
MIC/MAEB 2017 id–1

TSP Neighbourhood Reduction with POPMUSIC
Éric D. Taillard1

HEIG-VD
Rte de Cheseaux 1, CP 521, CH-1401 Yverdon-les-Bains, Suisse

eric.taillard@heig-vd.ch

Abstract

A key point for implementing a fast and efficient local search is to use a neighbourhood of limited
size containing all the pertinent moves. For the travelling salesman problem, the most efficient
neighbourhoods are based on Lin-Kernighan moves. In order to speed-up the computation, only
a subset of moves are evaluated. This article propose a method with a low algorithmic complexity
for generating a limited subset of pertinent edges that must be used in the solution tour. Combined
with a state-of-the art local search, this technique is able to produce solutions of very high quality to
very large problem instances.

1 Introduction

The travelling salesman problem (TSP) is certainly the most studied NP-hard combinatorial optimisation
problem. Now, we are able to exactly solve instances up to several thousands of cities and to find
solutions for instances with millions of cities at a fraction of the percent above the optimum [2, 3]. One
of the best heuristic source codes for the TSP is due to [4]. It is referred below as LKH.

2 Neighbourhood limitation

For limiting the computational time, it is necessary to limit the number of edges that can be used in
solution tours. Various techniques have been proposed for this purpose: In the case of Euclidean problem
instances, a Delaunay triangulation can be computed (in O(n log n)) and the moves considered are those
only containing the edges of the sub-graph induced by the triangulation. This principle can be extended
to general problem instances by using a technique based on 1-trees. Provided that the average vertex
degree in the sub-graph is limited (typically to a value from 5 to 10), finding a local optimum relative to
Lin-Kernighan (or k-opt) moves can be performed with an empirical algorithmic complexity that is less
than quadratic.

However, computing the 1-trees has a quadratic complexity. Therefore, the LKH implementation
requires a computational time that grows quadratically for general problem instances, even if the local
search is faster. This is illustrated in Figure 1.

2.1 Low complexity sub-graph generation

For limiting the preprocessing time, we propose to build few dozens of TSP tours with a low complexity,
a randomised heuristic. The union of the tours defines a sub-graph whose edges are the only ones that
can be used by the local search moves. This technique was called tour merging by [1].

The randomised procedure must produce TSP tours of adequate quality with a low algorithmic com-
plexity. We propose to use the POPMUSIC [6] template for creating this randomised procedure. For
getting an initial solution that is convenient for POPMUSIC, Algorithm 1 is used. Notice that the last
part of this algorithm can be seen as a fast POPMUSIC since n/a sub-paths are optimised.

The main steps of this algorithm are illustrated in Figure 2.
The solution produced by Algorithm 1 is improved by a standard POPMUSIC where all sub-path of

r consecutive cities are optimised with a Lin-Kernighan neighbourhood. The POPMUSIC optimisation
improves the quality of the candidate edges since it removes the inappropriate edges belonging to 2
consecutive sub-paths obtained at step 9.

Barcelona, July 4-7, 2017



id–2 MIC/MAEB 2017

103

104

105

106

102

10

1

10−1

O(n2.12)

O(n1.34)

Ti
m

e
[s

]

Problem Size

1-Tree Preprocessing

LKH 60 Trials

103 104 105 106

Figure 1: Computational time of LKH program for uniform (E) and clustered (C) DIMACS instances,
with candidate edge list found with 1-trees and sub-gradient optimisation, 60 trials and a single run. The
lines corresponds to interpolation polynomials.

Figure 2: Building an initial solution adapted for POPMUSIC. First, a tour is found on a sample of cities
(bold line). Then, the remaining cities are inserted after the closest of the sample, creating clusters of
cities. Finally sub-path including the cities assigned to 2 consecutive clusters are optimised. The figure
shows the situation when the cluster optimisation is partially performed.

Barcelona, July 4-7, 2017



MIC/MAEB 2017 id–3

Algorithm 1: Generating a feasible TSP tour adapted for POPMUSIC template.
Data: n cities, distance function d(i, j) between cities i and j, parameter 0 < a < n
Result: TSP tour T
Uniformly select a random sample S of a cities;1

Build a LK-optimal tour Ts on S;2

T = Ts3

for each city c /∈ S (in arbitrary order) do4

cc = argmin(d(s, c)), (s ∈ S);5

Insert c just after cc in T ;6

for each city c ∈ Ts (in the order of appearance in Ts) do7

Let nc be the number of cities inserted at the previous step after c and after the city next to c in8

Ts;
Optimise a sub-path of nc cities in T , starting from c, with a 2-opt local search9

