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Abstract

This article reviews a number of statistical tests for comparing proportions. These statistical tests are presented in a
comprehensive way, so that OR practitioners can easily understand them and correctly use them. A test for 2 · 2 contin-
gency tables is developed and shown to be more powerful than other classical tests of the literature such as Fisher’s exact
test. Tables with critical values for small samples are provided, so that the test can be conducted without any
computations.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In operations research, comparing two solution
methods with each other is frequently needed. This
is particularly the case when one wants to tune the
parameters of an algorithm. In this case, one wants
to know whether a given parameter setting is better
than another one. In practice, to identify the best
setting, there are several approaches. Without being
exhaustive, common techniques are the following:

1. In the context of optimization, a set of problem
instances is solved with both methods that have
to be compared. Then, the mean, standard devia-
tion (an eventually other measures such as med-
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ian, minimum, maximum, skewness, kurtosis,
etc.) of the solution values obtained are computed.

2. In the context of solving problems exactly, the
mean, standard deviation, etc. of the computa-
tional effort needed to obtain the optimum solu-
tion are computed.

3. The maximal computational effort is fixed, as
well as a goal to reach. One counts the number
of times each method reaches the goal within
the allowed computational effort.

Naturally, there are many variants and other sta-
tistics that can be collected. In the first comparison
technique, the computational effort is not taken into
account. Either the last is very small, or both meth-
ods requires approximately the same computational
effort.

Very often in practice, the measures that are com-
puted in the first and second comparison techniques
.
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quoted above are very primitive. Sometimes they are
limited only to the mean. This is evidently very insuf-
ficient for stating that a solution method is statisti-
cally better than another one.

When the standard deviation is provided in addi-
tion to the mean, it is generally (implicitly) assumed
that the distribution of the population satisfies the
hypothesis of a normal distribution. Under this
assumption, a large number of statistical tests are
available and can be validly performed. Unfortu-
nately, the normality assumption is far from being
always satisfied. For instance, an optimization tech-
nique that frequently finds globally optimal solu-
tions has a distribution with a truncated tail, since
it is impossible to go beyond the optimum. This sit-
uation is illustrated in Fig. 1 that provides the
empirical distributions of solutions values obtained
for two nondeterministic optimization techniques
(Robust taboo search (Taillard, 1991) and POPMU-
SIC (Taillard and Voss, 2002)) for a turbine runner
balancing problem instance. Although this situation
is frequent with metaheuristic-based optimization
methods, it cannot be generalized.

This figure shows clearly that the distributions
are asymmetrical, left truncated (this is a minimiza-
tion problem; the vertical axis is placed on a lower
bound to the optimum) and that both distribution
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Fig. 1. Empirical distributions of solution values obtained by
two nondeterministic methods (POPMUSIC and taboo),
obtained by solving 10,000 times the same turbine runner
balancing problem instance.
functions are different. Therefore, the estimation
of a parameter (the mean) of an a prior unknown
distribution function is not evident. Moreover, a
confidence interval for the mean should be given,
which seems not evident to be undertaken. A boot-
strap approach (Davison and Hinkley, 1997; Efron
and Tibshirani, 1993) could be convenient.

When the third comparison approach quoted
above is used (counting the number of successes),
the sign test (Arbuthnott, 1710) (see, e.g. Conover,
1999), or, better, the ‘‘Fisher’s exact test’’ for 2 · 2
contingency table is convenient. A run of a method
is successful if it reaches a given goal. In the context
of NP-complete problems, the goal is to find a feasi-
ble solution. In the context of optimization problems
(e.g. NP-hard problems), the goal could be finding
the optimum solution (subject that such a solution
can be characterized) or finding a solution that is a
given percentage above (respectively: below) a lower
(respectively: upper) bound to the optimum. When
two methods have to be compared on a given set of
problem instances, a success for a method could be
to provide a solution of better quality than the solu-
tion produced by the other method for the same
problem instance. In the context of comparing two
methods for multiobjective optimization, a success
could be to find a solution that is not dominated by
the set of solutions produced by the other method.
Naturally, the definition of a ‘‘success’’ must be
clearly stated before a statistical test is undertaken,
but the user has a wide latitude in choosing the defi-
nition, possibly leading to different conclusions!

This article develops a statistical test that is more
powerful than both the sign test and Fisher’s test for
comparing proportions. This test is based on a stan-
dard methodology that seems to be uncommon in
practice. Indeed, it is not developed in the literature
consulted, although it cannot be excluded that it
appears somewhere, since there is a huge amount
of articles and books dealing with contingency tables
(see, e.g. Conover, 1999; Good, 2005). Before the
presentation of the new test, other approaches
commonly used in practice are reviewed. Finally,
the new test is numerically compared to these
approaches.

2. Comparing proportions

The central problem treated by this article is the
following: Let us suppose that two populations A

and B are governed by Bernoulli distributions, i.e.,
the probability of success of an occurrence of A
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(respectively: B) is given by pa (respectively: pb). From
the OR user point of view, it is considered that the
result of the execution of a method is a random vari-
able. Indeed, either the method is nondeterministic
which is typically the case of simulated annealing,
or the problem data can be viewed as random, the
user not being able to influence them. So, it is sup-
posed that Method A (respectively: Method B) has
a probability of pa (respectively: pb) to be successful.

Say that the user would like to use the method hav-
ing the highest success probability. Ideally, the user
would like to know pa and pb to make the choice.
Unfortunately, these probabilities are unknown.
The user could try to estimate them empirically. In
the remaining of the paper, we assume the following:

Assumptions and sampling

• The sample size of A is na; a successes and na � a

failures have been observed.
• The sample size of B is nb; b successes and nb � b

failures have been observed.
• Observations are mutually independent.
• The probability pa (respectively: pb) of having a

success for population A (respectively: B) does
not depends on the observations. Either pa < pb

or pb < pa or pa = pb for all observations (unbi-
ased sample)

Hence, the data can be put in a 2 · 2 contingency
table, as shown in Table 1.

2.1. Classical parametric approaches

The classical approach (based on the central limit
theorem) for comparing two proportions is the fol-
lowing: Let Xa (respectively: Xb) be the random var-
iable associated to the number of successes of
Method A (respectively: Method B). Then, the mean
of the random variable D = Xa/na � Xb/nb is
d = pa � pb and the variance of D is r2

D ¼
pa � qa=na þ pb � qb=nb where qa = 1 � pa and qb =
1 � pb. If na and nb are large enough (an empirical
rule often quoted without proper justification is
min(na Æ pa Æ qa,nb Æ pb Æ qb) > 5), one can approximate
D by a normal distribution.

In order to compare the success rates of methods
A and B, one makes the following:

Null hypothesis Probability pa is lower or equal to
probability pb, i.e. d = pa � pb 6 0
Alternative hypothesis (one-sided test) pa > pb
We very briefly recall here the principle of a
hypothesis statistical test. First, a null hypothesis –
that the user would like to be rejected by the
test – is chosen, as well as the logical negation of
the null hypothesis, the alternate hypothesis. Then,
a test statistic T is chosen for which the distribution
is known if the null hypothesis is true. A series of n

experiments is then performed, whose results allow
to compute the value of the considered test statistic.
With the help of the distribution of T, one computes
the probability (known as p-value) of observing the
value obtained by the experiments, if the null
hypothesis is true. A smaller p-value implies enough
evidence against the null hypothesis to reject it.
Generally, before proceeding to the experiments, a
significance level a is chosen, typically 0.05 or
0.01. The null hypothesis is rejected if the p-value
is lower than a.

In conducting a hypothesis statistical test, the
null hypothesis is chosen in such a way that it is felt
not to be true. So, in the above mentioned hypoth-
esis, it can be assumed that the experiment has
shown a/na > b/nb. Note that there is another sym-
metrical one-sided test with null hypothesis
pb � pa 6 0. This other test is obtained by inverting
the roles of A and B. Since probabilities pa and pb

are unknown, estimators p̂a and p̂b that would max-
imize the probability of null hypothesis to be true
are sought. This maximum occurs for p̂a ¼ p̂b ¼ p̂.
The pooled estimate: p̂ ¼ aþb

naþnb
is the best estimate

of the common value of the probability of success
(Barnes, 1994). The value observed for d is esti-
mated by d̂ ¼ a=na � b=nb and the variance r2

D can
be estimated by ŝ2 ¼ p̂ � q̂=na þ p̂ � q̂=nb, where
q̂ ¼ 1� p̂.

