
1

HEURISTIC METHODS FOR LARGE 

CENTROID CLUSTERING PROBLEMS1

Éric D. Taillard
EIVD,  Univers i ty  of  Appl ied Sc iences  of  Weste rn  Swi tze r land ,  

Route  de  Cheseaux 1,  CH-1400  Yverdon- les-Bains .
Er ic .Tai l la rd@eivd.ch ht tp : / /www.e ivd .ch/ ina / ta i l l ard

Technical  repor t  IDSIA96-96 ,  1996 ;  rev i s ion :  February 2001 .

ABSTRACT.

This article presents new heuristic methods for solving a class of hard centroid clustering problems including the

�-median, the sum-of-squares clustering and the multi-source Weber problems. Centroid clustering is to partition a set of

entities into a given number of subsets and to find the location of a centre for each subset in such a way that a dissimilar-

ity measure between the entities and the centres is minimized. The first method proposed is a candidate list search that

produces good solutions in a short amount of time if the number of centres in the problem is not too large. The second

method is a general local optimization approach that finds very good solutions. The third method is designed for prob-

lems with a large number of centres; it decomposes the problem into subproblems that are solved independently. Numer-

ical results show that these methods are efficient — dozens of best solutions known to problem instances of the literature

have been improved— and fast, handling problem instances with more than 85’000 entities and 15’000 centres —much

larger than those solved in the literature. The expected complexity of these new procedures is discussed and shown to be

comparable to that of an existing method which is known to be very fast.
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1. INTRODUCTION.

Cluster analysis is to partition a set of entities into subsets, or clusters, such that the subsets are

homogeneous and separated one another, considering measurements describing the entities. In this

paper, we propose new efficient methods for centroid clustering problems. More precisely, we are

going to apply our methods to problems of the following type: given � entities �� with weights ��

(� = 1, …, �) it is searched � centres �� (� = 1, …, �) minimizing ,

where �(��, ��) measures the dissimilarity between �� and ��	 However, the methods are very general

and may be applied to other problems or objective functions.

If the entities are described by their co-ordinates in IR
, �(��, ��) is typically the distance or the

square of the distance between �� and ��. In the last case, the problem is the well known

sum-of-squares clustering (SSC) (see e.g. Ward (1963), Edwards and Cavalli-Sforza (1965), Jancey

(1966), MacQueen(1967)). There are many commercial softwares that implement approximation

procedures for this hard problem. For instance, the popular S-Plus statistical analysis software incor-

1. A former version of the article was entitled “Heuristic methods for large multi-source Weber problems”.
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porates the �-means iterative relocation algorithm of Hartigan (1975) to try to improve the quality of

given clusters. For exact algorithms for SSC, see e. g. Koontz, Narendra and Fukunaga (1975) and

Diehr (1985).

In case: 1) the space is IR2, i. e. the Euclidean plane, 2) the centres can be placed everywhere in

IR2 and 3) the dissimilarity measure is the Euclidean distance, the problem is called the multi-source

Weber problem (MWP). This problem occurs in many practical applications, such as the placement

of warehouses, emitter antennas, public facilities, airports, emergency services, etc. See e. g. Saaty

(1972), Dokmeci (1977), Fleischmann and Paraschis (1988), Bhaskaran (1992) and Lentnek,

MacPerson and Phillips (1993) that describe practical applications that need to solve MWPs with up

to more than 1700 entities and 160 centres. For exact methods solving the MWP, see e. g. Rosing

(1992) and Krau (1997). For a unified comparison of numerous approximation algorithms, see Brim-

berg et al. (2000).

In case dissimilarities between entities are given by an arbitrary � × � matrix and the centres can

be placed on the entities only, the problem is called the �-median problem (PMP). The last is a

well-known NP-hard problem, see e. g. Hakimi (1965), ReVelle and Swain (1970), Mirchandani and

Francis (1990) and Daskin (1995). For exact methods solving the PMP, see e. g. Erlenkotter (1978),

Rosing, ReVelle and Rosing-Vogelaar (1979), Beasley (1985) and Hanjoul and Peeters (1985). For

an introduction to location theory and clustering see also Gordon (1981), Späth (1985), Wesolowsky

(1993).

The new methods presented in this paper, candidate list search (CLS), local optimization (LOPT)

and decomposition/recombination (DEC), have been successfully applied to SSC, MWP and PMP,

but they can be extended to solve other problems. For example, the CLS and LOPT methods can be

applied to any location-allocation problems as soon as two appropriate procedures are available: the

first one for allocating entities to centres and the second one for optimally locating a centre, given the

entities allocated to it. For SSC, MWP or PMP, the allocation procedure simply consists in finding

the nearest centre to each entity. For other problems, this procedure must be more elaborated (e. g. if

there is a constraint limiting the sum of the weights of the entities allocated to a centre).

The LOPT method proceeds by local optimization of subproblems. This is a general optimiza-

tion method that can be applied to problems not directly related to clustering (see e.g. Taillard and

Voß (1999), where LOPT is presented under the name of 
�
�����)

In order to remain relatively concise, we are going to present applications of our methods for

PMP, SSC and MWP only, but with a special attention to the under studied MWP. Indeed, while the

MWP by itself does not embrace all of the problem features found in some practical applications,

this model can be very useful, especially for real applications dealing with many thousands of enti-

ties. In Figure 1, we show the decomposition into 23 clusters of a very irregular problem built on real

data, involving 2863 cities of Switzerland. The large black disks are the centres while the small disks

are the cities (or entities). Cities allocated to the same centres have the same colour. In this figure, we

have also added the federal frontiers and the lakes. Politically, Switzerland is composed of 23 states
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(Cantons); physically, it is composed of extremely thickly populated regions (Plateau) and regions

without cities (Alps, lakes). We see in Figure 1 that the positions of the centres are sensible (no cen-

tres are located outside Switzerland or on a mountain or in a lake) and that the decomposition gener-

ally respects the natural barriers (spaces without cities); there are very few entities that are separated

from their centre by a chain of mountains2. Moreover, if the solution of Figure 1 is compared to the

solution obtained by solving a PMP with dissimilarity measure being the true shortest paths (the road

network having more than 30000 connections), it can be shown that the PMP solution is very similar

to the MWP one (21 centres are placed almost at the same position; the main difference is that there

are less entities allocated to a centre located on the other border of a lake). However, solving this

PMP is time consuming: the computation of the shortest paths matrix took 100 times longer than

finding a very good MWP solution. Therefore, solving an MWP in a first phase before attacking the

true problem (as exemplified by a PMP or a multi-depot vehicle routing problem) can be pertinent,

even with an irregular, real problem.