Problem size Best known Computational Time %Excess
Sub-graph Total LKH Proposed LKH

1000 23101545.4 2.981 3.921 1.701 0.036 0.016
3162 40519926 9.406 17.54 16.4 0.062 0.022

10000 71865826 29.7 92.2 226 0.11 0.05
10000 72031630 29.9 82.3 225 0.08 0.03
10000 71822483 29.6 87.0 237 0.12 0.03
31623 127282138 95.3 427 2396 0.19 0.06
31623 126647285 95.2 470 2427 0.83 0.73

100000 224330692 325 1850 26860 0.88 0.76
100000 225654639 326 1805 27446 0.24 0.11
316228 401301206 1234 7821 262090 0.26 0.15

1000000 713187688 5250 31061 — 0.27 —
3162278 1267318198 27770 129866 — 0.28 —

10000000 2253088000 208195 611402 — 0.28 —

Table 1: Results for uniform (E) DIMACS instances.

Using a very basic Lin-Kernighan local search procedure with an empirical complexity of O(n2.78),
a 2-opt local search with empirical complexity O(n2.29) and choosing a = 1.5 · n0.56, the empirical
complexity of Algorithm 1 is about O(n1.6). Applying POPMUSIC with r = 50 to the solution so
obtained takes a time proportional to the number of cities.

3 Numerical results

On Euclidean DIMACS problem instances, POPMUSIC applied to an initial solution obtained with Al-
gorithm 1 produces solutions that are 5.7% to 12.8% above best solution values known [2]. Although
POPMUSIC produces not tremendously good solutions, the union of 20 solutions obtained by this tech-
nique generates an candidate set of edges of excellent quality for a local search. Table 1 provides the
computational time (seconds on Intel i7 930 2.8GHz) and the solution quality of LKH on DIMACS
uniform (E) instances. This table provides the computational time for producing 20 solutions with POP-
MUSIC and the total time of the method when LKH works with the candidate edges obtained with the
union of 20 tours. Then, LKH is run with standard parameters (not exploiting the Euclidean property of
the instances, 1 run with 60 trials). Finally, Table 1 gives the quality of solutions produced by our method
and by standard LKH. For problems of size 1000 and 3162, the results are averaged for 10 (respectively:

Barcelona, July 4-7, 2017



id–4 MIC/MAEB 2017

Problem size Best known Computational Time %Excess
Sub-graph Total LKH Proposed LKH

1000 11174460.5 3.24 4.18 4.13 0.11 0.10
3162 19147233.6 10.5 20.3 15.1 0.68 1.50

10000 33001034 33.1 85.4 68 0.72 3.31
10000 33186248 33.4 76.8 73.6 0.86 1.42
10000 33155424 33.2 71.1 73.9 0.25 0.42
31623 59545390 108 230 469 0.49 3.57
31623 59293266 107 264 455 0.79 2.29

100000 104617752 368 975 3457 1.16 4.56
100000 105390777 368 947 3467 0.85 7.47
316228 186870839 1372 3495 32018 0.98 9.44

Table 2: Results for clustered (C) DIMACS instances.

5) instances.
Table 2 provides the same information for clustered (C) DIMACS instances. In this table, LKH was

run with additional parameter INITIAL PERIOD = 1000 for speeding-up the preprocessing time. We
see in these tables that our method is much faster for large instances and produces better solutions for
clustered instances.

For uniformly generated problem instances in hypercubes of dimension 2, 3 and 4 with toroidal
distances, whose size ranges from half a million to more than 2 million cities, we have obtained average
solution lengths 0.25%, 0.11% and 0.06% above the predicted optimum [5].

References

[1] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook. The Traveling Salesman
Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton University
Press, Princeton, NJ, USA, 2007.

[2] Keld Helsgaun. Best known solutions to Dimacs TSP instances. Last updated: October 6, 2014.

[3] Keld Helsgaun. General k-opt submoves for the lin-kernighan tsp heuristic. Mathematical Program-
ming Computation, 1, 2009.

[4] Keld Helsgaun. Helsgaun’s implementation of Lin-Kernighan, 2016. Version LKH-2.0.7.

[5] David S. Johnson, Lyle A. McGeoch, and E. E. Rothberg. Asymptotic experimental analysis for the
Held-Karp traveling salesman bound. In Proceedings of the 7th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 341–350, 1996.

[6] Éric D. Taillard and Stefan Voss. POPMUSIC: Partial optimization metaheuristic under special
intensification conditions. In Celso Ribeiro and Pierre Hansen, editors, Essays and surveys in meta-
heuristics, pages 613–629. Kluwer Academic Publishers, 2001.

Barcelona, July 4-7, 2017