The distribution of the null hypothesis for large
na and nb is Nð0; r2

DÞ. So, the null hypothesis is not
plausible at significance level a if Uðd̂=ŝÞ < a, where
U is the cumulative normal distribution. In practice,
the null hypothesis is rejected at significance levels:

• a = 5% if d̂=ŝ > 1:645 ¼ U�1ð1� 0:05Þ
• a = 1% if d̂=ŝ > 2:326
• a = 0.1% if d̂=ŝ > 3:09
The above mentioned statistical test is a simplifi-
cation of the ‘‘Chi-square Test for Difference in
Probabilities, 2 · 2 contingency table’’ (Conover,
1999). Indeed, for the case of the two-sided test:

Null hypothesis pa = pb

Alternative hypothesis (two-sided test) pa5pb
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It can be shown that, for large na and nb, the dis-
tribution of the test statistic:

T ¼ ðna þ nbÞ � ða � nb � b � naÞ2

na � nb � ðaþ bÞ � ðna þ nb � a� bÞ

i.e., ðd̂ŝ Þ
2, can be approximated, under the null

hypothesis, by the v2 distribution with 1 degree of
freedom.

In practice, the null hypothesis is rejected (and
the alternative hypothesis pa5pb is not excluded)
at significance levels:

• a = 5% if T > 3.841 = v1;1 � 0.05

• a = 1% if T > 6.635
• a = 0.1% if T > 10.83

The interested reader may find more information
about these approaches in Cramér (1946), Harkness
and Katz (1964), and Ott and Free (1969).
Table 1
2 · 2 Contingency table

Success Failure Total

Sample 1 a na � a na

Sample 2 b nb � b nb

Total a + b na + nb � a � b na + nb
2.2. McNemar test for significance of changes

The sign test is perhaps the first nonparametric
test ever published (Arbuthnott, 1710). A variation
of this test is known as McNemar test for signifi-
cance of changes.

In many situations, both samples are of the same
size since one tries to test the effect of a treatment by
making an experience before and an experience after
the treatment. So, one has pairwise data that repre-
sents the condition of the subject before and after
the treatment. This situation occurs in the opera-
tions research when one wants to know whether
Method A is significantly more successful than
Method B by running both methods on the same
data set.

Let a 0 be the number of times pair (success, fail-
ure) has been observed (i.e. success of Method A

and failure for Method B) and b 0 be the number
of times pair (failure, success) has been observed
over the n0a ¼ n0b ¼ n observations. Thus, experi-
ments that provide the same result for both
methods (success, success) or (failure, failure) are
eliminated.

Null hypothesis

• Two-sided test: P(failure, success) = P(suc-

cess, failure) = 1/2
• One-sided test: P(failure, success) 6 P(suc-

cess, failure)
Alternative hypothesis

• Two-sided test: P(failure, success) 5 P(suc-

cess, failure)
• One-sided test: P(failure, success) > P(suc-

cess, failure)

Decision rule The null hypothesis is rejected at
significance level a if:
• Two-sided test: 1

2n �
Pa0

i¼0Cn
i < a=2 or if

1
2n �
Pa0

i¼0Cn
i > 1� a=2, where Cn

i ¼ n!
i!�ðn�iÞ!

• One-sided test: 1
2n �
Pa0

i¼0Cn
i < a
The advantage of McNemar test is that it can be
applied to any sample size (as soon as the binomial
distribution can be computed), since it is not based
on the central limit theorem.

2.3. Nonparametric Fisher’s exact test

The Fisher’s exact test is a permutation test based
on the following idea. Suppose that a successes are
observed for a sample (of size na) from a first popu-
lation and b successes are observed for sample (of
size nb) from a second population. Assume that
the proportion of successes is the same for both
populations (null hypothesis) and that the marginals
of the 2 · 2 contingency table are fixed (‘‘Total’’ line
and column of Table 1). Under the null hypothesis,
the successes can be distributed independently of
one another among the first or second samples, pro-
vided that the marginals are kept identical to the
observed values. There is a total of Cnaþnb

aþb different
ways to distribute the successes (or, equivalently,
to build 2 · 2 contingency tables with same margin-
als). The one-tailed Fisher’s exact test simply counts
the number of contingency tables with the same
marginals that are as extreme as or more extreme
than the original table. The p-value of one-tailed
Fisher’s exact test is the ratio of the number of
tables at least as extreme as the original table over
the total number of tables with the same marginals.

There are several variants for the two-tailed Fish-
er’s test. One that is commonly implemented is to
count the number of tables with the same marginals
that have a probability not higher than the original
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table to occur under the null hypothesis. The two-
tailed Fisher’s test is the ratio of this number over
the total number of possible tables with the same
marginals. This variant is known as ‘‘Tocher’s mod-
ification’’ of Fisher’s test (Siegel, 1956) and will be
used in the numerical results that follows.

3. A new test for comparing proportions

The drawback of McNemar test is that pairwise
data are required. In practice it is not always possi-
ble to have pairwise data. For instance, let us sup-
pose that Method B was run on nb problem
instances randomly generated. The rules for prob-
lem generation are perfectly known, but the nb

instances themselves have not been published. So,
the designer of Method A, who wants to compare
his method to Method B, can run his method as
many times as he wants (na times). However, if the
code of Method B is not available, he only knows
that Method B was successful b times over nb runs.
If nb is not large, then the standard test cannot be
validly applied. Moreover, if the designer of
Method A chooses nb = na, then McNemar test
might not be significant, even if Method B was
always successful (b = nb), whilst he could choose
a larger value for na (and thus get significant differ-
ences). Therefore, we developed a new statistical test
for comparing proportions. We have observed that
this new test is more powerful than Fisher’s one.

3.1. One-sided test

For the one-sided test, let us suppose that it is
known that pa cannot be lower than pb. Note that
this assumption must also be done for an one-sided
Fisher’s test. This situation arises in OR when a sec-
ond method cannot produce worse results than a
first one, e.g. the second method explores a superset
of solutions examined by the first method, or the
second method tries to improve the solutions pro-
duced by the first one. Hence, it is assumed that
the user has observed a/na > b/nb and wants to show
that population A has a strictly higher success rate
than population B.

Null hypothesis pa = pb = p

Alternative hypothesis pa > pb

The methodology applied in our test is quite
standard and consists of directly computing the
probability S(p) to observe a successes or more with
na observations and b successes or less with nb obser-
vations, under null hypothesis. This probability is
given by:

SðpÞ ¼
Xna

i¼a

Cna
i � pi � ð1� pÞna�i

 !

�
Xb

j¼0

Cnb
j � pj � ð1� pÞnb�j

 !

This probability depends on proportion p which
is unknown. Since the null hypothesis is to be
rejected with the highest security, probability S(p)
must be maximized over p.

Decision rule The null hypothesis is rejected at
significance level a if:

Ŝ ¼ max
0<p<1

SðpÞ < a

The test is in relation with Fishers’s exact test (Fin-
ney, 1948; Robertson, 1960, see also Gail and Gart,
1973; Garside and Mack, 1976; McDonald et al.,
1977), but the last is fully nonparametric. In our
developments we make use of parameter p. Note
however that if our new test concludes that the null
hypothesis should be rejected, this conclusion re-
mains valid whatever the common value of p is.
3.1.1. Examples

Let us suppose that all na observations from the
first sample are successes and all nb observations
from the second sample are failures (i.e., a = na

and b = 0). Supposing that both populations have
the same probability p of success, S(p) = pna Æ
(1 � p)0 Æ p0 Æ (1 � p)nb = pna Æ (1 � p)nb

The probability p̂ that maximizes S(p) is given by
solving the equation:

dSðpÞ
dp
¼ na � pna�1 � ð1� pÞnb � nb � pna

� ð1� pÞnb�1 ¼ 0

For the special case a = na and b = 0, the pooled
estimate p̂ ¼ aþb

naþnb
is therefore the value that maxi-

mizes S(p). For instance, if na = 3 and nb = 2,
Sð3þ0

3þ2
Þ ¼ Ŝ ¼ 108=3125 < 5%. So a success rate of

3/3 is significantly higher than a success rate of 0/
2, if the decision rule is to reject p-values lower than
a = 0.05.