2. The expert can even identify a number of Swiss Cantons in this figure. There are however differences that could be
appropriate for solving political problems, such as the union of the South part of Jura to the Canton of Jura, the separa-
tion of the German-speaking part of Valais or the union of the small primitive Cantons.
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Since the clustering problems treated in this paper are difficult, they can be solved exactly for

instances of moderate size only. For solving larger instances, as often arise in practice (see the 6800

entities, 380000 network nodes instance of Hikada and Okano (1997)), it is appropriate to use heu-

ristic methods. However, most of the methods of the literature present the same disadvantage of a

large increase of the computing time as the number of centres increases and, simultaneously, a

decrease in the quality of the solutions produced. The aim of this paper is to show that it is possible

to partition a problem with a large number of centres into subproblems that are much smaller, in

order to benefit from the advantages of the existing methods for small problems while rapidly pro-

ducing solutions of good quality to the original problem.

The article is structured as follows: in Section 2, we present in detail the alternate location-allo-

cation (ALT) procedure used as a subprocedure of our candidate list search (CLS), showing how it

can be implemented efficiently. ALT was first proposed by Cooper (1963) for the MWP. However, it

can be generalised for any location-allocation problem as soon as a location procedure and an alloca-

tion procedure are available. In this section, we also present CLS, our basic procedure for solving the

subproblems generated by partition methods. In Section 3, we present two partition methods for

large problems. The first one, LOPT, can be viewed either as a generalization of the ALT procedure

or as a restricted CLS for the post-optimization of a given solution. The second decomposition

method, DEC, splits a large problem into independent subproblems and the solutions of these sub-

problems are optimally mixed together to create a solution to the original problem. Section 4 analy-

ses the computational performances of the methods proposed.

2. BASIC PROCEDURES &'( AND �'�.

The procedures ALT and CLS are used as subprocedures in the decomposition methods we pro-

pose. Referring to the paper of Cooper (1963) is not sufficient to understand the procedure ALT well,

since certain details of this algorithm are not discussed in the original paper and the choices made for

implementing the procedure can have a profound impact on its effectiveness. Moreover, we have

adapted this procedure to accelerate its execution.

2. 1. Generalized ALT procedure.

The iterative location-allocation procedure of Cooper (1963) may be sketched as follows:

0) Input: Set of entities with weight and dissimilarity measure, 
problem specific allocation and location procedures.

1) Choose an initial position for each centre.
2) Repeat the following steps while the location of the centres 

varies:
2a) Allocate the entities given the centre locations.
2b) Given the allocation made at step 2a, locate each centre 

optimally.

���
������	
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Cooper has designed this algorithm for the MWP. In this case, the location procedure can be imple-

mented using a procedure like those of Weiszfeld (1937). For the SSC, the centre of gravity of the

entities is the optimum location of the centre. For the PMP, the optimum location of a centre can be

obtained by enumerating all possible location for the centre. The allocation procedure is very simple

for SSC, PMP and MWP: each entity is allocated to its nearest centre. For other problems, this pro-

cedure can be more difficult to implement.

Two steps of this algorithm have to be discussed: the choice of the initial solution at step 1, and the

repositioning of centres that are not used at step 2a. For the choice of an initial solution, many vari-

ants have been tested:

*. 
���������/�������������p������
�!�����������������0��/����� � ����!�����/�����#���������!� ���#�
�����������������������#/�	

�. �/������/���������������/�������������� !����)� !���!��#��������������/�
������������!����� !�
�������#��/������������/���
���
������/��� �����"����������	

The first variant takes into account the structure of the problem, i. e. the geographical and

weighting spread of the entities. It produces relatively good initial solutions, especially for problems

with non uniform weights.

The second variant induces the ALT procedure to produce the best solutions on the average but

its computing time is high: for each of the � centres, �(�) positions have to be tried, and for each of

these positions, one has to verify whether each entity is serviced by the new position. This implies a

procedure that operates in �(�2·�) time, while the other variant can be done much faster. To reduce

the complexity of this variant and to make it non deterministic3, we adopt the following �(�·�)

greedy procedure in the spirit of those of Dyer and Frieze (1985): 

3. In the context we use ALT, it is more interesting to have a non deterministic procedure. First, it may happen
that ALT is called many times for solving the same (sub-)problem. With a non deterministic procedure, it is
avoided to repeat exactly the same work. Then, let us mention that only non deterministic procedure can solve
NP-hard problems in polynomial time if P ≠ NP. Therefore, our personal view is to consider non deterministic
procedure potentially more interesting than deterministic ones, even if there is no theory supporting this for the
moment.

0) Input: Set of entities with weight and dissimilarity measure.
1) Choose an entity at random and place a centre on this entity.
2) Allocate all entities to this centre and compute their weighted 

dissimilarities.
3) For � = 2 to � do:

3a) Find the entity that is the farthest from a centre (weighted 
dissimilarities) and place the kth centre at that entity’s 
location.

3b) For i = 1 to n do, if entity i is allocated to a centre far-
ther than centre k:
Allocate entity i to centre k and update its weighted dis-
similarity.

���
�������
�����������������#��������	
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After having repositioned the centres at step 2b of the ALT procedure, it may happen that the alloca-

tion of the next iteration, at step 2a, does not use all the centres. The unused centres can be relocated

to improve the current solution. We have adopted the following policy:

�����
�����/����������/��������� �����
��������/��� �����"��������������������������������������
�������
�����������������!0���$����������/�����������������������/���������#��������������������1���	

Starting with a very bad initial solution (�(�) centres that are not used), this re-location policy

could lead to a �(�2·�) procedure. However, our initial solution generator (as well as our CLS proce-

dure presented below) furnish solutions to the ALT procedure that contain an unused centre only

exceptionally (for the MWP, we have observed somewhat less than one occurrence in 1000, even for

a large number of centres). So, the re-location policy has almost no influence on the solution quality,

if one starts with a “good” initial solution as we do. Mladenovic and Brimberg (1996) have shown

that the re-location policy can have a substantial effect on MWP solution quality if one starts with

“bad” initial solutions.

��
���1��!����&'(�����
�
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First, let us introduce a new complexity notation: In the remaining of the paper, let 2(.) denote

an empirically estimated complexity, while �(.) denotes the standard worst case complexity. For

example, both 3��������� and  �  ������� algorithms operate in �(�2) time. In practice however, it is

observed that 3����� ���� has an 2(�·log(�)) behaviour while  �  ��� ���� has an 2(�2) behaviour

(Rapin, 1983)4. There are also algorithms for which the theoretical worst case complexity is not

established. However, observing the average computing times by executing an algorithm on many

instances can provide a good idea of its complexity in practice. The advantage of this notation is to

make a distinction between practice and theory. Indeed, it is common to read that the complexity of

3��������� is �(�·log(�)), which is not true, formally. Moreover, the “^” notation is often used by

statisticians for estimated values.

