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Abstract

This article describes Ant Systems, a meta-heuristic based on an ant
foraging metaphor. The presentation of Ant Systems has been somewhat
generalized by adding a “Queen” process in charge of co-ordinating classi-
cal “Ant” processes, so that recent Ant Systems can be naturally included
while remaining close to the metaphor. To illustrate how Ant Systems
are practically implemented, a number of applications to the quadratic
assignment problem are reviewed.

1 A model of real ants

The metaphor on which Ant Systems are based can be illustrated by obser-
vations of ants of the species Linepithema humile [2]. An ant colony nest is
isolated, and a food source is provided which is accessible by a bridge composed
of two branches of the same length. Although the ants are totally free to choose
the left or the right branch of the bridge, it is rapidly observed that almost all
ants use a given branch, even if there is no reason to prefer the left or the right
one. This phenomenon is explained by the fact that ants deposit a chemical
substance while traveling. They are able to detect this substance with their
antennae. This substance carries informations and is called a pheromone.

A real ant is modeled as a probabilistic process: In the absence of pheromone,
the ant explores the surrounding area in a totally random manner. If a pheromone
trail is present, the ant follows the pheromone trail with a high probability. If
two pheromone trails cross each other, the ant follows the trail with the larger
amount of pheromone with a higher probability. Since the ant deposits ad-
ditional pheromone when traveling, the foraging process evolves with positive
feedback. Moreover, pheromones evaporate, meaning that a trail that is not
used gradually disappears, amplifying the positive feedback effect.



The observation has been repeated with a bridge whose branches have dif-
ferent lengths [8]. Applying the same probabilistic behavior model, it can be
deduced that the ants will rapidly choose the shorter branch and this is in fact
observed. The phenomenon is explained as follows: at the beginning, when no
pheromone is present, the ants choose the left or the right branch with equal
probability. Since the ants which chose the shorter branch arrive earlier at the
food (and come back to the nest earlier), the pheromone quantity on the shorter
branch grows faster. So the ants are able to find the shortest path between nest
and food, even if each ant has an extremely limited view of the surrounding area.
Inspired by this natural optimization process, Colorni, Dorigo and Maniezzo [1]
design a new meta-heuristic that can be applied to combinatorial optimization
problems. The basic idea is to consider artificial ant processes that repeatedly
build solutions to the optimization problem. Each process builds a solution with
the help of a common memory that can be read and modified by any artificial
ant. The common memory plays the role of trails in the real model.

However, when translated into a combinatorial optimization process, the
simplified foraging process presented above is generally not able to create effi-
cient heuristic methods and this (historical) model must be extended to cover
recent and efficient applications inspired by ant colonies. Indeed, a simple pos-
itive feedback mechanism is difficult to tune correctly and often leads to degen-
erate situations: When the feedback is too strong, the only existing trail is that
of the first ant which built a solution and when it is too weak, the trails are
uniformly distributed in the whole search space. In the first situation, all ants
use the same path and in the second, the the ants just perform a random walk.

The model is extended by considering an ant colony composed of differenti-
ated ants such as workers, soldiers or sexual individuals. Each of these special-
ized individual is assigned a different task. The most important individual of
the colony is the queen, which has the ability to create new ants and to choose
the type of the created ants. Therefore, the queen co-ordinates the whole colony
and has also a strategic role. Inclusion of an “intelligent” queen helps in the
design of efficient algorithms, since search strategies can be included within the
artificial ant system, while remaining close to the ant metaphor.

2 Artificial Ant Systems

Since the introduction of Ant Systems [1], the algorithms based on the ant
metaphor have evolved. Instead of reviewing successive evolutions of these al-
gorithms, a general Ant System model, developed from the real ant model, is
presented. This general model is properly called the Ant System meta-heuristic,
and is defined by a set of principles or a methodology that allows the develop-
ment of heuristics for a wide range of combinatorial optimization problems.

Artificial ant systems are derived from the real ant model by making three
analogies:



1. Real ants corresponds to processes in charge of building solutions to the
combinatorial problem considered; these processes are often referred as
Artificial ants, or simply Ant processes.