Unfortunately, for arbitrary values of a, na, b and
nb, the pooled estimate is not the value that maxi-
mizes S(p). For instance, for a = 3, na = 4, b = 0
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and nb = 3, SðpÞ ¼ C4
3p3ð1� pÞ4 þ C4

4p4ð1� pÞ3. So,
S(3/7)<4/100 while Sð6�2

ffiffi
2
p

7
Þ > 4=100.

This means that if the significance level is fixed at
a = 0.04, an erroneous conclusion will be drawn if
the pool estimate is used for testing if a rate of 3/4
is significantly higher than a rate of 0/3.

Although the difference in S(p) values for the
above example is not very large, the pooled estimate
may underestimate by more than 1/3 the Ŝ value.
This is exemplified by a success rate of 4/4 com-
pared to a success rate of 56/100. The pooled esti-
mate would provide S(60/104) < 4.5% while there
is a value of p that provides a value of Ŝ near to 6%.

3.1.2. Computation of decision rule

In general, the analytical expression of Ŝ is hard
to find in practice. Therefore, we have numerically
estimated Ŝ. We provide in Table 2 (and, respec-
tively, in Table 3), for various values of na and nb,
and for a significance level of 5% (respectively:
1%), the most extreme couples (a, b) for which it
is not plausible that an a/na rate of successes is lower
than a b/nb rate.

Reading the tables: Due to the large number of
possible combinations of values for a, b, na and nb

it is not possible to tabulate the Ŝ values. Therefore,
Tables 2 and 3 only provide couples (a, b) for which
a success rate P a/n is significantly higher than a
success rate 6 b/m.

The reader might have observed values of a and b

that are not tabulated. Let us suppose that the
observed success rate of Method A is 6/10 and the
observed success rate of Method B is 1/9 (meaning
that a = 6, na = 10, b = 1, nb = 9). In Table 2, entry
na = 10 and nb = 9 contains the couple (5, 1), mean-
ing that a 5/10 success rate can be considered as sig-
nificantly higher than a 1/9 success rate at 5%
significance level. Since 6/10 > 5/10, it can be
deduced that Method A is significantly better than
Method B (at significance level below 5%).

Conversely, if the significance level is 1%, we can
see in Table 3 that the couple (7, 1) is contained in
the entry na = 10 and nb = 9. So, we cannot reject
that a success rate of 6/10 is equal to a success rate
of 1/9, at significance level of 1%.

3.2. Two-sided test

The two-sided test is based on the following
hypothesis:

Null hypothesis pa = pb = p
Alternative hypothesis pa 5 pb

To simplify the developments that follow, we
suppose that a/na > b/nb. This is not limitative
since both samples can be permuted. In order
to conduct a two-sided test, it can be considered
that two one-sided tests must be simultaneously
conducted, – the first one with alternative
hypothesis pa > pb and a second one with alterna-
tive hypothesis pa<pb. Basically, the one-sided
test developed above provides a p-value. For
the two-sided text, both p-values can be added.
Therefore, computing the probability T(p) of
occurrence of the observations under the null
hypothesis can be decomposed into two parts.
The first part takes into account the summationsPna

i¼a

Pb
j¼0 and the symmetrical part with summa-

tions
Pna�a

i¼0

Pnb
j¼nb�b. In order to get a good esti-

mate bT for the maximum of T(p) (better than
2bS), both summations must be done with a com-
mon proportion value p. So, the following deci-
sion rule can be formulated:
Decision rule The null hypothesis is rejected at
significance level a if:

bT ¼ max
0<p<1

Xna

i¼a

Xb

j¼0

Cna
i �Cnb

j � piþj � ð1� pÞnaþnb�i�j

 !

þ
Xna�a

i¼0

Xnb

j¼nb�b

Cna
i �Cnb

j � piþj � ð1� pÞnaþnb�i�j

 !
< a

This decision rule is somewhat harder to compute
than for the one-tailed test. Indeed, T(p) can have
different optima when varying the common propor-
tion p. Without considering the extreme cases (a = 0
and b = 0, or a = na and b = nb) for which the null
hypothesis cannot be rejected, the distribution is
symmetrical with p = 0.5 being an optimum value
– either the global maximum or a local minimum.
The last case occurs when the ratios a/na and b/nb

are relatively different, precisely when the test is
interesting to be conducted ! So, we have numeri-
cally estimated bT and provide in Table 4 (and,
respectively, in Table 5) – for various values of na

and nb and for a significance level of 5% (respec-
tively: 1%) – the most extreme couples (a, b) for
which it is not plausible that an a/na rate of suc-
cesses is equal to a b/nb rate.

Software and codes Source codes for computing bS
and bT values are publically available on the web



Table 2
5% One-tailed test

nb na

2 3 4 5 6 7 8 9 10 11 12 13

2 (3, 0) (4, 0) (5, 0) (5, 0) (6, 0) (7, 0) (7, 0) (8, 0) (9, 0) (9, 0) (10, 0)

3 (2, 0) (3, 0) (3, 0) (4, 0) (4, 0) (5, 0) (5, 0) (6, 0) (6, 0) (7, 0) (7, 0) (8, 0)

3 (5, 1) (6, 1) (7, 1) (8, 1) (8, 1) (9, 1) (10, 1) (11, 1) (12, 1)

4 (2, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (5, 0) (5, 0) (5, 0) (6, 0) (6, 0) (7, 0)

4 (3, 1) (4, 1) (5, 1) (5, 1) (6, 1) (7, 1) (7, 1) (8, 1) (9, 1) (9, 1) (10, 1)

4 (6, 2) (7, 2) (8, 2) (9, 2) (10, 2) (11, 2) (12, 2) (12, 2)

5 (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (5, 0) (5, 0) (5, 0) (6, 0)

5 (3, 1) (4, 1) (4, 1) (5, 1) (5, 1) (6, 1) (6, 1) (7, 1) (8, 1) (8, 1) (9, 1)

5 (4, 2) (5, 2) (6, 2) (7, 2) (7, 2) (8, 2) (9, 2) (10, 2) (10, 2) (11, 2)

5 (8, 3) (9, 3) (10, 3) (11, 3) (12, 3) (13, 3)

6 (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (5, 0) (5, 0) (5, 0)

6 (2, 1) (3, 1) (3, 1) (4, 1) (4, 1) (5, 1) (5, 1) (6, 1) (6, 1) (7, 1) (7, 1) (8, 1)

6 (3, 2) (4, 2) (5, 2) (5, 2) (6, 2) (7, 2) (7, 2) (8, 2) (9, 2) (9, 2) (10, 2)

6 (5, 3) (6, 3) (7, 3) (8, 3) (9, 3) (9, 3) (10, 3) (11, 3) (12, 3)

6 (10, 4) (11, 4) (12, 4) (13, 4)

7 (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (4, 0) (5, 0)

7 (2, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 1) (5, 1) (5, 1) (6, 1) (6, 1) (7, 1) (7, 1)

7 (3, 2) (4, 2) (4, 2) (5, 2) (6, 2) (6, 2) (7, 2) (7, 2) (8, 2) (8, 2) (9, 2)

7 (4, 3) (5, 3) (6, 3) (6, 3) (7, 3) (8, 3) (9, 3) (9, 3) (10, 3) (11, 3)

7 (6, 4) (7, 4) (8, 4) (9, 4) (10, 4) (10, 4) (11, 4) (12, 4)

7 (11, 5) (12, 5) (13, 5)

8 (2, 0) (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (4, 0)

8 (2, 1) (3, 1) (3, 1) (3, 1) (4, 1) (4, 1) (5, 1) (5, 1) (5, 1) (6, 1) (6, 1) (6, 1)

8 (3, 2) (4, 2) (4, 2) (5, 2) (5, 2) (6, 2) (6, 2) (7, 2) (7, 2) (8, 2) (8, 2)