The complexity of the ALT procedure can be estimated as follows. The complexity of Step 2a

(allocation of the entities to a centre) is �(�·�). Indeed, for the problems under consideration one has

to allocate each entity to its nearest centre. For large values of �, this step can be substantially accel-

erated by observing that only the centres that have moved from one iteration to the next can modify

the allocation previously made. (Compares the computing times of old and new ALT implementa-

tions in Table 3.)

Step 2b can be performed in �(�) for the SSC. Indeed, each entity contributes only once in the

computation of the position of each centre (independently from the number of centres). For the

MWP, the optimum location can be found with a Weiszfeld-like procedure (1937) that repeats an

unknown number of gradient steps. We have arbitrarily limited this number to 30. So, in our imple-

mentation, Step 2b has a complexity of �(�). For small values of �, the computing time of this step

4.More precisely, such a behaviour can be mathematically proven. In that case, we propose to follow the usual
notation in statistics and to write  for an expected running time derived from a mathematical analysis. There-
fore it can be written that the complexity of 3��������� is .

� .( )
� � �log( )
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dominates. For the PMP, let us suppose that �(�/�) entities are allocated to each centre (this is rea-

sonable if the problem is relatively regular).5 For each centre, one has to scan �(�/�) possible loca-

tions and the evaluation of one position can be performed in �(�/�). So, the total complexity of

Step 2b is �(�·�/�·�/�) = �(��/�) for locating the � centres.

Since � is bounded by �, the global complexity of steps 2a and 2b is bounded by �(��) for SSC,

MWP and PMP. Now, we have to estimate the number of repetitions of Loop 2 which is unknown.

However, in practice, we have observed that the number of iterations seems to be polynomial in �

and �. Therefore, we will use an 2(�α·�β) estimation of the overall complexity of our implementa-

tion of the ALT procedure. In this study, we are mostly interested in instances with large values of �,

so, we have considered instances with �/5 ≤ � ≤ �/3 for evaluating the α and β values for the various

clustering problems. For the SSC and MWP, we have considered about 7000 instances uniformly

generated with up to 9400 entities. For the PMP, we have considered about 38000 runs of the ALT

procedure. The PMP instances were based on the 40 different distance matrices proposed by Beasley

(1985). The number of entities for these instances ranges from 100 to 900. 

For the SSC, we have estimated α ≅ 0.83 and β ≅ 1.19; for the PMP the estimation is α ≅ 0.70

and β ≅ 1.23 and for the MWP α ≅ 0.85 and β ≅ 1.34. So, if � grows linearly with �, the estimated

complexity of the ALT procedure is not far from 2(�2) for all these problem types. The memory

requirement is �(�) for the SSC and MWP and �(�2) for the PMP i.e. equivalent to the data size. 

2. 2. Candidate list search (CLS).

CLS is based on a greedy procedure that randomly perturbs a solution that is locally optimal

according to the ALT procedure. Then, ALT is applied to the perturbed solution and the resulting

solution is accepted only if it is better than the initial one, otherwise one returns to the initial solu-

tion. The perturbation of a solution consists in eliminating a centre and in adding another one,

located on an entity. The process can be repeated until all pairs entities/centres have been scanned.

This greedy procedure finds very good solutions: In Table 1, we report the quality of the solutions

found when applied to the 40 PMP instances of Beasley (1985). These instances have been solved

exactly and the quality of a solution is given in per cent above the optimum value. The greedy proce-

dure was executed 20 times for each instance. For 8 instances each run found the global optimum

and all instances but one were optimally solved at least once.

5.Without this assumption, the complexity is higher; with stronger assumptions (e. g. Euclidean distances), a
lower complexity can be derived.

 � 100 200 300 400 500 600 700 800 900

�

5 0 0 0 0.03 0 0 0.00 0.06 0.12

10 0.04 0.08 0 0.14 0.25 0 0.02 0.13 0

�/10 0.04 0.00 0.01 0.10 0.10 0.05 0.01 0.07 0.06

�/5 0.04 0.15 0.04 0.05 0.05 0.04 0.06 — —

�/3 0.04 0.05 0.06 0.09 0.14 0.14 — — —

������	
� 4�����!�����/��#����!���������������5�����!6��
�
�����������-7�� �"������
�
.	
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For MWP instances with 50 (respectively 287) entities we observed that the greedy procedure

finds a global optimum in more than 60% (respectively 40%) of the cases. For the SSC, we suc-

ceeded in improving all the best solutions known to 16 instances with 1060 entities and 10 to 160

centres (See Table 4).

For the �-median problem, this type of perturbation has been used for a long time (c. f. Good-

child and Noronha, 1983, Whitaker, 1983, Glover, 1990, Voß, 1996, Rolland, Schilling and Current,

1997); in this case Glover proposes an efficient way to evaluate the cost of eliminating a centre: dur-

ing the allocation phase, the second closest centre is memorized — this can be done without increas-

ing the complexity. However, evaluating the decrease of the cost due to the opening of a centre on an

entity takes a time proportional to �. Therefore, finding the best possible perturbation has a complex-

ity of �(�2·�), without considering the application of the ALT procedure.

This complexity is too high for large instances thus we make use of a candidate list strategy

scheme (Glover (1990)) for implementing a probabilistic perturbation mechanism. The idea is to

identify the centre to close by a non deterministic but systematic approach. The entity associated

with an open centre is also randomly chosen, but its weighted distance from its previously allocated

centre must be higher than the average. The process is repeated for a number 3 of iterations, speci-

fied by the user. Algorithm 3 presents CLS into details. CLS starts from an initial solution �1 that is

tentatively improved. To examine the neighbourhood in a non-deterministic way, two permutations π
and µ are first generated (step 2). These permutations determine the order in which the perturbations

are tried at step 3d. Then, 3 iterations are repeated, where 3 is the only parameter of CLS. An itera-

tion consists of moving a centre on an entity whose weighted distance from its previously allocated

centre is higher than the average. To belong to the candidate list of entities where a centre can be

moved, the distance criterion decreases as the number of iterations grows (step 3c). Finally, the per-

1) Input: initial solution �� (location of the � centres), parame-
ter �.

