOM ALGO-
RITHMS:

The method presented here has been known for a long
time and is currently used for a wide range of problems
(see, for example, the works of Roussel-Ragot et al. 2!
MohrM!! and Taillard(*>*4!). However, we have not seen
any theoretical analysis of it.

Let & be an iterative algorithm that has a probability
1 — g(t) to meet a condition after time £. Let us suppose
that the time needed to meet this condition depends only
on the initial solution given to &, or on a random parame-
ter chosen by &, depending only on the running occurrence
of &. In practice, & may be a TS, a SA, or any random

118

Taillard

iterative algorithm, and the condition to meet may be:
"’optimal solution found.”
If 3a > 1, f > 0 and p > 2 integer such that
D) <at (Fst<ph
gt =at (ph<tH)

then algorithm &, which consists of executing & p times
during time ¢, has a higher probability of meeting the
condition for ¢ € [f, pf] than algorithm & executed during
time pt. We have:

P <@ H' =a P (F<t<ph
g(pt) =a"? (f<t)
= q7(t) < q(pt) (F<t<ph)

Note that the conditions needed if algorithm & is to be
better than & are rather strong. However, in many cases,
the empirical function ¢(t) for iterative algorithms is not
very far from an exponential one. So, the execution of many
independent trajectories is a very efficient form of paral-
lelization, since the speed-up is nearly ideal.

Figure 7 shows an empirical curve g(t) and the best
exponential curve interpolating (t). This empirical curve
was found by solving the 10 X 10 problem LA21 indepen-
dently 500 times with our TS algorithm. In this case, the
sequential algorithm % would not be as good as the initial
one, but Figure 7 shows that a parallelization of it will lead
to very good speed-ups. For example, if the optimal solu-
tion of problem LA21 is desired with probability 0.95, a
speed-up of about 14 can be obtained with 20 processors.

8. GPU Times

Above, we have purposely suppressed references to CPU
times. Indeed, these depend strongly on the implementa-
tion of the program; sometimes minor changes lead to
major fluctuations in computing time. For example, the
re-sizing of arrays in the bottle procedures may signifi-
cantly alter the speed of these procedures.

In Table 4, we give the mean time by iteration and by
operation needed by our sequential implementation on
some different computers. More precisely, one iteration of
our algorithm for a problem with N operations takes a
time given by the appropriate constant of this table multi-

Probability

06 - Observations

——— Exponential curve

0.4

0.2 4

T T T
[20000 40000 60000 80000 100000

Number of iterations

figure 7. Empirical function g(¢).

Table IV. Speed of Several Computers

Silicon Graphics
VAX785 VAX8600 (10 Mips) Cray-2
167 us 64 us 17.2 us 17.5 us

plied by N. For example, 10,000 iterations of our implemen-
tation of TS on a VAX 8600 takes about 1 minute (64
seconds) for a problem with 100 operations.

The VAX and Silicon Graphics computers have been
programmed in Pascal and compiled with optimization
options, the Cray in Fortran (without vectorization).

6. Conclusion

We have presented a special method based on taboo search
for minimizing the make span of a job shop scheduling
problem, considering both sequential and parallel imple-
mentations. We have implemented a parallel version of our
algorithm on a distributed computer. Although the parallel
approach is not well suited for problems with fixed pro-
cessing times and fully independent orders of operations
on machines, we think that our implementation may be
interesting for practical problems, especially if the process-
ing times are given by some complicated function and if
there exists a certain order on the machines for the opera-
tions of a job.

In the sequential case, we have shown that TS is a very
competitive technique. First it is very simple to implement.
The number of iterations done by a search may be fixed 4
posteriori, unlike SA where the cooling parameters deter-
mine the length of the execution. Further, our version of TS
is much more efficient than the SA version proposed by
other authors, and for many problems is more efficient than
the shifting bottleneck procedure (which is much more
difficult to implement than TS). The addition of a long-term
memory that is very easy to implement is an efficient way
to improve the quality of the solutions produced by long
TS runs.

Although it was not possible to demonstrate that TS
converges to an optimal solution, our implementation never
exhibited cycling phenomena for reasonable parameters
choices.