2. The pheromone trails corresponds to a common memory that is updated
each time a new solution is built; more precisely, the memory records a
value associated with each component of a solution.

3. The queen corresponds to a central process in charge of activating and
co-ordinating artificial ants and of managing the common memory.

A meta-heuristic based on ant behavior can be described by a set of pro-
cesses that collaborate through a common memory. The first set of processes,
corresponding to the ants, built solutions in a probabilistic way, with proba-
bilities depending on information stored in memory. All these artificial Ant
processes are activated and co-ordinated by a Queen process that also manages
the common memory. Very schematically, an ant system can be specified by
two different processes:

o Ant process

1. Receive problem data, memory state and, perhaps other parameters
from the Queen process,

2. With the help of the memory, build a new solution probabilistically,

3. Send the new solution to Queen process.
e (Queen process

1. Initialize the memory,
2. Repeat, (in parallel) until a stopping criterion is met:

(a) Choose parameters for a new Ant process and activate the Ant
process,

(b) Receive a solution from an Ant process and update the memory,

3. Return the best solution produced by the system.

This formulation of Ant Systems extends and generalizes previous formu-
lations. Indeed, the very first systems did not mention a Queen process and
the memory consisted of “trails”, i.e. quantities associated with elements con-
stituting a solution (for example, these elements could be edges for problems
in which a path in a graph is searched). In the first Ant System applications,
there was a fixed number of Ant processes that were activated simultaneously.
These processes were executed in parallel and directly updated the trail val-
ues. Therefore, there was no explicit co-ordination of Ant processes, but rather
an implicit one, realized through the trails. Unfortunately, such low-level in-
teractions between simple artificial ants that work asynchronously and that do



not know explicitly what the other ants are doing is not really efficient for de-
signing practical applications. Recent developments of Ant Systems have first
introduced a kind of synchronization by waiting for the completion of all Ant
processes before updating the trails. Updates are then performed in a more
intelligent way, following search strategies. For example, only an elite solution
may be used to update the trails, thus implementing an intensification strategy
(see [7]). Another example is to decrease the value of the trails corresponding
to the elements chosen in the solution which has been built (negative feedback),
thus implementing a diversification strategy. More recently, the concept of arti-
ficial trails has been interpreted as a memory [14] storing information about the
use of particular components in the solutions previously built. Finally, in order
to integrate a stronger, more intelligent form of co-operation between Ant pro-
cesses, the Queen process has been introduced [13]. This process is also called
ACO by other authors [4] (Ant Colony Optimization).

The art of designing a heuristic based on Ant Systems resides principally in
the choice of the information contained in the memory (and their update) and in
the way this information is used for constructing a new solution. In order to give
a flavor of how a practical Ant Systems based algorithm may be designed, few
implementations which discuss the design choices are briefly reviewed. These
implementations illustrate very different ways of designing an Ant Systems based
heuristic. The first implementation discussed is the “historical” one that first
introduced the Ant System metaphor. Then we review implementations for the
quadratic assignment problem for which Ant Systems have proven to be among
the best heuristic methods for some problem instance classes.

2.1 Historical application to the TSP

The first Ant System application to a combinatorial optimization problem was
programmed for the traveling salesman problem [1]. In this application, the
memory is a vector m of real numbers (m.) associated with each edge e € E of
the graph G(V, E) in which a shortest tour passing exactly once by each vertex
of V' is sought. The values contained in m are interpreted as the pheromone
quantity left on a trail. Initially all the entries of m are set to the same, small
value. The constructive procedure simulates the behavior of an ant that, starting
from a vertex, can only move to a vertex it has not already visited (unless all
vertices have been visited; in this case the ant completes its tour by returning
to the first vertex). At each step, the edge e that is used to move to another
vertex is randomly chosen with a probability proportional to (m.)*(d.)?, where
e is an edge with one end being the vertex on which the ant stands and the
other being a vertex not yet visited, 0 < a,0 > [ are two parameters and d,
is the length of edge e. This probabilistic rule favors the choice of short edges
that frequently appear in the solution generated by the system. The very first
implementation of the algorithm had no Ant process co-ordination: A fixed
number k£ of totally asynchronous Ant processes repeatedly constructed new



solutions. The memory updates were also performed asynchronously by the
Ant processes during the solution construction. Unfortunately, this system was
found to be less efficient than another implementation with synchronized Ant
processes that can be described as follows:

In the best implementation of the algorithm [1], the Queen process activates
k parallel Ant processes at each loop. Each Ant process builds a solution with
the probabilistic rule described above, send the solution to the Queen process
and dies. The Queen therefore receives k solutions sy, ..., s of length Ly, ..., Ly
at each loop. The memory is updated as follows: First m < pm where 0 <
p < 1is a parameter that simulates the evaporation of the trails. Then, m, «
me + Q/L;, ¥s; and Ve € s;, where 0 < () is another parameter controlling the
amount of positive feedback. The value m, associated with each edge e gives
therefore a stronger weight to edges which appear in good solutions and to edges
that are often chosen.

This approach was able to produce, for small problem instances, solutions
of slightly better quality than Lin and Kernighan’s [9] heuristic. This approach
gives a very limited role to the Queen process, which is why it was not initially
integrated into Ant Systems explicitly. Recently, the system has been greatly
improved by:

1. The use of a more elaborated construction procedure, including candidate
lists and additional parameters.
2. The improvement of each constructed solution with a local search.

3. The addition of intensification and diversification strategies in memory
management, i.e. the introduction of a stronger co-ordination between
the Ant processes.

The new method has been named ACS (Ant Colony System) [3].

2.2 Applications to the quadratic assignment problem

It is possible to design completely different Ant System-based heuristics by:

1. Modifying the type of information memorized,
2. Changing memory update rules (or learning mechanism),
3. Modifying the constructive procedure,

4. Including alternative search strategies.

The quadratic assignment problem (QAP) is perhaps the problem for which
the largest range of Ant System-based heuristics have now been designed. This



section reviews few of these methods, focusing on various choices made by their
designers. In essence, the QAP can be described by the search of a permutation
7 € II minimizing 2?21 aijbr;n;, where II is the set of all the permutations
of n elements and A = (a;;) and B = (b;;) are two matrices of size n x n.
A typical QAP application is the placement of interacting facilities in spatial
locations. The interaction (or flow) between facilities ¢ and j is given by a;;
and the distance between location r and s is given by b.s. The aim is to find
locations for the facilities such that the sum of the distance x flow products is
minimized.

For all applications reviewed in this section, the memory is implemented by
a matrix M of size n x n. Matrix entry m;, records that facility ¢ was placed on
location r in solutions previously generated by the algorithm. The higher the
quality and the larger the number of solutions generated with facility 7 placed
on location r, the higher the m;,. value is.

e Maz-Min Ant System (MMAS)

The main idea of the Max-Min Ant System [11] is to bound the values
contained in the memory in an interval: M < My < Minae, YMir,
where M and mp,q, are two parameters. By choosing appropriate
Muin and My, values, the search is prevented from stagnating, that is
repeatedly producing the same solution.

Ant process

The constructive procedure works as follows: at each step, a facility 4
which has not yet been assigned is randomly chosen. This facility is as-
signed to an unoccupied location r using a “pseudo-random-proportional”
rule: Either location r which maximizes m;, is chosen or the location is
chosen from several alternatives, which associated probabilities are pro-
portional to m;,.. The former choice has a probability ¢, the latter (1 —q).
This step is repeated until all facilities are allocated. Then a local search
is applied to improve the solution that is finally sent to the Queen process.
There are two version of MMAS: the first one uses a descent procedure
stopping at the first local optimum as local search and the second one uses
the taboo search of Taillard [12].