2) Generate π, a random permutation of the elements {1, …, �} and 
µ, a random permutation of the elements {1, …, �}. Set � = 0, 
� = 0.

3) For � = 1 to � repeat:
3a) i = (i modulo n) + 1; j = (j modulo p) + 1.
3b) Compute dmax, the distance of the most (weighted) distant 

entity.
3c) While the weighted distance from entity µi to the nearest 

centre is lower than (dmax – f(sk)/n)/k + f(sk)/n do: 
i = (i modulo n) + 1.

3d) Close centre πj and open a new one located at entity µi to 
obtain a perturbed solution sk’

3e) Improve sk’ with ALT to obtain sk�
3f) If f(sk�) < f(sk) then sk+1 = sk�, else sk+1 = sk.
3g) If j = p, generate a new random permutation π.

���
�������
��������������������/�-�'�.	
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turbed solution is improved by means of ALT (step 3e) and it is retained only if it improves the solu-

tion (step 3f).

The most time consuming part of this algorithm is step 3e, i. e. the application of the ALT proce-

dure to the perturbed solution. As seen above, we can estimate the complexity of this step as

2(�α·�β). Therefore, the complexity of CLS is 2(3·�α·�β). From now on, we write CLS(3) the

improvement of a given solution with 3 iterations of the CLS procedure.

3. DECOMPOSITION METHODS.

In this section, we propose two decomposition methods for solving problems with a large

number � of centres. The complexity of these methods is not higher than the ALT procedure while

producing solutions of much higher quality. The first decomposition technique, LOPT, starts with

any solution with � centres and improves it by considering a series of subproblems involving � < �

centres and the entities allocated to them. The subproblems are solved by our CLS algorithm. This

method can be viewed as a local search defined on a very large neighbourhood involving up to � cen-

tres re-locations at a time. Another point of view is to consider this procedure as a generalization of

ALT. Indeed, a solution produced by ALT is locally optimal if we consider any subset of entities

allocated to a single centre: every entity is serviced by the nearest centre, and the centres are opti-

mally positioned for the subset of entities they are servicing. Our procedure produces a solution that

is sub-optimal (since the subproblems are solved in a heuristic way and since we do not consider all

subsets of � centres) for subsets of entities allocated to � centres. A third point of view is to consider

LOPT as a CLS procedure with a much smaller list of candidate moves regarding to the CLS pre-

sented above.

The second decomposition method, DEC, partitions the problem into � smaller subproblems.

These subproblems are then solved with our CLS for various numbers of centres. A solution to the

initial problem is then found by combining solutions of the subproblems. To decompose the initial

problem, we solve an intermediate problem with � centres with our CLS procedure. Each set of enti-

ties allocated to a centre of the intermediate problem is considered as an independent subproblem.

3. 1. Local optimization (LOPT).

The basic idea of LOPT is to select a centre, a few of its closest centres and the set of entities

allocated to them to create a subproblem. We try to improve the solution of this subproblem with

CLS. If an improved solution is found, then all the selected centres are inserted in a candidate list �,

otherwise the first centre used for creating the subproblem is removed from �. Initially, all the cen-

tres are in � and the process stops when � is empty. LOPT has two parameters: �, the number of cen-

tres of the subproblems and �, the number of iterations of each call to CLS. Algorithm 4 presents

more formally the LOPT method.
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To estimate the complexity of LOPT we make two assumptions. First we assume that �(�/�)

entities are allocated to each centre (this hypothesis is reasonable if the problem instance is relatively

uniform) and second that loop 3 is repeated 2(�γ·�λ) times. Empirically, we have observed that γ is

less than 1 and λ is close to 0 (see Table 8); we estimate that the value of γ is about 0.9 and λ is about

0.2 for the LOPT parameters we have chosen and for the MWP). Then, the complexity of LOPT can

be established as follows:

Steps 3a and 3d have a complexity of �(�); step 3b has a complexity of �(�·�); step 3c solves a

problem with � centres and �(�·�/�) entities, this leads to a complexity of 2(�·�α·(�·�/�)β). This leads

to a total complexity of 2(�·�γ + 1·�λ + �·�α + β·�γ 8 β·�λ + β). If � and � are fixed and if � grows line-

arly with �, the complexity of the LOPT procedure is therefore 2(�λ + γ + 1). This complexity seems

to be similar to that of the ALT procedure. In practice, step 3c of the LOPT procedure takes most of

the computing time, even if steps 3b has a higher expected complexity for extremely large �. Indeed,

for fixed �, we have always observed that the computing time diminishes as � increases, even for �

larger than 10000 (see Tables 4 to 8). From now on, we denote by LOPT(�, �) the version of the

LOPT procedure using parameters � and �. The memory requirement of the LOPT procedure is �(�).

3. 2. Decomposition algorithm (DEC).

LOPT optimizes the position of a given number of centres dynamically, but it is also possible to

proceed to a static decomposition of the entities, and solve these subproblems with a variable

number of centres. A solution to the complete problem may be found by choosing the right number

of centres for each subproblem. Naturally, the total number of centres must be limited to �. This

re-composition may be performed efficiently and optimally with dynamic programming.

The crucial phase of the algorithm is the first decomposition: if the subproblems created do not

have the right structure, it is impossible to obtain a good solution at the end. The more irregular the

problem is (i. e. where the entities are not uniformly distributed, or their weights differ widely), the

more delicate its decomposition is. For partitioning the problem, we use our CLS procedure applied

to the same set of entities but with a number � < � of centres.

1) Input: initial position of the � centres, parameters � and �.
2) Set 	 = {1, …, �}
3) While 	 ≠ ∅ , repeat the following steps: 

3a) Randomly select a centre i ∈ C.
3b) Let R be the subset of the r closest centres to i (i ∈ R).
3c) Consider the subproblem constructed with the entities allo-

cated to the centres of R and optimize this subproblem with 
r centres with CLS(s).

3d) If no improved solution has been found at step 3c, set 
C = C\{i},
else set C = C ∪ R.

���
�������
 �'���������
������������������-'�
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The subproblems created may have very different sizes: a subproblem may consist of just a few

entities with very high weights or it may comprise a large number of close entities. Thus it could be

difficult to evaluate the number of centres to be assigned to a subproblem. Let �� (� = 1, …, �) be the

number of entities of subproblem �. Suppose that subproblem � is solved with � ∈ 9� = {1, …, ��} cen-

tres and let ��� be the value of the objective function when solving subproblem � with � centres. To

build a solution to the initial problem, we have to find �1:, …, ��: minimizing:

This problem is a kind of knapsack and may be reformulated as:

Thus, the problem can be decomposed and solved recursively by dynamic programming in

�(�·�) time. This procedure can also produce all the solutions with �, � + 1, …, � centres in �(�·�)

time. Such a feature can be very useful when we want to solve a problem for which the number of

centres is unknown and must be determined, as for example when there is an opening cost for each

centre (the opening cost has just to be added in the ��� values).