For small “square”” problems (n = m), TS is slower than
the best branch and bound methods. However, when the
problem grows or becomes “rectangular,” the efficiency of
TS is higher than any other exact or heuristic methods
published. In addition, our TS approach establishes new
best known solutions for every problem in two sets of
benchmark problems from the literature.

Surprisingly, we have observed that TS optimally solves
large random problems with m < nina polynomial mean
time. Thus, we have obtained optimal solutions of some
10,000 operation problems (2000 jobs and 5 machines).
Problems of this size have never been addressed in previ-
ous studies.

Finally, we have presented a parallel algorithm that very
rapidly generates good solutions to huge problems (includ-
ing 50,000, 1,000,000 . .. operations).

117

Parallel Taboo Search Techniques

Possibilities for future research include the use of other
features of TS and other neighborhood definitions as bases
for archiving further enhancement of solution capabilities
of job shop scheduling problems.

Acknowiledgments

The author would like to thank the anonymous referees for their
comments. Special thanks are addressed to Fred Glover, who
greatly improved the presentation of this paper by his multiple
and valuable suggestions. This research was supported by the
Fond National suisse pour la Recherche Scientifique, grant number
20-27926.89.

References

[11]J. Apawms, E. BaLas and D. ZAwWACK, 1988. The Shifting Bottle-
neck Procedure for Job Shop Scheduling, Management Science
34, 391-401.

[2] D. ApPLEGATE and W. CooK, 1991. A Computational Study of
the Job-Shop Scheduling Problem, ORSA Journal on Computing
3, 149-156.

[3] J.W. BarNES and M. LAGUNA, 1993. A Tabu Search Experience
in Production Scheduling, in Tabu Search, F. Glover, M. La-
guna, E. Taillard and D. de Werra (eds.), Annals of Operations
Research 41, 141-156.

[4] J. CaRLIER and E. PINSON, 1989. An Algorithm for Solving the
Job-Shop Problem, Management Science 35, 164-176.

[5] H. FisHER and G.L. THOMPSON, 1963. Probabilistic Learning
Combinations of Local Job-Shop Scheduling Rules, in Indus-

trial Scheduling, J.F. Muth and G.L. Thompson (eds.), Prentice-
Hall, Englewood Cliffs, NJ, pp. 225-251.

[6] F. GLOVER, 1989. Tabu Search—Part I, ORSA Journal on Com-
puting 1, 190-206.

[7] F. GLOVER, 1990. Tabu Search—Part II, ORSA Journal on Com-
puting 2, 4-32.

{8] P.JM. vaN LaArRHOVEN, E.H.L. AARTs and J.K. LENSTRA, 1992.
Job Shop Scheduling by Simulated Annealing, Operations Re-
search 40, 113-125.

[9] EL. Lawter, J.K. LENsTRA, A.H.G. RiNNoOY KanN and D.B.
SHMOYS, 1989. Sequencing and Scheduling: Algorithms and Com-
plexity, Report BS-R89xx, Centrum voor Wiskunde en Informat-
ica, Amsterdam, The Netherlands. .

[10] S. LAWRENCE, 1984. Resource Constrained Project Scheduling: An
Experimental Investigation of Heuristic Scheduling Technigues
(supplement), Graduate School of Industrial Administration,
Carnegie Mellon University.

{11] T. Mowr, 1988. Parallel Taboo Search Algorithms for the Graph
Coloring Problem, Report ORWP 88/11, DMA, Ecole Polytech-
nique Fédérale de Lausanne, Lausanne, Switzerland.

[12] P. RousseL-RAGOT, P. SIARRY and G. DREYFUS, 1987. La Méthode
du «Recuit Simulé» en Electronique: Principe et Parallélisation,
Internal Report, Ecole Supérieure de Physique et de Chimie
Industrielles de la Ville de Paris, Paris, France.

[13] E. TAILLARD, 1990. Some Efficient Heuristic Methods for the
Flow Shop Sequencing Problem, European Journal of Opera-
tional Research 47, 65-79.

[14] E. TALLARD, 1991. Robust Taboo Search for the Quadratic
Assignment Problem, Parallel Computing 17, 443-455.

[15] E. TAILLARD, 1993. Benchmarks for Basic Scheduling Problems,
European Journal of Operational Research 64, 278-285.