Queen process

Initially, the Queen process sets all the m;,. values to m,,.,. Then, the
process enters the main iteration that consists of activating & Ant pro-
cesses, where k is a parameter, and of waiting for k solutions «',..., 7%
of cost ¢',...,cF before updating the memory. The memory is updated
as follows: First, all the entries of M are decreased by setting M «— pM,
where 0 < p < 1 is a parameter. Let 7° be the best solution among
wt, ..., 7" and let 7* be the best solution produced by the search so far
(c® and ¢* are their corresponding costs). Every odd iteration, the Queen
process update the memory by setting 1 v « m;.» + 1/c*, Vi while every



even iteration, the memory is updated with 7* and ¢* instead of 7° and
¢®. Finally, the entries of M that are lower than m,, are set to mmin

and those larger than m,,,, are set to m,qz.

The Max-Min Ant System has also been applied to the traveling salesman
problem.

Approzimate Nondeterministic Tree Search (ANTS)

The main innovation of the Approximate Nondeterministic Tree Search
[10] lies in the constructive procedure: At each step, the procedure ran-
domly places a facility on a location with a probability depending on the
memory, as usual for Ant Systems, but also depending on the computation
of a lower bound, similar to what is done in implicit enumeration methods,
such as branch and bound.

Ant process

First, the Ant process receives, from the Queen process, an order in which
the locations must be filled by the facilities. At each step, the constructive
procedure assigns a facility to the next empty location r as follows: first
a lower bound LB;, of the cost of assigning facility ¢ to location r is
computed, taking into account the assignments already done in previous
steps. Then, the facility to assign is chosen with a probability proportional
to am;, + (1 — a@)LB;,, where 0 < @ <1 is a parameter. Once all facilities
are allocated, the solution is improved with a local search that stops at
the first local optimum.

Queen process

First, the Queen process computes a lower bound LB on the solution cost
by solving a linear relaxation of the problem. The dual variables obtained
during the computation are used on the one hand for initializing the m;,
values of the memory (noted m?.) and, on the other hand, these variables
are used to compute the order in which the Ant process constructive pro-
cedure must fill the location. The order depends only on the problem data
and is computed only once. The rationale behind this ordering is that the
higher the value of a dual variable associated with a location is, the higher
the impact of the assignment of a facility to that location should be on
the solution cost, and therefore the earlier the location must be filled.
The Queen process then activates k Ant processes and receives k solutions
7t ..., mkof cost ¢',...,c¥. A moving average ¢ of the values of the last
m solutions received is computed and the memory entries are updated as
follows:
0o C— c?

Hybrid Ant System (HAS)

A first principle of the Hybrid Ant System [6] is to replace the Ant process
constructive procedure by a probabilistic local search: Instead of building



a brand new solution each time an Ant process is activated, the Ant pro-
cess receives a starting solution and applies a given number of local search
moves to that solution. The moves are randomly chosen with a probabil-
ity which depends on the values in memory. The second basic idea of the
Hybrid Ant System is to introduce search strategies in the Queen process.

Ant process

First, the Ant process receives a solution 7 from the Queen, in addition
to the problem data. The process then repeats m local search steps as
follows: A facility ¢ is randomly chosen in 1,...,n. A second facility j
is chosen with the “pseudo-random-proportional” rule and facilities ¢ and
j exchange their location. The pseudo-random-proportional rule chooses
either the facility j maximizing mgr, +m;r, (with probability ¢) or chooses
J randomly, with a probability proportional to mir;, + mj,. After m
probabilistic local search steps, the solution is improved with a local search
(driven by the objective function) that ends at the first local optimum
before being sent to the Queen process.

Queen process

In addition to the memory matrix M, the Queen process manages a pool of
k solutions 7', ..., w*. Initially, the first k& solutions are randomly chosen
and improved with a local search. In addition to the pool of solutions,
the Queen manages 7*, the best solution found by the system (¢* denotes
its value). The memory matrix entries are initially set to the same small
value. The Queen repeats the following cycle:

First, k Ant processes are activated, each of them receiving a different
solution from the pool. Then, the Queen process waits for k solutions
pt, ..., p¥ from the Ant processes and updates 7*. Then, the memory is
updated as follows: First, all entries are weakened by setting M «— pM,
where 0 < p < 1 is a parameter. Then, the entries corresponding to the
best solution are reinforced by setting mirx « mirr + (1=p)/c, Vi.
Finally, the pool of solutions is updated using diversification and intensi-
fication strategies: Normally, the Queen process is in intensification phase
and replaces 7° by the best solution among 7 and pu®, V1 < b < k. The
Queen process remains in intensification phase while at least one u’ is bet-
ter than 7°. But if no u is better than 7°, the Queen process performs a
diversification steps that consists of replacing k£ — 1 solutions in the pool
by random ones and by replacing the last one with #*.