8 (3, 3) (4, 3) (5, 3) (5, 3) (6, 3) (7, 3) (7, 3) (8, 3) (9, 3) (9, 3) (10, 3)

8 (5, 4) (6, 4) (7, 4) (8, 4) (8, 4) (9, 4) (10, 4) (10, 4) (11, 4)

8 (7, 5) (8, 5) (9, 5) (10, 5) (11, 5) (12, 5) (12, 5)

8 (13, 6)

9 (2, 0) (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0)

9 (2, 1) (2, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 1) (5, 1) (5, 1) (5, 1) (6, 1) (6, 1)

9 (2, 2) (3, 2) (3, 2) (4, 2) (4, 2) (5, 2) (5, 2) (6, 2) (6, 2) (7, 2) (7, 2) (8, 2)

9 (3, 3) (4, 3) (4, 3) (5, 3) (6, 3) (6, 3) (7, 3) (7, 3) (8, 3) (9, 3) (9, 3)

9 (4, 4) (5, 4) (6, 4) (6, 4) (7, 4) (8, 4) (8, 4) (9, 4) (10, 4) (10, 4)

9 (5, 5) (6, 5) (7, 5) (8, 5) (9, 5) (9, 5) (10, 5) (11, 5) (12, 5)

9 (8, 6) (9, 6) (10, 6) (11, 6) (12, 6) (13, 6)

10 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0)

10 (2, 1) (2, 1) (3, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 1) (5, 1) (5, 1) (5, 1) (6, 1)

10 (2, 2) (3, 2) (3, 2) (4, 2) (4, 2) (5, 2) (5, 2) (5, 2) (6, 2) (6, 2) (7, 2) (7, 2)

10 (3, 3) (4, 3) (4, 3) (5, 3) (5, 3) (6, 3) (6, 3) (7, 3) (7, 3) (8, 3) (9, 3)

10 (3, 4) (4, 4) (5, 4) (5, 4) (6, 4) (7, 4) (7, 4) (8, 4) (9, 4) (9, 4) (10, 4)

10 (4, 5) (5, 5) (6, 5) (7, 5) (7, 5) (8, 5) (9, 5) (9, 5) (10, 5) (11, 5)

10 (6, 6) (7, 6) (8, 6) (9, 6) (10, 6) (10, 6) (11, 6) (12, 6)

10 (9, 7) (10, 7) (11, 7) (12, 7) (13, 7)

11 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0)

11 (2, 1) (2, 1) (3, 1) (3, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 1) (5, 1) (5, 1) (5, 1)

11 (2, 2) (3, 2) (3, 2) (4, 2) (4, 2) (4, 2) (5, 2) (5, 2) (5, 2) (6, 2) (6, 2) (7, 2)

11 (3, 3) (4, 3) (4, 3) (5, 3) (5, 3) (6, 3) (6, 3) (7, 3) (7, 3) (7, 3) (8, 3)

11 (3, 4) (4, 4) (5, 4) (5, 4) (6, 4) (6, 4) (7, 4) (7, 4) (8, 4) (9, 4) (9, 4)

11 (4, 5) (5, 5) (6, 5) (6, 5) (7, 5) (8, 5) (8, 5) (9, 5) (10, 5) (10, 5)

11 (5, 6) (6, 6) (7, 6) (8, 6) (8, 6) (9, 6) (10, 6) (11, 6) (11, 6)

11 (7, 7) (8, 7) (9, 7) (10, 7) (11, 7) (11, 7) (12, 7)

11 (10, 8) (11, 8) (12, 8) (13, 8)
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Table 2 (continued)

nb na

2 3 4 5 6 7 8 9 10 11 12 13

12 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0)

12 (2, 1) (2, 1) (3, 1) (3, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 1) (4, 1) (5, 1) (5, 1)

12 (2, 2) (3, 2) (3, 2) (3, 2) (4, 2) (4, 2) (4, 2) (5, 2) (5, 2) (6, 2) (6, 2) (6, 2)

12 (2, 3) (3, 3) (3, 3) (4, 3) (4, 3) (5, 3) (5, 3) (6, 3) (6, 3) (7, 3) (7, 3) (8, 3)

12 (3, 4) (4, 4) (4, 4) (5, 4) (5, 4) (6, 4) (7, 4) (7, 4) (8, 4) (8, 4) (9, 4)

12 (3, 5) (4, 5) (5, 5) (5, 5) (6, 5) (7, 5) (7, 5) (8, 5) (8, 5) (9, 5) (10, 5)

12 (4, 6) (5, 6) (6, 6) (7, 6) (7, 6) (8, 6) (9, 6) (9, 6) (10, 6) (11, 6)

12 (5, 7) (6, 7) (7, 7) (8, 7) (9, 7) (9, 7) (10, 7) (11, 7) (12, 7)

12 (7, 8) (8, 8) (9, 8) (10, 8) (11, 8) (12, 8) (12, 8)

12 (11, 9) (12, 9) (13, 9)

13 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0)

13 (2, 1) (2, 1) (2, 1) (3, 1) (3, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 1) (4, 1) (5, 1)

13 (2, 2) (3, 2) (3, 2) (3, 2) (4, 2) (4, 2) (4, 2) (5, 2) (5, 2) (5, 2) (6, 2) (6, 2)

13 (2, 3) (3, 3) (3, 3) (4, 3) (4, 3) (5, 3) (5, 3) (5, 3) (6, 3) (6, 3) (7, 3) (7, 3)

13 (3, 4) (4, 4) (4, 4) (5, 4) (5, 4) (6, 4) (6, 4) (7, 4) (7, 4) (8, 4) (8, 4)

13 (3, 5) (4, 5) (5, 5) (5, 5) (6, 5) (6, 5) (7, 5) (8, 5) (8, 5) (9, 5) (9, 5)

13 (4, 6) (5, 6) (6, 6) (6, 6) (7, 6) (8, 6) (8, 6) (9, 6) (10, 6) (10, 6)

13 (5, 7) (6, 7) (7, 7) (7, 7) (8, 7) (9, 7) (10, 7) (10, 7) (11, 7)

13 (6, 8) (7, 8) (8, 8) (9, 8) (10, 8) (10, 8) (11, 8) (12, 8)

13 (8, 9) (9, 9) (10, 9) (11, 9) (12, 9) (13, 9)
13 (12, 10) (13, 10)

Couples (a, b) for which a success rate P a/na can be considered as higher than a success rate 6 b/nb, for a 5% significance level. Couples
in boldface indicate that Fisher’s unilateral test has a p-value strictly higher than 0.05.

Table 3
1% One-tailed test

nb na

2 3 4 5 6 7 8 9 10 11 12 13

2 (7, 0) (8, 0) (9, 0) (10, 0) (11, 0) (12, 0) (12, 0)

3 (4, 0) (5, 0) (6, 0) (7, 0) (7, 0) (8, 0) (9, 0) (9, 0) (10, 0) (11, 0)

3 (12, 1) (13, 1)

4 (3, 0) (4, 0) (5, 0) (5, 0) (6, 0) (6, 0) (7, 0) (8, 0) (8, 0) (9, 0) (9, 0)

4 (6, 1) (7, 1) (8, 1) (9, 1) (10, 1) (11, 1) (11, 1) (12, 1)

5 (3, 0) (4, 0) (4, 0) (5, 0) (5, 0) (6, 0) (6, 0) (7, 0) (7, 0) (8, 0) (8, 0)

5 (5, 1) (6, 1) (7, 1) (7, 1) (8, 1) (9, 1) (10, 1) (10, 1) (11, 1)

5 (9, 2) (10, 2) (11, 2) (12, 2) (13, 2)

6 (3, 0) (3, 0) (4, 0) (4, 0) (5, 0) (5, 0) (6, 0) (6, 0) (7, 0) (7, 0) (8, 0)

6 (4, 1) (5, 1) (6, 1) (6, 1) (7, 1) (8, 1) (8, 1) (9, 1) (9, 1) (10, 1)

6 (6, 2) (7, 2) (8, 2) (9, 2) (10, 2) (10, 2) (11, 2) (12, 2)

6 (11, 3) (12, 3) (13, 3)

