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ABSTRACT

The Vehicle routing problem with multiple use of vehicles is a variant of the standard vehicle

routing problem in which the same vehicle may be assigned to several routes during a given

planning period. A tabu search heuristic is developed for this problem. It is shown to produce

high quality solutions on a series of test problems.

Key words : Vehicle routing problem, multiple use of vehicles, heuristic, tabu search.

RÉSUMÉ

Le probl̀eme de tourńees de v́ehicules avec utilisations multiples des véhicules est une variante

du problème de tourn´ees de v´ehicules standard dans lequel le mˆeme véhicule peut ˆetre réutilisé

pour plusieurs tourn´ees au cours d’un horizon de planification donn´e. On développe un algorithme

de recherche avec tabous pour ce probl`eme. L’algorithme permet d’obtenir des solutions de tr`es

bonne qualit´e sur un ensemble de probl`emes tests.

Mots-clefs : Problème de tourn´ees de v´ehicules, utilisation multiple de v´ehicules, heuristique,
recherche avec tabous.
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Introduction

The Vehicle Routing Problem (VRP) is a central problem in distribution management. Its

most standard version can be formally defined as follows. Let� � ����� be an undirected

graph where� � ���� ��� ���� ��� is a set of vertices representingcities or customers, and

� � ����� ��� � ��� �� � �� � � �� is the edge set. Vertex�� denotes a depot at which are based

	 identical vehicles of capacity
, where	 is a decision variable or a constant. Each city of

� � ���� has a non-negative demand�� and a non-negative service time��. A distance matrix

�
��� is defined on�. Here, we use the terms distance and travel time interchangeably. The VRP

consits of designing a set of	 vehicles routes having a minimum total length and such that 1) each

route starts and ends at the depot, 2) each remaining city is visited exactly once by one vehicle, 3)

the total demand of a route does not exceed
, 4) the total duration (including service and travel

times) of a route does not exceed a preset limit�.

The VRP is a hard combinatorial optimization problem for which several exact and approximate

algorithms have been designed (see, e.g., Laporte1). A number of meaningful variants and

extensions have also been analyzed (see, e.g., Assad2 as well as Laporte and Osman3).

One drawback of the standard VRP definition is that it implicitly assumes each vehicle is used

only once over a planning period of duration� . For example,� could correspond to an eight

hour working day. In several contexts, once the vehicle routes have been designed, it may be

possible to assign several of them to the same vehicle and thus use fewer vehicles. When	 is

given a priori and
 is relatively small, this will often be the only practical option. However,

this possibility is not directly accounted for in the problem statement and more often than not,

an efficient “packing” of the routes into working days will be hard to achieve. Designing routes

with multiple uses of the vehicles is rather important in practice, but this problem (denoted by the
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abbreviation VRPM) has received very little attention in the Operational Research literature. To

our knowledge, only Fleischmann4 has explicity addressed this problem. In his working paper, this

author proposes a savings based heuristic for the VRPM and illustrates it on examples involving

between 68 and 361 customers.

We believe the VRPM deserves more attention. In this article, we propose a new heuristic for

this problem. The algorithm and computational results are presented in the following two sections,

and the conclusion follows.

Algorithm

In recent years, several powerful tabu search algorithms have been proposed for the VRP (see,

e.g., Taillard5, Gendreau, Hertz and Laporte6, Rochat and Taillard7). As a rule, these algorithms

produce very good and sometimes optimal solutions. There are, however, cases where the search

becomes trapped into a local optimum and standard diversification techniques are not powerful

enough to counter this situation. The major interest of the Rochat and Taillard7 algorithm is that it

allows diversification of the search process to take place by generating and combining promising

solutions, not unlike what is done in genetic algorithms8,9. More precisely, the route generation

procedure first produces several good VRP solutions using tabu search. It then extracts single

vehicle routes from this population of solutions, and combines some of these routes to define a

partial starting solution for another application of tabu search. This process is repeated a number

of times and some of the vehicle routes generated are selected as candidates for the final VRP

solution. Note that each application of tabu search has the effect of producing a full VRP solution

starting from a limited set of routes and it may also modify these seed routes through the local

search process. We now provide a description of the algorithm we have designed for the VRPM,

based on the Rochat-Taillard principle.
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The proposed heuristic is made up of three parts. It first generates a large set of good vehicle

routes satisfying the VRP constraints. It then makes a selection of a subset of these routes using an

enumerative algorithm. Finally, it assembles the selected routes into feasible working days using

several applications of a bin packing heuristic. The idea of first generating individual routes and

combining them into a global solution has already been implemented by a number of authors (see,

e.g., Foster and Ryan10, Ryan, Hjorring and Glover11, Renaud, Boctor and Laporte12, Rochat and

Taillard7). Compared with previous work, the parallel algorithm of Rochat and Taillard produces

a much broader set of routes and the average quality of these routes is also higher. Using bin

packing in the final part of the algorithm is a natural choice and has already been suggested by

Fleischmann4. Before providing a step by step description of the algorithm, we should mention

that it can also easily handle a variant of the VRPM where penalties are incurred for overtime,

as is often the case in practice.

