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Preface

This book is intended for students, teachers, engineers, and scientists wishing to
become familiar with metaheuristics. Frequently, metaheuristics are seen as an it-
erative master process guiding and modifying the operations of subordinate heuris-
tics. As a result, the works in the field are organized into chapters, each presenting
a metaheuristic, such as simulated annealing, tabu search, artificial ant colonies or
genetic algorithms, to name only the best known.

This book addresses metaheuristics from a new angle. It presents them as a set of
basic principles that are combined with each other to design a heuristic algorithm.

Heuristics and Metaheuristics

When addressing a new problem, we try to solve it by exploiting the knowledge
acquired by experience. If the problem seems peculiarly difficult, a solution that is
not necessarily the best possible is accepted. The matter is to discover the solution
with a reasonable computational effort. Such a resolution method is then called a
heuristic.

By analysing a whole menagerie of metaheuristics proposed in the literature, we
identified five major basic principles leading to the design of a new algorithm:

1. Problem modelling The most delicate phase when confronted with a new prob-
lem is its modelling. Indeed, if a problem is taken by the “wrong end", its reso-
lution can be largely compromised. Naturally, this phase is not the prerogative of
metaheuristics.

2. Decomposition into sub-problem When one has to solve a complex problem
or an instance of large size, it is necessary to decompose it into simpler or
smaller sub-problems. These may themselves be difficult. Hence, they must be
approached by an appropriate technique, for example a metaheuristic.

3. Building a solution When a suitable model is found, it becomes easy to build
a solution to the problem, even if it is not good or even inapplicable in practice.
One of the most common construction methods is a greedy algorithm, which may
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even provide exact solutions for simple problems such as the minimum spanning
tree or the shortest path.

4. Modifying a solution The next step tries to improve a solution by applying slight
modifications. This approach can be seen as a translation to the discrete world of
gradient methods for differentiable optimization.

5. Randomization and learning Finally, the repetition of constructions or mod-
ifications makes it possible to improve the quality of the solutions produced,
provided that a random component and/or a learning process are involved.

Table 1 Context of application of a heuristic method and a metaheuristic framework

Heuristics Metaheuristic

Area of application A generic optimization problem Combinatorial optimization

Knowledge to include Specific to the problem Heuristic optimization methods

Data to provide Numerical values of a problem in-
stance

A generic optimization problem

Result A heuristic solution to the instance A heuristic algorithm

Metaheuristics have become an essential tool to tackle difficult optimization
problems, even if they have sometimes been decried, especially in the 1980s by
people who opposed exact and heuristic methods. Since then, it has been realized
that many exact methods embed several heuristic procedures and did guarantee op-
timality only with limited precision!

Book Structure

This book is divided into three parts. The first part recalls some basics of linear
programming, graph theory and complexity theory and presents some simple and
intractable combinatorial optimization problems. The aim of this first part is to make
the field intelligible to a reader with no particular knowledge about combinatorial
optimization.

The second part deals with the fundamental building blocks of metaheuristics:
the construction and improvement of solutions as well as the decomposition of a
problem into sub-problems. Primitive metaheuristics assembling these ingredients
and using them in iterative processes running without memory are also incorporated.

The third part presents more advanced metaheuristics exploiting forms of mem-
ory and learning that allow the development of more elaborate heuristics. The ex-
ploitation of a memory can be done in different forms. One can try learning how to
build good solutions directly on the basis of statistics gathered from previous trials.
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Another possibility is to try to exploit memories to move intelligently through the
solution space. Finally, one can store a whole set of solutions and combine them.

The book concludes with a chapter providing some advice on designing heuris-
tics, an appendix providing source code for testing various methods discussed in the
book and solutions to the exercises given at the end of each chapter.