7 (2, 0) (3, 0) (3, 0) (4, 0) (4, 0) (5, 0) (5, 0) (5, 0) (6, 0) (6, 0) (7, 0) (7, 0)

7 (4, 1) (5, 1) (5, 1) (6, 1) (6, 1) (7, 1) (8, 1) (8, 1) (9, 1) (9, 1)

7 (5, 2) (6, 2) (7, 2) (8, 2) (8, 2) (9, 2) (10, 2) (10, 2) (11, 2)

7 (8, 3) (9, 3) (10, 3) (11, 3) (12, 3) (12, 3)

7 (13, 4)

8 (2, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (5, 0) (5, 0) (5, 0) (6, 0) (6, 0) (6, 0)

8 (3, 1) (4, 1) (4, 1) (5, 1) (6, 1) (6, 1) (7, 1) (7, 1) (8, 1) (8, 1) (9, 1)

8 (4, 2) (5, 2) (6, 2) (6, 2) (7, 2) (8, 2) (8, 2) (9, 2) (10, 2) (10, 2)

8 (6, 3) (7, 3) (8, 3) (9, 3) (9, 3) (10, 3) (11, 3) (12, 3)

8 (9, 4) (10, 4) (11, 4) (12, 4) (13, 4)

(continued on next page)

É.D. Taillard et al. / European Journal of Operational Research 185 (2008) 1336–1350 1343



Table 3 (continued)

nb na

2 3 4 5 6 7 8 9 10 11 12 13

9 (2, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (5, 0) (5, 0) (5, 0) (6, 0) (6, 0)

9 (3, 1) (4, 1) (4, 1) (5, 1) (5, 1) (6, 1) (6, 1) (7, 1) (7, 1) (8, 1) (8, 1)

9 (4, 2) (5, 2) (6, 2) (6, 2) (7, 2) (7, 2) (8, 2) (9, 2) (9, 2) (10, 2)

9 (5, 3) (6, 3) (7, 3) (8, 3) (8, 3) (9, 3) (10, 3) (10, 3) (11, 3)

9 (7, 4) (8, 4) (9, 4) (10, 4) (11, 4) (11, 4) (12, 4)

9 (10, 5) (11, 5) (12, 5) (13, 5)

10 (2, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (4, 0) (5, 0) (5, 0) (5, 0) (6, 0)

10 (3, 1) (4, 1) (4, 1) (5, 1) (5, 1) (5, 1) (6, 1) (6, 1) (7, 1) (7, 1) (8, 1)

10 (4, 2) (5, 2) (5, 2) (6, 2) (6, 2) (7, 2) (8, 2) (8, 2) (9, 2) (9, 2)

10 (5, 3) (6, 3) (7, 3) (7, 3) (8, 3) (9, 3) (9, 3) (10, 3) (10, 3)

10 (6, 4) (7, 4) (8, 4) (9, 4) (9, 4) (10, 4) (11, 4) (12, 4)

10 (8, 5) (9, 5) (10, 5) (11, 5) (12, 5) (13, 5)
10 (12, 6) (13, 6)

11 (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (5, 0) (5, 0) (5, 0) (5, 0)

11 (3, 1) (4, 1) (4, 1) (4, 1) (5, 1) (5, 1) (6, 1) (6, 1) (6, 1) (7, 1) (7, 1)

11 (3, 2) (4, 2) (5, 2) (5, 2) (6, 2) (6, 2) (7, 2) (7, 2) (8, 2) (8, 2) (9, 2)

11 (4, 3) (5, 3) (6, 3) (6, 3) (7, 3) (8, 3) (8, 3) (9, 3) (9, 3) (10, 3)

11 (5, 4) (6, 4) (7, 4) (8, 4) (8, 4) (9, 4) (10, 4) (10, 4) (11, 4)

11 (7, 5) (8, 5) (9, 5) (10, 5) (10, 5) (11, 5) (12, 5)

11 (9, 6) (10, 6) (11, 6) (12, 6) (13, 6)

11 (13, 7)

12 (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (4, 0) (5, 0) (5, 0) (5, 0)

12 (3, 1) (3, 1) (4, 1) (4, 1) (5, 1) (5, 1) (5, 1) (6, 1) (6, 1) (7, 1) (7, 1)

12 (3, 2) (4, 2) (4, 2) (5, 2) (5, 2) (6, 2) (6, 2) (7, 2) (7, 2) (8, 2) (8, 2)

12 (4, 3) (5, 3) (5, 3) (6, 3) (7, 3) (7, 3) (8, 3) (8, 3) (9, 3) (9, 3)

12 (5, 4) (6, 4) (7, 4) (7, 4) (8, 4) (9, 4) (9, 4) (10, 4) (11, 4)

12 (6, 5) (7, 5) (8, 5) (9, 5) (9, 5) (10, 5) (11, 5) (11, 5)

12 (8, 6) (9, 6) (10, 6) (11, 6) (12, 6) (12, 6)

12 (10, 7) (11, 7) (12, 7) (13, 7)

13 (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (4, 0) (5, 0) (5, 0)

13 (2, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 1) (5, 1) (5, 1) (6, 1) (6, 1) (6, 1) (7, 1)

13 (3, 2) (4, 2) (4, 2) (5, 2) (5, 2) (6, 2) (6, 2) (7, 2) (7, 2) (7, 2) (8, 2)

13 (4, 3) (5, 3) (5, 3) (6, 3) (6, 3) (7, 3) (7, 3) (8, 3) (9, 3) (9, 3)

13 (4, 4) (5, 4) (6, 4) (6, 4) (7, 4) (8, 4) (8, 4) (9, 4) (9, 4) (10, 4)

13 (5, 5) (6, 5) (7, 5) (8, 5) (8, 5) (9, 5) (10, 5) (10, 5) (11, 5)

13 (7, 6) (8, 6) (9, 6) (10, 6) (10, 6) (11, 6) (12, 6)

13 (8, 7) (9, 7) (10, 7) (11, 7) (12, 7) (13, 7)
13 (11, 8) (12, 8) (13, 8)

14 (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (4, 0) (4, 0) (5, 0)

14 (2, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 1) (5, 1) (5, 1) (5, 1) (6, 1) (6, 1) (6, 1)

14 (3, 2) (4, 2) (4, 2) (5, 2) (5, 2) (5, 2) (6, 2) (6, 2) (7, 2) (7, 2) (8, 2)

14 (3, 3) (4, 3) (5, 3) (5, 3) (6, 3) (6, 3) (7, 3) (7, 3) (8, 3) (8, 3) (9, 3)

14 (4, 4) (5, 4) (6, 4) (6, 4) (7, 4) (7, 4) (8, 4) (9, 4) (9, 4) (10, 4)

14 (5, 5) (6, 5) (7, 5) (7, 5) (8, 5) (9, 5) (9, 5) (10, 5) (11, 5)

14 (6, 6) (7, 6) (8, 6) (9, 6) (9, 6) (10, 6) (11, 6) (11, 6)

14 (7, 7) (8, 7) (9, 7) (10, 7) (11, 7) (11, 7) (12, 7)

14 (9, 8) (10, 8) (11, 8) (12, 8) (13, 8)

14 (12, 9) (13, 9)

15 (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (4, 0) (5, 0)

15 (2, 1) (3, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 1) (5, 1) (5, 1) (5, 1) (6, 1) (6, 1)

15 (3, 2) (4, 2) (4, 2) (4, 2) (5, 2) (5, 2) (6, 2) (6, 2) (6, 2) (7, 2) (7, 2)

15 (3, 3) (4, 3) (4, 3) (5, 3) (5, 3) (6, 3) (6, 3) (7, 3) (7, 3) (8, 3) (8, 3)

15 (4, 4) (5, 4) (5, 4) (6, 4) (7, 4) (7, 4) (8, 4) (8, 4) (9, 4) (9, 4)
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Table 3 (continued)

nb na

2 3 4 5 6 7 8 9 10 11 12 13

15 (5, 5) (6, 5) (6, 5) (7, 5) (8, 5) (8, 5) (9, 5) (10, 5) (10, 5)

15 (5, 6) (6, 6) (7, 6) (8, 6) (8, 6) (9, 6) (10, 6) (10, 6) (11, 6)

15 (7, 7) (8, 7) (9, 7) (10, 7) (10, 7) (11, 7) (12, 7)

15 (8, 8) (9, 8) (10, 8) (11, 8) (12, 8) (12, 8)

15 (10, 9) (11, 9) (12, 9) (13, 9)

15 (13, 10)

Couples (a, b) for which a success rate P a/na can be considered as higher than a success rate 6 b/nb, for a 1% significance level. Couples
in boldface indicate that Fisher’s unilateral test has a p-value strictly higher than 0.01.
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site http://qualopt.heig-vd.ch. Several implemen-
tations are available: one that is directly inter-
preted by most browsers, one in C and one in
Java. All are intended for researchers that want
to include the code in their own software. Beside
these libraries, a package for the R project for sta-
tistical computing (http://www.r-project.
org/) has also been implemented.
4. Numerical results

The power of a hypothesis statistical test is
defined as the probability of rejecting a false null
hypothesis. So, the higher the power of a hypothesis
statistical test is, the better the test can discriminate
between subtle differences in the samples and the
better the test is considered.