PART 1. Route generation procedure

Step 1. (First set of VRP solutions) Generate 20 VRP solutions with an unspecified number of

vehicles, using the tabu search algorithm of Taillard5. Insert the individual vehicle routes in a

list, and label each of them by the value of the VRP solution.

Step 2. (Generation of new VRP solutions). Apply the following operations� times, where�

is an input parameter:

i) Randomly select a route from the list according to a criterion that gives a larger weight to

routes that are often generated or that belong to better VRP solutions.

ii) Disregard all routes having vertices in common with the already selected routes; if some

routes remain, go to i).
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iii) Using the routes selected in i) as a starting point, apply tabu search to generate a new VRP

solution, append the individual routes to the list, and label them as in Step 1. Dominated

routes are eliminated. If a route is duplicated, only one copy is kept, but the frequency of

that route is recorded as this affects its probability of being selected.

PART 2. Generation of VRP solutions

At most� routes are selected for the second part of the algorithm, where� is an input parameter

and � �� 	. Typically, the number of selected routes is�, but there can be fewer if the size of

the list is less than�. Routes are selected in non-decreasing order of their labels and inserted in

a set� . This selection rule is such that a feasible VRP solution can always be obtained. Then,

within a search tree, all feasible VRP solutions that can possibly be constructed by combining

routes of� are generated. In order to control the growth of the search tree, branching priority

is always given to routes containing the largest number of customers. This process ends with a

set � of feasible VRP solutions.

PART 3. Generation of solutions to the VRPM

In the last part of the algorithm, an attempt is made to obtain a feasible solution to the VRPM

by solving a packing problem for each VRP solution of�, and selecting the best overall solution.

For each VRP solution� of �, let ���� be the duration of the��� route, where� � �� ����	�,

and	� is the number of routes in solution�. Then, for each�, a VRPM solution is identified

whenever there exists a feasible bin packing13 solution with	 identical bins of size� , and	�

items of weights����� ����� ���� �����
. To identify such bin packing solutions, all items are first

sorted in non-increasing order of weights and gradually assigned to the bin of least accumulated

weight. If none of the	 bins has a weight exceeding� , this procedure terminates. Otherwise, an

attempt is made to obtain a feasible solution by repeatedly swapping items belonging to different
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bins. Feasibility at this stage is not guaranteed. When overtime is permitted, any hour worked

beyond time� is penalized by a factor� (e.g., when� � ���, overtime is paid at 50% over the

standard rate). In our implementation, we used� � �. In such a case, the procedure just described

can be applied, with the exception that the swapping step attempts to minimize total overtime.

Here, a feasible VRPM solution always exists.

Computational results

The algorithm just described was tested on a number of VRPM instances generated as follows.

We first used the same graphs, demands and vehicle capacities as in problems 1–5 and 11–12 of

Christofides, Mingozzi and Toth14, and problems 11–12 of Fisher15. Starting from these nine base

problems, several instances were generated by using different values of	 and�� For each value

of 	, two values of� were used:�� � ����� ���	� and�� � ���� ���	�, where��� is the value

of � rounded to the nearest integer and�� is the value of a VRP solution obtained as in Rochat

and Taillard7 with an unspecified number of vehicles. Larger values of	 were not considered as

these produced infeasible instances (with�
	� � � , for some�). The main characteristics of the

base problems are summarized in Table 1.

Table 1 Characteristics of the base problems

Problem number Source � � �
�

1 CMT-11 50 1,...,4 524.61

2 CMT-21 75 1,...,7 835.26

3 CMT-31 100 1,...,6 826.14

4 CMT-41 150 1,...,8 1028.42

5 CMT-51 199 1,...,10 1291.44

6 CMT-111 120 1,...,5 1042.11

7 CMT-121 100 1,...,6 819.56

8 F-112 71 1,...,3 241.97

9 F-122 134 1,...,3 1162.96
1 CMT: Christofides, Mingozzi and Toth14; 2 Fisher15.
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Table 2 Summary of computational results

Problem number � � � �� ��� �� � �� �� ��� ����
Time

(minutes)
1 ** **
2 ** **
3 — —1 50

4 — *

62.5 171 25.8 136 5

1 ** **
2 ** **
3 ** **
4 ** **
5 ** **
6 — *

2 75

7 — —

219.8 500 838.0 8 615 7

1 ** **
2 ** **
3 ** **
4 ** **
5 — *

3 100

6 — *

393.4 500 453.0 3 053 24

1 ** **
2 ** **
3 ** **
4 ** **
5 ** **
6 * **
7 — *

4 150

8 — —

400 500 777.8 33 551 51

1 ** **
2 ** **
3 ** **
4 ** **
5 ** **
6 ** **
7 ** *
8 ** **
9 * **

5 199

10 — *

400 500 10000.6 45 138 66

1 ** **
2 ** **
3 * **
4 — *

365.0 500 112.8 400 45
6 120

5 * **
1 ** **
2 ** **
3 ** **
4 ** **
5 — **

7 100

6 — *

149.2 500 233.2 24 360 23

1 ** **
2 — ** 81 255 36.8 194 268 71
3 — —
1 ** **
2 ** ** 308.0 500 176.8 2 191 759 134
3 ** **
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The algorithm was coded in Pascal and run on a 100 Mhz Silicon Graphics Indigo machine.