Chapter 1 Elements of Graphs and Complexity Theory Before considering de-
veloping a heuristic for a problem, it is necessary to ensure the problem is dif-
ficult and that there is not an efficient algorithm to solve it exactly. This chapter
includes a very brief introduction to two techniques for modelling optimization
problems, linear programming and graph theory. Formulating a problem as a lin-
ear program describes it formally and unambiguously. Once expressed in this
form and if the problem data is not too large, automatic solvers can be used to
solve it. Some solvers are indeed built into spreadsheets of Office suites. With a
little luck, there is no need to design a heuristic!
Many combinatorial optimization problems can be “drawn" and thus represented
intuitively and relatively naturally by a graph. This book is illustrated by numer-
ous examples of problems from graph theory. The travelling salesman problem
is most likely the best known and has served as a guideline in the writing of this
book.
Some elements of complexity theory are also presented in this introductory chap-
ter. This area deals with the classification of problems according to their diffi-
culty. Some simple techniques are given to show a problem is intractable. This
helps to justify why it is essential to turn to the design of heuristics.

Chapter 2 A Short List of Combinatorial Optimization Problems This chap-
ter reviews a number of classical problems in combinatorial optimization. It il-
lustrates the sometimes narrow boundary between an easy problem, for which an
efficient algorithm is known, and an intractable problem which differs merely in
a small detail that may seem trivial at first sight.
Likewise, it allows the reader who is not familiar with combinatorial optimiza-
tion to discover a broad variety of problems in various domains: optimal paths,
travelling salesman, vehicle routing, assignment, network flow, scheduling, clus-
tering, etc.

Chapter 3 Problem Modelling This chapter begins by describing techniques for
simplifying the treatment of constraints, notably by transforming the objective
into a fitness function. Then, it gives a brief overview of multi-objective opti-
mization. Finally, it provides some practical applications of classical combina-
torial optimization problems. It gives examples of data transformations to deal
with applications that are at first sight far from classical descriptions.

Chapter 4 Constructive Methods This chapter presents methods for construct-
ing solutions, starting with a reminder of the separation and evaluation methods,
widely used for the design of exact algorithms. Next, two basic methods are pre-
sented, random construction and greedy construction. The latter sequentially se-
lects the elements to be added to a partial solution, never questioning the choices
that have been made. This method can be improved by evaluating more deeply
the consequences of choosing an element. The beam search and the pilot method
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are part of these. The construction of a solution constitutes the first step in the
design of a heuristic.

Chapter 5 Local Search The further step is to improve an existing solution by
searching for minor changes that improve it. Local searches constitute the back-
bone of most metaheuristics. These methods are based on the definition of a set
of neighbour solutions, for any solution of the problem. The definition of this set
naturally depends on the modelling of the problem. Depending on the latter, a
naturally expressed neighbourhood may be too small to lead to quality solutions
or, on the contrary, too large, leading to prohibitive computational times. Various
methods have been proposed to enlarge the neighbourhood, such as filter and fan
or ejection chains, or to reduce it, like granular search or candidate list.

Chapter 6 Decomposition Methods In the process of developing a new algo-
rithm, this chapter should logically have been placed after the one devoted to
problem modelling. However, decomposition methods are only used when the
size of the data to be processed is large. It is, therefore, an optional phase, which
the reader can ignore before moving on to stochastic and learning methods. This
is the reason why it is placed at the end of the first part of this book, devoted to
the key ingredients of metaheuristics. In this chapter, we consider methods like
POPMUSIC or more general methods such as large neighbourhood search or
fix-and-optimize.

Chapter 7 Randomized Methods This chapter is devoted to methods repeating
randomly and without memory constructions or modifications of solutions.
Among the most popular techniques, we find GRASP, which integrates two basic
bricks of metaheuristics: a randomized greedy construction and a local search.
Four randomized local searches are presented in this chapter, showing that with
the same classic recipe, different heuristics can be obtained: simulated anneal-
ing, threshold accepting, great deluge and the noising methods. The variable
neighbourhood search equally finds its place in this chapter.

Chapter 8 Construction Learning Following the order in which the key ingre-
dients of metaheuristics are presented, one can first seek to improve the solution
building process. Having constructed many solutions, one can collect statistics
on their structure and exploit this data to construct new solutions. Artificial ant
colonies represent a typical example. Another technique, vocabulary building, is
also discussed in this chapter.