This section empirically shows that the new test
we propose is more powerful than those provided
by McNemar and Fisher and, for large samples,
slightly more powerful than standard tests. If abu-
sively applied to small samples, the standard test is
also shown to reject a true null hypothesis with a
probability higher than the significance level, show-
ing that the standard test cannot be safely applied to
small samples.

In order to show this, we proceed as follows: we
choose a significance level of a = 0.01 (which is very
common in practice) and na = nb = n so that McNe-
mar test could be applied. For each n, we find the
lowest value of a for which an one-sided McNemar
test indicates that a proportion of a/n is significantly
higher than a proportion of (n � a)/n = b/n. So, for
any given n, a value a is found. For both values of n
and a, we find the largest value b 0 for which our new
one-sided test indicates that a proportion of a/n
is significantly larger than a proportion of b 0/n
(with same a = 0.01 level). Then, we find (manu-
ally) the largest integer value b00 for which

T ¼
ffiffiffiffi
2n
p
ða�b00Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaþb00Þð2n�a�b00Þ
p > 2:326, i.e. the largest value b00
for which the standard test rejects the null hypothe-
sis, (even if it is abusively applied to small n).
Finally, we find the largest values b000 for which Fish-
er’s exact test rejects the null hypothesis.

So, for each of the McNemar, Fisher, new and
standard one-tailed test, we fixed the same values
of a and compared the respective values of b, b 0,
b00 and b000 for various values of n, that are needed
at most for the respective test to indicate propor-
tions significantly different.

These values are plotted in Fig. 2 as a function of
n. In this figure, we can see that the McNemar test is
not able to discriminate proportions at a = 1% level
for sample sizes n < 6. The new test proposed in this
paper is able to distinguish proportions even for
samples of size 3. For the same sample size n and
a proportion of success a/n, our new test is able to
discriminate proportions b 0/n much higher than
the corresponding b/n proportions of McNemar test
and slightly higher than b00 0/n proportions of Fish-
er’s test. For n > 14, our new test is able to discrim-
inate proportions b 0/n slightly higher than
proportions b00/n if a standard parametric test is
applied. Finally, for n < 7, a standard parametric
test abusively applied may underestimate the prob-
ability of occurrence of the null hypothesis, leading
to erroneous conclusions. For instance, if the null
hypothesis is true and proportions of both samples
is 1/2, it is easy to show that the probability of
observing 3/3 successes for one sample and 0/3 for
the other is 1/64, thus above 1%, whilst T > 2.326.

Very similar figures can be drawn for various sig-
nificance levels a and two-tailed tests.
5. Conclusions

The new statistical test developed in this article is
shown to be much more powerful than the classical
McNemar nonparametric test. The power of the

http://qualopt.heig.vd.ch
http://www.r-project.org/
http://www.r-project.org/
arsene
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Table 4
5% Two-tailed test

nb na

2 3 4 5 6 7 8 9 10 11 12 13

2 (4, 0) (5, 0) (6, 0) (6, 0) (7, 0) (7, 0) (8, 0) (9, 0) (9, 0) (10, 0)

3 (3, 0) (4, 0) (4, 0) (5, 0) (6, 0) (6, 0) (7, 0) (7, 0) (8, 0) (8, 0) (9, 0)

3 (5, 1) (6, 1) (7, 1) (8, 1) (8, 1) (9, 1) (10, 1) (11, 1) (12, 1)

4 (2, 0) (3, 0) (3, 0) (4, 0) (4, 0) (5, 0) (5, 0) (6, 0) (6, 0) (7, 0) (7, 0) (8, 0)

4 (4, 1) (5, 1) (6, 1) (6, 1) (7, 1) (8, 1) (8, 1) (9, 1) (9, 1) (10, 1)

4 (6, 2) (7, 2) (8, 2) (9, 2) (10, 2) (11, 2) (12, 2) (12, 2)

5 (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (5, 0) (5, 0) (5, 0) (6, 0) (6, 0)

5 (3, 1) (4, 1) (5, 1) (5, 1) (6, 1) (7, 1) (7, 1) (8, 1) (8, 1) (9, 1) (10, 1)
5 (5, 2) (6, 2) (7, 2) (7, 2) (8, 2) (9, 2) (10, 2) (10, 2) (11, 2)

5 (8, 3) (9, 3) (10, 3) (11, 3) (12, 3) (13, 3)

6 (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (5, 0) (5, 0) (5, 0)

6 (3, 1) (4, 1) (4, 1) (5, 1) (5, 1) (6, 1) (7, 1) (7, 1) (8, 1) (8, 1) (9, 1)

6 (4, 2) (5, 2) (6, 2) (6, 2) (7, 2) (8, 2) (8, 2) (9, 2) (10, 2) (10, 2)

6 (5, 3) (6, 3) (7, 3) (8, 3) (9, 3) (9, 3) (10, 3) (11, 3) (12, 3)

6 (10, 4) (11, 4) (12, 4) (13, 4)

7 (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (4, 0) (5, 0)

7 (2, 1) (3, 1) (3, 1) (4, 1) (4, 1) (5, 1) (5, 1) (6, 1) (6, 1) (7, 1) (7, 1) (8, 1)

7 (4, 2) (5, 2) (5, 2) (6, 2) (7, 2) (7, 2) (8, 2) (9, 2) (9, 2) (10, 2)

7 (5, 3) (6, 3) (7, 3) (7, 3) (8, 3) (9, 3) (9, 3) (10, 3) (11, 3)

7 (6, 4) (7, 4) (8, 4) (9, 4) (10, 4) (10, 4) (11, 4) (12, 4)

7 (11, 5) (12, 5) (13, 5)

8 (2, 0) (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (4, 0)

8 (2, 1) (3, 1) (3, 1) (3, 1) (4, 1) (4, 1) (5, 1) (5, 1) (5, 1) (6, 1) (6, 1) (7, 1)

8 (3, 2) (4, 2) (5, 2) (5, 2) (6, 2) (6, 2) (7, 2) (7, 2) (8, 2) (9, 2) (9, 2)

8 (4, 3) (5, 3) (6, 3) (6, 3) (7, 3) (8, 3) (8, 3) (9, 3) (10, 3) (10, 3)

8 (5, 4) (6, 4) (7, 4) (8, 4) (8, 4) (9, 4) (10, 4) (10, 4) (11, 4)

8 (7, 5) (8, 5) (9, 5) (10, 5) (11, 5) (12, 5) (12, 5)

8 (13, 6)

9 (2, 0) (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0)

9 (2, 1) (2, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 1) (5, 1) (5, 1) (5, 1) (6, 1) (6, 1)

9 (2, 2) (3, 2) (4, 2) (4, 2) (5, 2) (5, 2) (6, 2) (6, 2) (7, 2) (7, 2) (8, 2) (9, 2)
9 (4, 3) (5, 3) (6, 3) (6, 3) (7, 3) (7, 3) (8, 3) (9, 3) (9, 3) (10, 3)

9 (5, 4) (6, 4) (7, 4) (7, 4) (8, 4) (9, 4) (9, 4) (10, 4) (11, 4)

9 (6, 5) (7, 5) (8, 5) (9, 5) (9, 5) (10, 5) (11, 5) (12, 5)

9 (8, 6) (9, 6) (10, 6) (11, 6) (12, 6) (13, 6)

1346
É

.D
.