Fast Ant System (FANT)

The basic idea of the Fast Ant System [13] is to design a method which is
as simple as possible while incorporating diversification and intensification
strategies. This is realized on the one hand by systematically reinforcing
the attractiveness of the m;. values corresponding to the best solution
found so far by the search and on the other hand by clearing the memory
while giving less weight to the best solution if the process appears to be
stagnating.
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Ant process

The Ant process constructs a new solution by randomly choosing the lo-
cation r of facility ¢ with a probability proportional to m;.. Then the
solution is improved with a local search and sent to the Queen process.

Queen process

While implementing an automatic intensification and diversification, the
Queen process requires only one parameter R and manages, in addition
to the memory matrix M, a variable v and the best solution 7* found by
the system so far. Initially v = 1 and my,. = v, Vi,r. The Queen then
repeats the following cycle:

Activate an Ant process,

Wait for a solution 7 from an Ant process,

If 7 = 7* then set v « v + 1 and m;,. «— v, Vi,r,

If 7 is better than 7* then set 7* « m,v «— 1 and my, «— v, Vi,r,

Set mjy, — My, +v, Vi,

A e

Set Mz = Miiz> + R, Vi.

To intensify the search in the neighborhood of 7*, the memory entries
corresponding to 7* are reinforced at each iteration by R (Step 6). In
order to “memorize” the solution 7 generated by the Ant process, the
memory entries corresponding to 7 are reinforced by v (Step 5). When 7*
is improved, variable v is set to 1 (to give a relatively higher weight to R)
and the memory is re-initialized (Step 4). When the solution constructed
by the Ant process is equal to 7*, meaning that the memory entries that
correspond to 7* have been reinforced too much, variable v is incremented
(to give a relatively lower weight to R in subsequent Queen iterations) and
the memory is re-initialized (Step 3). This simple Ant System has been
applied to other combinatorial optimization problems with success, such
as the p-median, the balancing of turbine runners and the bi-quadratic
assignment problems. It has been implemented on a sequential computer
and the activation of only one Ant process at a time allows relatively good
solutions to be obtained with a very low computational effort. However,
the method can be easily extended to the case of an arbitrary number of
Ant processes.

General considerations

Ant Systems belongs to the wide class of meta-heuristics which works with a
memory or Adaptive Memory Programming [14]. Ant Systems share common
features with Genetic Algorithms, Greedy Randomized Adaptive Search Proce-
dures [5], Tabu Search and Scatter Search. Indeed, Ant Systems are based on



a population of artificial agents, the Ant processes, but the interaction between
individuals, through a common memory, is quite unlike classical genetic opera-
tors. The constructive procedure embedded in the Ant processes looks a bit like
those of a greedy randomized adaptive search procedure and can also be com-
pared to a probabilistic Scatter Search, since the solutions generated are a kind
of combination of solutions previously built. Finally, the Ant processes are co-
ordinated by a process that can incorporate various search strategies proposed
in Tabu Search.

Ant Systems have now matured and successful applications are more and
more numerous. Efficient Ant Systems very often embed elements that are
unrelated to the metaphor which inspired the first Ant Systems. Typical foreign
elements are the use of a local search or the memory central management.
This is perhaps a natural development for meta-heuristics: it has been noted
[14] that the best heuristic methods are often inspired by many basic meta-
heuristics. For example, most efficient genetic algorithms include a local search.
Therefore, it is not surprising that Ant Systems are evolving in a similar way
and incorporate components of other meta-heuristics; conversely, components
of Ant Systems will certainly be combined with methods based on other meta-
heuristics. Future developments of Ant Systems will include the treatment of
dynamic and stochastic problems and the design of new distributed systems.
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