Chapter 9 Local Search Learning If local searches constitute the backbone of
metaheuristics, the taboo search, which seeks to learn how to iteratively modify
a solution, can be considered as the master of metaheuristics. The term “meta-
heuristic" was coined by its inventor. This chapter will focus on the ingredients
that can be considered as the basis of taboo search, namely the use of memories
and solution exploration strategies. Other ingredients of taboo search proposed
by its inventor, such as candidate lists, ejection chains or vocabulary building find
a more logical place in other chapters.

Chapter 10 Population Management When one has a population of solutions,
one can try learning how to combine them and how to manage this population.
The most popular method in this field is undoubtedly genetic algorithms. How-
ever, genetic algorithms are a less advanced metaheuristic than scatter search
which provides strategies for managing a population of solutions. GRASP method
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with path relinking shows how to design a simple heuristic integrating several ba-
sic bricks of metaheuristics, ranging from randomized construction to population
exploitation through local searches. Ultimately, among the latest metaheuristics,
we find particle swarm methods, which seem to be adapted to continuous opti-
mization. It should be noted that the spreadsheets of Office suites directly inte-
grate this type of heuristic methods among the proposed solvers.

Chapter 11 Heuristics Design The concluding chapter of the book dispenses
some advice on designing heuristics. It returns to the difficulty that can be en-
countered when modelling the problem and gives an example of decomposition
into a chain of sub-problems for easy handling. Next, it proposes an approach for
the development of a heuristic. Finally, some techniques for the parameter tuning
and comparing the efficiency of algorithms are reviewed.

Source Codes for the Travelling Salesman Problem

One of the reasons for the popularity of metaheuristics is that they allow addressing
difficult problems with simple codes. This book contains several pieces of code
illustrating how to implement the basic methods discussed. Due to a certain level
of abstraction, these principles could be perceived as a sculpture on clouds. The
codes eliminate all ambiguity on the inevitable interpretations that can be done when
presenting a metaheuristic framework. The computer scientist wishing to develop a
heuristic method for a particular problem can be inspired by these codes.

As a source code is useful only when one wants to know all the details of a
method, but that it is of little interest when reading. So, we have simplified and
shortened the codes, trying to limit them to a single page. These codes come in ad-
dition to the text and not the opposite. The reader with little interest in programming
or not familiar with the programming language used can skip them.

These codes have been tested and are relatively efficient. They addressed the
emblematic travelling salesman problem. The latter is pedagogically interesting be-
cause its solution can be graphically drawn. Certainly, these codes are not “horse
race", but they contain the quintessence of methods and their extreme brevity should
allow the reader to understand them. More than a dozen different methods have been
implemented, while jointly taking less than one-tenth of the number of lines of code
of one of the fastest implementations. However, we had to comply with this brevity.
The codes are somewhat compact, succinctly commented and sometimes placing
several instructions on the same line. So, we ask the reader used to sparser codes to
be indulgent.

Exercises

Many exercises have been imagined. Their choice has always been guided by the
solutions expected, which must be as unambiguous as possible. Indeed, when de-
signing a new heuristic, there is no more either a correct or a false solution. There
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are only heuristics that work well for some problem instances and others which do
not produce satisfactory results — bad quality of solutions, prohibitive calculation
time, etc.

Nothing is more destabilizing for a student than ambiguous or even philosophical
responses. This reason has led us to provide the solutions to all the exercises.
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Part I
Combinatorial Optimization, Complexity

Theory and Problem Modelling



This part is a gentle introduction to some basics of linear programming, graph the-
ory, complexity theory and presents some simple and difficult combinatorial opti-
mization problems. The purpose of this introductory part is to make the domain
intelligible to a reader who does not have specific knowledge in modelling such
problems.



Chapter 1
Elements of Graphs and Complexity Theory

Before designing a heuristic method to find good solutions to a problem, it is nec-
essary to be able to formalize it mathematically and to check that it belongs to a
difficult class. Thus, this chapter recalls some elements and definitions in graph the-
ory and complexity theory in order to make the book self-contained. On the one
hand, basic algorithmic courses very often include graph algorithms. Some of these
algorithms have simply been transposed to solve difficult optimization problems in
a heuristic way. On the other hand, it is important to be able to determine whether a
problem falls into the category of difficult problems. Indeed, one will not develop a
heuristic algorithm if there is an efficient algorithm to find an exact solution.