However, solving each subproblem with 1, …, �� centres is time consuming. If the problem is

relatively uniform, one can expect that the optimum number of centres found by dynamic program-

ming is not far from �/� for all subproblems. So, we propose to first solve the subproblems for only

three different numbers of centres: �/� – 1 , �/�  and �/� + 1 . These are solved with one less

(respectively one more) centre when the optimum number of centres determined by dynamic pro-

gramming is exactly the lower (respectively higher) number for which a solution was computed.

Algorithm 5 presents our DEC procedure in details.

��
���1��!�����;�	

For analysing the complexity of DEC, we make the following assumptions: First, each subprob-

lem has �(�/�) entities, second, each subproblem is assigned �(�/�) centres and third, the number of

repetitions of loop 5 is a constant (i. e. the total number of subproblems solved with CLS in steps 3

and 5a is in �(�) ). These assumptions are empirically verified if the problem instances are relatively

uniform (see Table 8). With these assumptions, the complexity of DEC can be established as

follows: Step 1 is in 2(�·�α·�β); steps 3 and 5a can be performed in 2("·�1 – α 8 β·�α·�β); finally, the

minimize
�
�

9
�

∈ �, 1 … �, ,=
���

�

� 1=

�

∑

such that �� �≤
� 1=

�

∑

minimize
�1 91∈

�1�1

minimize
�
�

9
�

∈ �, 2 … �, ,=
���

�

� 2=

�

∑

such that �� � �1–≤
� 2=

�

∑
 
 
 
 
 
 
 
 
 

+

 
 
 
 
 
 
 
 
 
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complexity of dynamic programming, in steps 4 and 5b is �(�·�). The overall complexity of DEC

strongly depends on the parameter �. As shown in the next section, the quality of solutions produced

by CLS slightly diminishes as the number of centres increases. We therefore seek to reduce the

number of centres in the auxiliary problem and in subproblems as much as possible. For this pur-

pose, we have chosen � = . The overall complexity of our implementation of DEC is

2(�·�α/2·�β + "·�(1 + α 8 β)/2·�β + �3/2). If ��and " are constant and � grows linearly with �, the com-

plexity is 2(�β + α/2), assuming β ≥ 1 and β + α/2 ≥ 3/2, i.e. lower than the ALT procedure. The

memory requirement is �(�3/2). DEC requires more memory than CLS and LOPT, but the increase is

not too high and we have succeeded in implementing all the algorithms on a personal workstation.

From now on, we note DEC(�, ") the use of the DEC procedure with � = , and parameters �

and ".

4. NUMERICAL RESULTS.

4. 1. Test problems.

For the numerical results presented in this section, we consider six sets composed of 654, 1060,

2863, 3038, 14051 and 85900 entities respectively. The 2863 entities set is built on real data: the

entities are the cities of Switzerland and the weight of each city is the number of inhabitants. This set

is denoted CH2863.

The other sets correspond to the travelling salesman problems that can be found under the names

of P654, U1060, Pcb3038 Brd14051 and Pla85900 in the TSPLIB compiled by Reinelt (1995). For

these sets, all entities are weighted to one and the dissimilarity between two entities is the Euclidean

distance (for PMP and MWP) or the square of the Euclidean distance (for the SSC). From these six

sets of entities, we have constructed a large collection of instances by varying �. In Table 2, we give

0) Input: Set of entities with dissimilarity measure.
1) Solve an auxiliary problem with 
 centres with CLS(�).
2) The subsets of entities allocated to the same centre form 
 

independent subproblems. Set ��� = ∞, 1 ≤ � ≤ 
, 1 ≤ � ≤ ��.
3) For each subproblem do: Solve subproblem � with CLS(
) with 

max(1, �/
 – 1� ≤ � ≤ min(�����/
 + 1) centres and update the 
��� values associated.

4) Find a collection �1�, …, �
� of optimum number of centres to 
attribute to each sub-problem with dynamic programming.

5) While � = {(�, ��)   ���� = ∞, �� = min(��, ��� + 1) or 
�� = max(1, ��� - 1), 1 ≤ � ≤ 
} ≠ ∅ , repeat:
5a) For all (i, ji) ∈ K, solve subproblem i with ji centres, 

using CLS(v) and update the fiji associated.
5b) Find a new collection j1*, …, jt* of optimum number of cen-

tres to attribute to each subproblem with dynamic program-
ming.

���
�������
(/������
�������������������-�;�.	
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the values of � we have considered for each set, and the best MWP solution known associated with

each �.

All the best solutions known have been found during the elaboration of methods presented in

this paper; some have been reported earlier in Hansen, Mladenovic and Taillard (1998) or in Brim-

berg et al. (2000) for P654 and U1060. For P654, we were able to find the same best solution values

reported by Brimberg et al. for � ≤ 60, and to find better values for � > 60; for U1060, we succeeded

in improving all the best solution values with the exception of � = 10 where we got the same value.

The best solutions published in Brimberg et al. were obtained by considering more than 20 different

P654 CH2863 Pcb 3038 Brd14051 Pla85900
� Best known � Best known � Best known � Best known � Best known
2 815313.30 23 662591164.9 100 351171.14 100 2504969.0 500 980624500
3 551062.88 100 249683701.9 110 333361.33 110 2379966.4 1000 641279543
4 288190.99 110 233112123.2 120 317493.30 120 2273050.9 1500 504307979
5 209068.79 120 219389699.5 130 303337.42 130 2181810.9 2000 430487424
6 180488.21 130 207402173.2 140 291019.41 140 2098583.0 2500 379898116
7 163704.17 140 196628487.0 150 279724.73 150 2021251.0 3000 342898337
8 147050.79 150 187152713.6 160 269670.44 160 1952950.7 4000 290679280
9 130936.12 160 178764596.3 170 260281.77 170 1890823.0 5000 254125361