T
a

illa
rd

et
a

l.
/

E
u

ro
p

ea
n

J
o

u
rn

a
l

o
f

O
p

era
tio

n
a

l
R

esea
rch

1
8

5
(

2
0

0
8

)
1

3
3

6
–

1
3

5
0



10 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0)

10 (2, 1) (2, 1) (3, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 1) (5, 1) (5, 1) (5, 1) (6, 1)

10 (2, 2) (3, 2) (3, 2) (4, 2) (4, 2) (5, 2) (5, 2) (6, 2) (6, 2) (7, 2) (7, 2) (8, 2)

10 (3, 3) (4, 3) (5, 3) (5, 3) (6, 3) (6, 3) (7, 3) (8, 3) (8, 3) (9, 3) (9, 3)

10 (4, 4) (5, 4) (6, 4) (6, 4) (7, 4) (8, 4) (8, 4) (9, 4) (10, 4) (10, 4)

10 (5, 5) (6, 5) (7, 5) (7, 5) (8, 5) (9, 5) (10, 5) (10, 5) (11, 5)

10 (6, 6) (7, 6) (8, 6) (9, 6) (10, 6) (10, 6) (11, 6) (12, 6)

10 (9, 7) (10, 7) (11, 7) (12, 7) (13, 7)

11 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0)

11 (2, 1) (2, 1) (3, 1) (3, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 1) (5, 1) (5, 1) (5, 1)

11 (2, 2) (3, 2) (3, 2) (4, 2) (4, 2) (4, 2) (5, 2) (5, 2) (6, 2) (6, 2) (6, 2) (7, 2)

11 (3, 3) (4, 3) (4, 3) (5, 3) (6, 3) (6, 3) (7, 3) (7, 3) (8, 3) (8, 3) (9, 3)

11 (4, 4) (5, 4) (6, 4) (6, 4) (7, 4) (7, 4) (8, 4) (9, 4) (9, 4) (10, 4)

11 (5, 5) (6, 5) (7, 5) (7, 5) (8, 5) (9, 5) (9, 5) (10, 5) (10, 5)

11 (5, 6) (6, 6) (7, 6) (8, 6) (8, 6) (9, 6) (10, 6) (11, 6) (11, 6)

11 (7, 7) (8, 7) (9, 7) (10, 7) (11, 7) (11, 7) (12, 7)

11 (10, 8) (11, 8) (12, 8) (13, 8)

12 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0)

12 (2, 1) (2, 1) (3, 1) (3, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 1) (4, 1) (5, 1) (5, 1)

12 (2, 2) (3, 2) (3, 2) (3, 2) (4, 2) (4, 2) (4, 2) (5, 2) (5, 2) (6, 2) (6, 2) (6, 2)

12 (2, 3) (3, 3) (3, 3) (4, 3) (5, 3) (5, 3) (6, 3) (6, 3) (7, 3) (7, 3) (8, 3) (8, 3)

12 (3, 4) (4, 4) (5, 4) (5, 4) (6, 4) (7, 4) (7, 4) (8, 4) (8, 4) (9, 4) (10, 4)
12 (4, 5) (5, 5) (6, 5) (6, 5) (7, 5) (8, 5) (8, 5) (9, 5) (10, 5) (10, 5)

12 (5, 6) (6, 6) (7, 6) (7, 6) (8, 6) (9, 6) (9, 6) (10, 6) (11, 6)

12 (6, 7) (7, 7) (8, 7) (9, 7) (9, 7) (10, 7) (11, 7) (12, 7)

12 (7, 8) (8, 8) (9, 8) (10, 8) (11, 8) (12, 8) (12, 8)

12 (11, 9) (12, 9) (13, 9)

13 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0)

13 (2, 1) (2, 1) (2, 1) (3, 1) (3, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 1) (4, 1) (5, 1)

13 (2, 2) (3, 2) (3, 2) (3, 2) (4, 2) (4, 2) (4, 2) (5, 2) (5, 2) (5, 2) (6, 2) (6, 2)

13 (2, 3) (3, 3) (3, 3) (4, 3) (4, 3) (5, 3) (5, 3) (6, 3) (6, 3) (6, 3) (7, 3) (7, 3)

13 (3, 4) (4, 4) (5, 4) (5, 4) (6, 4) (6, 4) (7, 4) (7, 4) (8, 4) (9, 4) (9, 4)

13 (4, 5) (5, 5) (6, 5) (6, 5) (7, 5) (8, 5) (8, 5) (9, 5) (9, 5) (10, 5)

13 (5, 6) (6, 6) (7, 6) (7, 6) (8, 6) (9, 6) (9, 6) (10, 6) (10, 6)

13 (5, 7) (6, 7) (7, 7) (8, 7) (8, 7) (9, 7) (10, 7) (10, 7) (11, 7)

13 (6, 8) (7, 8) (8, 8) (9, 8) (10, 8) (10, 8) (11, 8) (12, 8)

13 (8, 9) (9, 9) (10, 9) (11, 9) (12, 9) (13, 9)
13 (12, 10) (13, 10)

Couples (a, b) for which a success rate P a/na can be considered different than a success rate 6 b/nb, for 5% significance level. Couples in boldface indicate that Fisher’s bilateral test
has a p-value strictly higher than 0.05.

É
.D

.
T

a
illa

rd
et

a
l.

/
E

u
ro

p
ea

n
J

o
u

rn
a

l
o

f
O

p
era

tio
n
a

l
R

esea
rch

1
8

5
(

2
0

0
8

)
1

3
3

6
–

1
3

5
0

1347



Table 5
1% Two-tailed test

nb na

2 3 4 5 6 7 8 9 10 11 12 13

2 (7, 0) (8, 0) (9, 0) (10, 0) (11, 0) (12, 0) (12, 0)

3 (5, 0) (6, 0) (7, 0) (7, 0) (8, 0) (9, 0) (9, 0) (10, 0) (11, 0)

3 (12, 1) (13, 1)

4 (4, 0) (5, 0) (6, 0) (6, 0) (7, 0) (8, 0) (8, 0) (9, 0) (9, 0) (10, 0)

4 (7, 1) (8, 1) (9, 1) (10, 1) (11, 1) (11, 1) (12, 1)

5 (3, 0) (4, 0) (5, 0) (5, 0) (6, 0) (6, 0) (7, 0) (8, 0) (8, 0) (9, 0) (9, 0)

5 (6, 1) (7, 1) (8, 1) (8, 1) (9, 1) (10, 1) (10, 1) (11, 1)

5 (9, 2) (10, 2) (11, 2) (12, 2) (13, 2)

6 (3, 0) (4, 0) (4, 0) (5, 0) (5, 0) (6, 0) (6, 0) (7, 0) (7, 0) (8, 0) (8, 0)

6 (5, 1) (6, 1) (7, 1) (7, 1) (8, 1) (9, 1) (9, 1) (10, 1) (11, 1)
6 (7, 2) (8, 2) (9, 2) (10, 2) (10, 2) (11, 2) (12, 2)

6 (11, 3) (12, 3) (13, 3)

7 (2, 0) (3, 0) (3, 0) (4, 0) (4, 0) (5, 0) (5, 0) (5, 0) (6, 0) (6, 0) (7, 0) (7, 0)

7 (4, 1) (5, 1) (6, 1) (6, 1) (7, 1) (8, 1) (8, 1) (9, 1) (9, 1) (10, 1)

7 (6, 2) (7, 2) (8, 2) (8, 2) (9, 2) (10, 2) (10, 2) (11, 2)

7 (8, 3) (9, 3) (10, 3) (11, 3) (12, 3) (12, 3)

7 (13, 4)

8 (2, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (5, 0) (5, 0) (5, 0) (6, 0) (6, 0) (6, 0)

8 (3, 1) (4, 1) (5, 1) (5, 1) (6, 1) (7, 1) (7, 1) (8, 1) (8, 1) (9, 1) (9, 1)