1.1 Combinatorial Optimization

The typical field of application of metaheuristics is combinatorial optimization. Let
us briefly introduce this domain with an example of a combinatorial problem: the
colouring of a geography map. It is desired to assign a colour for each country drawn
on a map so that any two countries that have a common border do not receive the
same colour. In Figure 1.1, five different colours are used, without worrying about
the political attribution of the islands or enclaves.

This is a combinatorial problem. Indeed, if there are n areas to colour with five
colours, there are 5n different ways to colour the map. Most of these colourings are
unfeasible because they do not respect the constraint that two areas with a common
border do not receive an identical colour. The question could be asked whether there
is a feasible colouring using only four colours. More generally, one may want to find
a colouring using a minimum number of colours. Consequently, we are dealing here
with a combinatorial optimization problem.

How to model this problem more formally? Let us take a smaller example (see
Figure 1.2): can we colour Switzerland (s) and neighbouring countries (Germany d,
France f , Italy, Liechtenstein and Austria a) with three colours?

A first model can be written using 18 binary variables that are put into equations
or inequations. Let us introduce variables xs1,xs2,xs3,xd1,xd2, . . . ,xa3 that should

3
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Fig. 1.1: An old European map coloured with 5 colours (taking the background into
account)

either take value 1 or 0. xik = 1 means that country i receives colour k. Now, we can
impose that a given country i receives exactly one colour by writing the equation:
xi1 + xi2 + xi3 = 1. To avoid assigning the same colour to two countries (i and j)
having a common border, we can write three inequalities (one for each colour):
xi1 + x j1 ⩽ 1, xi2 + x j2 ⩽ 1 and xi3 + x j3 ⩽ 1.

Another model can introduce 18 Boolean variables bs1,bs2,bs3,bd1,bd2, . . . ,ba3
that indicate the colour (1, 2 or 3) of each country. bik = true means that country
i receives colour k. Now, we write a long Boolean formula that is true if and only
if there is a feasible 3-colouring. First of all, we can impose that Switzerland is
coloured with at least one colour: bs1∨bs2∨bs3. But it should not receive both colour
1 and colour 2 at the same time: This can be written bs1∧bs2, which is equivalent
to bs1∨bs2. Then, it should also not receive both colour 1 and colour 3 or colour 2
and colour 3. Thus, to impose that Switzerland is coloured with exactly 1 colour, we
have the conjunction of four clauses:

(bs1∨bs2∨bs3)∧ (bs1∨bs2)∧ (bs1∨bs3)∧ (bs2∨bs3)

For each of the countries concerned, it is also necessary to write a conjunction of
four clauses, but with the variables corresponding to the other countries. Finally, for
each border, it is necessary to impose that the colours on both sides are different.
For example, for the border between Switzerland and France, we must have:

(bs1∨b f 1)∧ (bs2∨b f 2)∧ (bs3∨b f 3)
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Now a question arises: how many variables are needed to colour a map with n
countries which have a total of m common borders using k colours? Another one is:
how many constraints (equation, inequation or clauses) are needed to describe the
problem? First, it is necessary to introduce n ·k variables. Then, for each country, we
can write one equation or 1+ k·(k−1)

2 clauses to be sure that each country receives
exactly one colour. Finally, for each border, it is necessary to write one inequation
or m · k clauses. The problem of colouring such a map with k colours has a solution
if and only if there is a value 1 or 0 for each of the binary variables or a value
true or f alse for each of the Boolean variables such that all the constraints are
simultaneously satisfied.

The Boolean model is called the satisfiability problem (SAT). It plays a central
role in complexity theory. This extensive development is to formalize the problem
by a set of equations or inequations or by a unique, long Boolean formula, but does
not inform us yet how to discover a solution!

An extremely primitive algorithm to find a solution is to examine all the possible
values for the variables (there are 2nk different sets of values), and for each set, we
have to check if the formula is true.