Each instance was run five times, using different random seeds in the local search algorithm for the

VRP solutions. The main computational results are summarized in Table 2. The column headings

are as follows:

– Problem number (as in Table 1).

– �: number of customers.

– �: number of vehicles allowed in the final solution.

– � ������: In these two columns, ** means that each of the five runs produced a feasible

solution where the workload of each vehicle did not exceed�� or �� (here we used� � ���

in Part 1 of the algorithm). Sometimes, at least one run did not produce such a feasible

solution; then the VRP solutions obtained after Part 1 of the five runs were pooled together in

the hope of identifying a feasible solution and the algorithm was rerun with� � ��� in Part

1; * means that this additional run produced a feasible solution; – means that it failed.

– �� �: average number of vehicle routes retained in Part 2 of the algorithm; this average is

computed over the first five runs (with� � ���).

– �� ��: number of vehicle routes retained at in Part 2 when a sixth run was made (with� � ���).

– ���: average number of VRP solutions produced with� .

– �� ��: number of VRP solutions produced with� �.

– Time: average CPU time in minutes over all runs.

Results presented in Table 2 indicate that the algorithm successfully produced feasible solutions

within reasonable computing times for most instances. For��, the success rate was 34/52 (for

**) and 38/52 (for * or **); for ��, the corresponding ratios are 40/52 and 44/52. Because of

the way the instances were generated, these results indicate that the feasible solutions are within
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5% or 10% of the best known VRP solution. When executing our tests, we have observed that

similar results are obtained if about half the current computation time is used. Another observation

stemming from Table 2 is that the number of single vehicle routes of full VRP solutions tends

to grow with �. This implies the algorithm has a higher likelihood of finding a feasible VRPM

solution when� is large.

Table 3 Computational results for instances infeasible with respect to ��

�� ��

Problem number � � �
� Length Cost Longest route ratio Length Cost Longest route ratio

3 533.00 579.48 1.115 529.17 556.51 1.050
1 50

4
524.61

546.29 565.27 1.027 546.29 546.29 0.985

6 841.60 857.19 1.032 839.22 839.22 0.996
2 75

7
835.26

843.60 878.29 1.073 843.60 849.74 1.023

5 829.50 853.23 1.062 829.50 833.04 1.010
3 100

6
826.14

842.85 861.18 1.032 832.00 838.07 1.012

7 1042.39 1074.16 1.033 1031.43 1035.03 1.010
4 150

8
1028.42

1049.02 1088.03 1.075 1044.98 1059.99 1.029

5 199 10 1291.44 1316.00 1331.09 1.024 1316.00 1316.00 0.981

6 120 4 1042.11 1042.11 1055.07 1.020 1042.11 1092.11 0.973

5 819.56 836.80 1.050 819.56 820.77 1.003
7 100

6
819.56

819.56 845.48 1.064 819.56 823.79 1.014

2 241.97 249.97 1.031 241.97 241.97 0.985
8 71

3
241.97

244.60 257.31 1.075 244.60 299.31 1.027

We then present in Table 3 results concerning the instances that were infeasible for��. The

first two column headings are identical to those of Table 2. We then report for each of�� and

�� the following statistics:

– �
�: value of the VRP solution obtained using the Rochat and Taillard algorithm7.

– Length: total length of the best solution identified for the VRPM.

– Cost: total cost of that solution, i.e. total length, plus penalty�� � �� associated with routes

whose length exceeds� .

– Longests route ratio: length of the longest route divided by� .
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Table 3 sheds more light on the quality of the results. Comparing the�
� and length columns

shows that our solution costs are on the average within 1.2% of�
�. As the�� values are believed

to be quasi-optimal for the VRP, this means our VRPM solution should also be close to optimality.

The “largest route ratio” columns indicate that the longest route is almost always within 10% of

the allowed limit, and this value is below 5% in half of the cases with��, and below 3% in all

cases with��. These values seem to make sense from a practical point of view and confirm the

quality of the proposed approach.

Conclusion

We have considered a practical and difficult variant of the VRP in which vehicles can be used

several times during a given planning period. This problem had previously received very little

attention in the Operational Research literature. We have proposed an efficient and robust heuristic

that produces high quality solutions on all instances that were attempted. We believe our approach

could easily be applied to solve real-life problems.
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