10 115339.03 170 171147676.8 180 251595.67 180 1835182.6 6000 228045203
11 100133.20 180 164263718.8 190 243642.56 190 1784816.3 7000 207638816
12 94152.055 190 157733395.3 200 236294.30 200 1736960.1 8000 191874305
13 89454.761 200 151650126.1 250 206527.62 250 1547174.7 9000 177990886
14 84807.669 250 126652250.1 300 184832.94 300 1404028.4 10000 166535699
15 80177.042 300 107783856.7 350 168324.66 350 1293453.6 15000 130395710
20 63389.024 350 92871653.41 400 154657.34 400 1203580.1
25 52209.511 400 81459860.80 450 143330.07 450 1129413.2
30 44705.192 450 72088804.48 500 133590.94 500 1066429.9
35 39257.268 500 64277122.05 600 117716.57 600 966474.12
40 35704.408 600 51713134.53 700 104627.14 700 887518.23
50 29338.011 700 41923352.49 800 94301.618 800 824127.49
60 24504.395 800 34171537.06 900 85704.652 900 771207.89
70 21465.436 900 28112316.53 1000 78458.720 1000 725300.72
80 19193.861 1000 23063201.81 1500 570402.36
90 17514.423 2000 475580.22

100 16083.535 U1060 2500 409677.92
110 14826.578 � Best known � Best known 3000 359978.52
120 13887.739 5 1851877.266 80 325971.2435 5000 237511.94
130 13127.544 10 1249564.785 85 313446.5796 10000 67991.511
140 12396.740 15 980131.6889 90 302479.0412
150 11668.528 20 828685.6547 95 292282.6205
160 11011.508 25 721988.1555 100 282536.4434
170 10379.992 30 638212.3349 105 273463.3113
180 9781.5080 35 577496.6286 110 264959.9572
190 9314.0959 40 529660.1236 115 256763.0089
200 8842.2075 45 489483.7564 120 249050.4758
250 6909.0608 50 453109.5682 125 241880.3791
300 5341.6934 55 422638.6801 130 235203.3867
350 4322.2073 60 397674.5281 135 228999.8046
400 3594.3474 65 376630.2949 140 223062.6283
450 2887.0762 70 357335.1348 145 217462.7950
500 2181.8495 75 340123.4976 150 212236.2574

�������
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methods, and running each of them 10 times. This last reference also reports the optimum solution

values of smaller problem instances with 50 and 287 entities. We were able to find all these optimum

solution values with our CLS method. So, we conjecture that many of the solution values given in

Table 2 for the smallest set of entities are optimal. For the larger sets, we think that small improve-

ments can be obtained. 

The aim of Table 2 is to provide new MWP instances and to assert the absolute quality of our

methods: Indeed we think that providing the relative quality (measured in per cent over the best

solution value of Table 2) allows comparisons to be made more easily than providing absolute solu-

tion values. Sometimes, the best solutions known have been found by using sets of parameters for

which results are not reported in this paper and it would be difficult to estimate the effort needed to

obtain each best solution known. Consequently, we do not provide computing times in this table.

Our algorithms are implemented in C++ and run on a Silicon Graphics (SG) 195MHz worksta-

tion with R10000 processor. In order to make fair comparisons with algorithms implemented by

other authors and executed on a different machine, we have sometimes used another computer,

clearly indicated in the tables that follow. It was not possible to report exhaustive numerical results

due to the large number of problem instances (160), problem types (PMP, MWP or SSC) and meth-

ods (CLS, DEC and LOPT). We try to report representative results in a condensed form. However,

let us mention that the conclusions we draw for a given method for a problem type are generally

valid for another problem type.
Quality (% above best known) Computing time [s. Sun Sparc 10]

� MWPM MALT(100) CLS(100) CLS(1000) MWPM MALT(100) CLS(100)
2 0 0 0 [1] 66 69 9.7
3 0.20 0 0 [30] 75 59 8.7
4 0 0 0 [20] 50 66 9.6
5 0 0 0 [1] 67 66 10.4
6 0 0 0 [20] 72 64 7.6
7 0 0 0 [40] 62 75 6.7
8 0 0 0 [50] 79 57 6.1
9 0 0.15 0 [70] 71 55 6.3

10 0.040 1.1 0 [100] 75 54 6.2
11 0.069 6.1 0 [40] 66 52 5.8
12 0 3.6 0 [70] 97 52 5.8
13 0.013 1.4 0.017 0.0028 259 51 6.0
14 0.014 1.9 0.034 0.017 277 50 6.2
15 0.014 2.2 0.11 0.0099 196 49 6.2
20 0.55 5.3 0.16 0.011 1358 49 6.2
25 0.13 9.5 0.75 0.0014 1420 53 6.1
30 0.22 13.6 0.66 0.017 4222 56 6.3
35 0.38 15.3 0.82 0.04 1608 58 6.6
40 0.56 18.0 1.1 0.042 1762 61 7.0
45 0.50 19.9 1.4 0.17 1296 64 7.3
50 0.43 25.6 1.7 0.30 2487 64 7.6
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4. 2. ALT and CLS.

First, we want to show the efficiency of our CLS algorithm by comparing it to the results pro-

duced by one of the best methods at the present time for the MWP: MWPM, an algorithm that first

solves exactly a �-median before re-locating optimally the centres in the continuous plane. This

method is due to Cooper (1963) but has been forgotten for a long time before Hansen, Mladenovic

and Taillard (1998) show that in fact, it is one of the most robust for small and medium size MWPs

(see also Brimberg et al., 2000). We do not consider methods such as those of Bongartz, Calamai and

Conn (1994) which are too slow and produce too poor solutions or those of Chen (1983) or Murtagh

and Niwattisyawong (1982) which are not competitive according to Bongartz et al. Also, we do not

compare our results with the HACA algorithm of Moreno, Rodrígez and Jiménez (1990) for two

reasons: First the complexity of HACA is �(�2�) and requires an �(�2) memory, i. e. �(�3) in time

and �(�2) in memory if � = �(�), which are clearly higher than those of our methods. Second,

HACA produces solutions that are not as good as MWPM. Indeed, HACA first builds a heuristic

solution to the �-median instance associated to the MWP and then applies the ALT procedure to the

�-median solution. The reader is referred to Brimberg et al., 2000 for a unified comparison of a large

range of heuristic methods for the MWP. 

To show the effects of the improvements of the ALT procedure proposed in this paper, we pro-

vide the best solutions obtained over 100 repetitions of an old version of ALT that starts with differ-

ent initial solutions; this method is denoted MALT(100). The results for MALT(100) and MWPM

originate from Hansen, Mladenovic and Taillard (1998). In Table 3, we give the solution quality

(measured in per cent above the solution value given in Table 2) of MWPM, MALT(100), CLS(100)

and CLS(1000) and their respective computing times (seconds on Sun Sparc 10 workstation) for

P654. The computing time of CLS(1000) is roughly 10 times that of CLS(100). We have averaged

all these results for 10 independent runs of the algorithm. Where the 10 runs of CLS(100) find solu-

tions values identical to those given in Table 2, we provide in brackets the number of iterations

required by the worst run of CLS out of 10 to find the best solution known. From this table, we can

conclude that:

@ (/������&'(����������������,����+���
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4. 3. Decomposition methods DEC and LOPT.