8 (5, 2) (6, 2) (7, 2) (8, 2) (8, 2) (9, 2) (9, 2) (10, 2) (11, 2)

8 (7, 3) (8, 3) (9, 3) (9, 3) (10, 3) (11, 3) (12, 3)

8 (9, 4) (10, 4) (11, 4) (12, 4) (13, 4)

9 (2, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (5, 0) (5, 0) (5, 0) (6, 0) (6, 0)

9 (3, 1) (4, 1) (4, 1) (5, 1) (5, 1) (6, 1) (6, 1) (7, 1) (8, 1) (8, 1) (9, 1)

9 (5, 2) (6, 2) (7, 2) (7, 2) (8, 2) (8, 2) (9, 2) (10, 2) (10, 2)

9 (6, 3) (7, 3) (8, 3) (8, 3) (9, 3) (10, 3) (10, 3) (11, 3)

9 (7, 4) (8, 4) (9, 4) (10, 4) (11, 4) (11, 4) (12, 4)

9 (10, 5) (11, 5) (12, 5) (13, 5)

10 (2, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (4, 0) (5, 0) (5, 0) (5, 0) (6, 0)

10 (3, 1) (4, 1) (4, 1) (5, 1) (5, 1) (5, 1) (6, 1) (6, 1) (7, 1) (7, 1) (8, 1)

10 (4, 2) (5, 2) (6, 2) (6, 2) (7, 2) (7, 2) (8, 2) (9, 2) (9, 2) (10, 2)

10 (6, 3) (7, 3) (8, 3) (8, 3) (9, 3) (10, 3) (10, 3) (11, 3)

10 (7, 4) (8, 4) (9, 4) (9, 4) (10, 4) (11, 4) (12, 4)

10 (8, 5) (9, 5) (10, 5) (11, 5) (12, 5) (13, 5)
10 (12, 6) (13, 6)

11 (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (5, 0) (5, 0) (5, 0) (5, 0)

11 (3, 1) (4, 1) (4, 1) (4, 1) (5, 1) (5, 1) (6, 1) (6, 1) (6, 1) (7, 1) (7, 1)

11 (3, 2) (4, 2) (5, 2) (5, 2) (6, 2) (6, 2) (7, 2) (8, 2) (8, 2) (9, 2) (9, 2)

11 (5, 3) (6, 3) (7, 3) (7, 3) (8, 3) (9, 3) (9, 3) (10, 3) (11, 3)

11 (6, 4) (7, 4) (8, 4) (9, 4) (9, 4) (10, 4) (11, 4) (11, 4)

11 (7, 5) (8, 5) (9, 5) (10, 5) (10, 5) (11, 5) (12, 5)

11 (9, 6) (10, 6) (11, 6) (12, 6) (13, 6)

11 (13, 7)

12 (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (4, 0) (5, 0) (5, 0) (5, 0)

12 (3, 1) (3, 1) (4, 1) (4, 1) (5, 1) (5, 1) (5, 1) (6, 1) (6, 1) (7, 1) (7, 1)

12 (3, 2) (4, 2) (4, 2) (5, 2) (5, 2) (6, 2) (6, 2) (7, 2) (8, 2) (8, 2) (9, 2)

12 (4, 3) (5, 3) (6, 3) (6, 3) (7, 3) (8, 3) (8, 3) (9, 3) (10, 3) (10, 3)

12 (6, 4) (7, 4) (8, 4) (8, 4) (9, 4) (10, 4) (10, 4) (11, 4)

12 (7, 5) (8, 5) (9, 5) (9, 5) (10, 5) (11, 5) (12, 5)

12 (8, 6) (9, 6) (10, 6) (11, 6) (12, 6) (12, 6)

12 (10, 7) (11, 7) (12, 7) (13, 7)
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Table 5 (continued)

nb na

2 3 4 5 6 7 8 9 10 11 12 13

13 (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (4, 0) (5, 0) (5, 0)

13 (2, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 1) (5, 1) (5, 1) (6, 1) (6, 1) (6, 1) (7, 1)

13 (3, 2) (4, 2) (4, 2) (5, 2) (5, 2) (6, 2) (6, 2) (7, 2) (7, 2) (8, 2) (8, 2)

13 (4, 3) (5, 3) (6, 3) (6, 3) (7, 3) (7, 3) (8, 3) (9, 3) (9, 3) (10, 3)
13 (5, 4) (6, 4) (7, 4) (7, 4) (8, 4) (9, 4) (9, 4) (10, 4) (11, 4)
13 (6, 5) (7, 5) (8, 5) (9, 5) (9, 5) (10, 5) (11, 5) (11, 5)

13 (7, 6) (8, 6) (9, 6) (10, 6) (10, 6) (11, 6) (12, 6)

13 (8, 7) (9, 7) (10, 7) (11, 7) (12, 7) (13, 7)
13 (11, 8) (12, 8) (13, 8)

14 (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (4, 0) (4, 0) (5, 0)

14 (2, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 1) (5, 1) (5, 1) (5, 1) (6, 1) (6, 1) (6, 1)

14 (3, 2) (4, 2) (4, 2) (5, 2) (5, 2) (5, 2) (6, 2) (6, 2) (7, 2) (7, 2) (8, 2)

14 (3, 3) (4, 3) (5, 3) (5, 3) (6, 3) (6, 3) (7, 3) (7, 3) (8, 3) (9, 3) (9, 3)

14 (5, 4) (6, 4) (7, 4) (7, 4) (8, 4) (8, 4) (9, 4) (10, 4) (10, 4)

14 (6, 5) (7, 5) (8, 5) (8, 5) (9, 5) (10, 5) (10, 5) (11, 5)

14 (7, 6) (8, 6) (9, 6) (9, 6) (10, 6) (11, 6) (11, 6)

14 (8, 7) (9, 7) (10, 7) (11, 7) (11, 7) (12, 7)

14 (9, 8) (10, 8) (11, 8) (12, 8) (13, 8)

14 (12, 9) (13, 9)

15 (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (4, 0) (4, 0) (4, 0) (4, 0) (5, 0)

15 (2, 1) (3, 1) (3, 1) (3, 1) (4, 1) (4, 1) (4, 1) (5, 1) (5, 1) (5, 1) (6, 1) (6, 1)

15 (3, 2) (4, 2) (4, 2) (4, 2) (5, 2) (5, 2) (6, 2) (6, 2) (6, 2) (7, 2) (7, 2)

15 (3, 3) (4, 3) (4, 3) (5, 3) (5, 3) (6, 3) (6, 3) (7, 3) (8, 3) (8, 3) (9, 3)

15 (4, 4) (5, 4) (6, 4) (6, 4) (7, 4) (8, 4) (8, 4) (9, 4) (9, 4) (10, 4)

15 (5, 5) (6, 5) (7, 5) (8, 5) (8, 5) (9, 5) (9, 5) (10, 5) (11, 5)
15 (6, 6) (7, 6) (8, 6) (9, 6) (9, 6) (10, 6) (11, 6) (11, 6)

15 (7, 7) (8, 7) (9, 7) (10, 7) (10, 7) (11, 7) (12, 7)

15 (8, 8) (9, 8) (10, 8) (11, 8) (12, 8) (12, 8)

15 (10, 9) (11, 9) (12, 9) (13, 9)

15 (13, 10)

Couples (a, b) for which a success rate P a/na can be considered different than a success rate 6 b/nb, for 1% significance level. Couples in
boldface indicate that Fisher’s bilateral test has a p-value strictly higher than 0.01.
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Fig. 2. Values of a and b for which a proportion of a/n is shown
to be significantly higher than a proportion of b/n at level
a = 0.01, for McNemar, standard, Fisher and new statistical test
proposed in this paper.
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new statistical test is comparable to standard para-
metric test and slightly more powerful than Fisher’s
exact test. This result is very positive, since it is com-
monly believed that parametric tests are signifi-
cantly more powerful than nonparametric ones
and that Fisher’s exact test is the best for 2 · 2 con-
tingency tables. The tables provided in this article
are not available in the literature and can be very
useful to OR practitioners to compare proportions
in a very easy way, since no computation has to
be undertaken. Indeed, the user only has to count
the number of positive elements in the samples to
be compared.
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