As LOPT requires an initial solution in input, we indicate the performances of LOPT when

applied to the solution produced by the DEC procedure. In the following tables, the computing times

for LOPT, do not take into consideration the computing time of DEC to obtain the initial solution. 

Table 4 compares CLS(1000), DEC(20, 50), LOPT(10, 50) and 3 VNS variants (due to Hansen

and Mladenovic (1999)) for SSC instances built on entities set U1060. This table gives: The best
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solution value known (found with our methods), the solution quality of the methods (per cent over

best known; VNS results originate from Hansen and Mladenovic), and their respective computing

times (seconds on Sun Sparc 10 workstation). The computing time of VNS1 and VNS2 is 150 sec-

onds for all instances. VNS3 corresponds to the best over ten executions of VNS2; therefore, its

computing time is 1500 seconds. It is shown in Hansen and Mladenovic that all VNS variants are

more efficient than other methods of the literature, such as the �-means algorithm of Hartigan

(1975). From this table, we can conclude:

@ A����
����"���������p)��'�����"����� �����������������/����;�)��;� B '�
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Table 5 show the effect of the parameters of DEC and LOPT by confronting DEC(20, 50),

DEC(20, 200), LOPT(10, 50) (starting with the solution obtained by DEC(20, 50)) and

LOPT(10, 200) (starting with the solution obtained by DEC(20, 200)). This table provides the solu-

tion quality and the computing times (seconds on SG) for the MWP instance CH2863; all the results

are averaged over 10 runs. From this table, we can conclude:
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�
Best solution 

value known

Quality (% above best known) Computing time [s. Sparc 10]
CLS DEC LOPT VNS1 VNS2 VNS3 CLS DEC LOPT

10 1754840214 0.00 16.32 0.00 0.14 0.14 0.04 156.5 9.0 114.2
20 791794596.2 0.00 6.54 0.01 3.52 0.76 0.03 128.1 11.6 67.2
30 481251642.9 0.02 10.28 0.37 10.88 1.08 0.22 120.5 11.1 79.1
40 341342885.9 0.13 4.60 0.36 16.46 1.25 0.44 115.8 12.3 53.5
50 255509536.2 0.33 7.54 0.45 30.65 1.97 0.54 114.8 10.8 44.1
60 197273037.6 0.53 7.99 0.67 36.48 1.55 0.95 117.2 11.9 35.8
70 158450591.9 0.33 6.98 0.17 45.06 1.63 0.84 120.2 12.5 27.6
80 128890171.4 0.74 7.40 0.38 52.43 1.65 0.89 118.6 12.1 25.8
90 110456793.7 1.04 7.45 0.49 46.08 1.52 0.78 122.4 12.0 25.2

100 96330296.40 1.14 7.29 0.44 44.51 2.23 1.06 125.2 12.3 24.7
110 84849661.98 1.26 6.78 0.49 46.41 3.06 1.69 127.4 12.0 22.6
120 75545061.47 1.55 7.10 0.58 40.11 2.14 1.11 131.1 12.1 21.5
130 67561764.35 2.15 7.96 0.69 40.21 1.95 1.27 135.0 12.5 19.5
140 61128895.04 2.28 7.81 0.57 32.13 2.42 0.98 138.0 12.4 20.0
150 55918930.43 2.10 7.01 0.52 27.12 2.72 1.36 142.2 11.9 19.6
160 51310503.02 1.84 7.18 0.48 28.04 2.47 1.75 145.1 11.6 19.8
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In tables 6 and 7, we compare DEC + LOPT to a fast variant of VNS, called RVNS, for SSC and

PMP instances built on entities set Pcb3038. RVNS results originate from Hansen and Mladenovic

(1999). We have adapted the LOPT parameters in order to get comparable computation times. For all

SSC, PMP and MWP instances, we succeeded in improving the best solutions published in this last

reference. In Table 6, we can see that DEC + LOPT is able to find better solutions than RVNS in

shorter computation times. For the PMP, RVNS seems to be faster than DEC and LOPT for the

smallest number of centres. However, let us mention that our implementation derives directly from

the MWP one and is not optimized for the PMP. For example we do not compute the distances only

�
Quality [%] Computation time [s. on SG]

DEC LOPT DEC LOPT
20, 50 20, 200 10, 50 10, 200 20, 50 20, 200 10, 50 10, 200

100 3.4 3.2 0.28 0.20 30 162 53 197
110 3.3 3.0 0.17 0.09 29 154 49 174
120 3.5 3.0 0.27 0.17 28 160 56 183
130 3.4 3.0 0.15 0.12 30 157 46 160
140 3.4 3.0 0.15 0.17 31 163 46 163
150 3.8 3.5 0.23 0.14 27 145 45 161
160 3.9 3.4 0.17 0.12 26 146 47 166
170 4.4 4.1 0.24 0.14 22 126 43 163
180 4.5 4.1 0.18 0.18 24 134 47 160
190 4.8 4.3 0.34 0.20 24 132 45 157
200 4.9 4.4 0.21 0.25 21 121 46 152
250 5.0 4.4 0.26 0.14 20 117 43 149
300 5.3 4.3 0.47 0.20 18 111 41 136
350 4.9 4.2 0.50 0.30 17 100 38 123
400 5.1 4.0 0.63 0.38 17 103 36 108
450 5.2 3.7 0.94 0.44 17 106 35 110
500 4.8 3.4 1.02 0.39 18 108 35 105
600 5.7 3.4 1.42 0.39 16 104 35 89
700 5.8 3.7 1.48 0.52 19 106 32 82
800 5.7 3.8 1.48 0.54 19 107 33 79
900 6.6 4.0 1.59 0.71 18 108 32 70

1000 7.1 4.7 2.18 1.10 20 108 33 69
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Quality [%] Time [s. Sparc 10]
� Best known RVNS DEC LOPT RVNS DEC LOPT
100 47721950.8 2.27 5.24 1.04 152.8 50 82
150 30524769.8 3.13 4.63 1.09 153.0 48 55
200 21885997.1 2.44 5.55 0.90 159.9 48 44
250 16621446.5 2.56 6.98 1.59 182.1 46 39
300 13290304.8 2.50 7.22 1.44 229.3 49 33
350 11027516.8 2.53 7.24 1.42 230.9 44 30
400 9362179.2 3.35 7.56 1.70 165.0 43 27
450 8101618.7 3.47 7.18 1.66 242.6 42 26
500 7102678.4 2.85 7.47 1.73 204.4 43 25
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once at the beginning of the execution and store them in a (very large) matrix. For large number of

centres, DEC + LOPT is again faster and better than RVNS.

In Table 8, we provide computational results for our methods DEC(20, 50), DEC(20, 200) and

LOPT(7, 50) (applied to the solution obtained with DEC(20, 200)) for MWP instances Brd14051

and Pla85900. We give the following data in this table: The number � of entities, the number � of

centres, the solution quality obtained by DEC and LOPT (per cent over best known), the respective

computing times (seconds on SG), the proportion of sub-problems solved by DEC and LOPT. For

Quality [%] Time [s. Sparc 10]
� Best known RVNS DEC LOPT RVNS DEC LOPT
100 352704.86 1.12 4.04 0.65 132.4 197 485
150 281193.96 0.65 4.41 0.74 128.5 141 277
200 238432.02 1.23 4.12 0.74 107.6 106 187
250 209241.25 0.71 4.17 0.59 150.3 85 150
300 187723.46 0.52 4.08 0.64 130.6 84 125
350 170973.34 0.83 3.99 0.67 153.1 72 110
400 157030.46 1.13 4.04 0.83 158.7 64 97
450 145422.94 1.13 4.14 0.76 179.5 65 87
500 135467.85 0.89 4.01 0.71 209.7 59 81
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� �
Quality [%] Time [s. SG] Proportion

DEC

(20, 50)

DEC

(20,200)

LOPT

(7, 50)

DEC

(20, 50)

DEC

(20,200)

LOPT

(7, 50)

DEC

(20, 50)

DEC

(20,200)

LOPT

(7, 50)

14051

100 2.4 2.38 0.39 458 1931 3109 4.4 4.4 4.4
200 1.9 2.03 0.30 336 1379 1632 4.3 4.6 3.3
300 2.2 2.08 0.30 252 1073 1055 5.0 5.0 2.6
400 2.2 2.04 0.26 214 915 885 4.9 5.2 2.4
500 2.5 2.12 0.27 195 909 838 4.9 5.8 2.5
600 2.4 1.99 0.26 184 799 707 5.1 5.8 2.3
700 2.5 1.93 0.23 177 829 632 5.7 6.8 2.2
800 2.5 1.97 0.24 149 760 555 4.8 6.8 2.1
900 2.6 2.00 0.26 146 736 505 6.2 7.3 2.1

1000 3.0 2.17 0.31 129 667 437 4.6 6.6 2.0
1500 3.0 2.41 0.43 97 491 288 4.0 5.8 1.9
2000 4.0 2.81 0.59 88 379 227 4.7 4.8 1.8
2500 4.5 3.28 0.91 88 345 193 4.4 4.9 1.8
3000 4.7 3.65 1.15 82 347 173 4.6 4.9 1.8
5000 4.4 3.59 1.28 73 309 123 4.3 4.5 1.5

85900

1000 1.78 1.53 0.09 3557 9415 7634 4.2 5.2 2.9
1500 1.97 1.70 0.17 3149 7885 5343 4.3 5.7 2.8
2000 1.81 1.46 0.12 2819 6923 4750 4.1 5.1 2.5
2500 1.84 1.48 0.05 3100 7031 4640 4.8 6.1 2.6
3000 1.74 1.30 0.10 2405 5959 4532 4.1 5.2 2.6
4000 1.72 1.30 0.04 2440 5503 4098 3.9 4.5 2.2
5000 1.87 1.41 0.00 2597 5214 3423 4.1 4.3 2.0
6000 1.67 1.37 0.05 2328 5392 2872 4.0 4.2 1.9
7000 2.03 1.50 0.13 2276 4770 2526 4.3 4.3 1.9
8000 2.07 1.53 0.03 2681 4685 2344 4.1 4.6 2.0
9000 2.55 1.67 0.16 2796 4658 1992 4.1 4.3 1.8

10000 2.78 1.80 0.16 2629 4863 1813 5.1 4.5 1.8
15000 3.71 2.61 0.58 3144 5242 1552 5.3 6.0 1.8
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DEC, this proportion corresponds to the number of subproblems solved divided by . For

LOPT, this proportion corresponds to the number of subproblems solved divided by �. The results

are averaged for 5 runs for Brd14051 and the methods were executed only once for Pla85900. From

Table 8, we can conclude that:
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5. CONCLUSIONS

In this article we have proposed three new methods for heuristically and rapidly solving centroid

clustering problems. First, we propose CLS, a candidate list search that rapidly produces good solu-

tions to problems with a moderate number � of centres. Second, we propose LOPT, a procedure that

locally optimizes the quality of a given solution. This method notably reduces the gap between the

initial solution and the best solution known. The third method proposed, DEC, is based on decom-

posing the initial problem into subproblems. DEC and LOPT are well adapted to solve very large

problems since their computing time increases more slowly with the number of entities than that of

other methods in the literature. These methods can solve problems whose size is many order of mag-

nitude larger than the problems treated up to now. Despite its speed, they produce solutions of good

quality. The expected complexity of these procedures are given and experimentally verified on very

large problem instances.

In fact, LOPT is a general optimization method that can be considered as a new meta-heuristic.

Indeed it can be adapted for solving any large optimization problem that can be decomposed into

independent sub-problems. LOPT has been shown to be very efficient for centroid clustering prob-

lems and vehicle routing problems. Future works should consider to apply LOPT to other combina-

torial optimization problems.

The success of the methods presented in this paper could be explained as follows: solving prob-

lems with a very limited number of centres (e. g. below 15) is generally an easy task. Thanks to the

use of an adequate neighbourhood, the CLS method allows problems up to 50–70 centres to be

treated in a satisfactory way. DEC treats the problem at a high level and is able to determine the gen-

eral structure of good solutions involving a large number of centres. Starting with a solution that has

a good structure, LOPT is able to find very good solutions using a very simple improving approach.

� �=
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Therefore, it is interesting to remark that a very simple improving scheme can lead to a very efficient

method if an initial solution with a good structure can be identified and an efficient neighbourhood is

used. Indeed, the quality of the solutions obtained by the DEC + LOPT method rival what one would

expect from a more elaborate meta-heuristic such as a genetic algorithm, taboo search or simulated

annealing. The use of inadequate neighbourhood structures can explain the poor performances of

previous implementation of such meta-heuristics. In summary, we can say that our methods open

new horizons in the solution of large and hard clustering problems.
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