As modelled above, colouring a map is a decision problem. Its solution is either
true (a feasible colouring with k colours exists) or f alse (this is impossible). Assum-
ing that an algorithm A is available to obtain the values to assign to the variables so
that all equations or inequations are satisfied or the Boolean formula is true — or to
say that such values do not exist — is it possible to solve the optimization problem:
which is the minimum number k of colours for having a feasible colouring?

One way to answer this question is to note that we need at most n colours for n
areas and to assign a distinct colour to each of them. As a result, we know that an
n-colouring exists. We can apply the algorithm A to ask for an n−1 colouring, then
n− 2, etc. until getting the answer that no colouring exists. The ultimate value for
which the algorithm has found a solution corresponds to an optimal colouring.

A faster technique is to proceed by a dichotomy: rather than reducing the number
of colour by one unit at each call of algorithm A , two values, kmin and kmax are
stored so that it is known that there is no feasible colouring (respectively: a feasible
colouring exists). By eliminating the case of the trivial map that has no boundary,
we know that we can start with kmin = 1 and kmax = n. The algorithm is asked for
a k = ⌊ kmin+kmax

2 ⌋ colouring. If the answer is yes, we modify kmax ← ⌊ kmin+kmax
2 ⌋;

if the answer is no, we change kmin ← ⌊ kmin+kmax
2 ⌋. The method is repeated until

kmax = kmin + 1. This value corresponds to the optimum number of colours. So, an
optimization problem can be solved with an algorithm answering the corresponding
decision problem.

1.1.1 Linear Programming

Linear programming is an extremely useful tool for mathematically modelling many
optimization problems. Mathematical programming is the selection of a best ele-
ment, with regard to some quantitative criterion, from some set of feasible alter-
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natives. When the expression of this criterion is a linear function and all feasible
alternatives can be described by means of linear functions, we are talking about
linear programming.

A linear program under canonical form can be mathematically written as fol-
lows:

Maximize z = c1x1+ c2x2+ . . .+ cnxn (1.1)
Subject a11x1+ a12x2+ . . .+ a1nxn ⩽ b1 (1.2)

to: a21x1+ a22x2+ . . .+ a2nxn ⩽ b2

. . . . . . . . .

am1x1+ am2x2+ . . .+ amnxn ⩽ bm

x j ⩾ 0 ( j = 1, . . . ,n) (1.3)

z represents the objective function and x j the decision variables. For a production
problem, the c j can be seen as revenues, the bi being quantities of raw material
available and the ai j the unit consumption of material i for the production of good
j.

The canonical form of linear programming is not limiting, in the sense that any
linear program can be expressed under this form. Indeed, if the objective is to min-
imize z, this is equivalent to maximizing −z; if a variable x can be either positive
or negative or null, it can be substituted by x′′− x′, where x′′ and x′ must be non-
negative; finally, if we have an equality constraint ai1x1 + ai2x2 + · · ·+ ainxn = bi,
it can be replaced by the constraints ai1x1 + ai2x2 + · · ·+ ainxn ⩽ bi and −ai1x1−
ai2x2−·· ·−ainxn ⩽−bi.

The map colouring problem can be modelled by a slightly special linear pro-
gram. For that, one introduces the variables yk that indicate if the colour k is used
(yk = 1) or not (yk = 0, k = 1, . . . ,n) in addition to the variables xik that indicate if
the area i receives the colour k. The integer linear program allows formalizing the
optimization version of the map colouring problem:

Minimize z =
n

∑
k=1

yk (1.4)

Subject to:
n

∑
k=1

xik = 1 i = 1, . . . ,n (1.5)

xik− yk ⩽ 0 i,k = 1, . . . ,n (1.6)
xik + x jk ⩽ 1 ∀(i, j) having a common border, (1.7)

k = 1, . . . ,n
xik,yk ∈ {0,1} (1.8)



1.1 Combinatorial Optimization 7

The objective (1.4) is to use the minimum number of colours. The first set of
constraints (1.5) imposes that each vertex receives exactly one colour; the second
set (1.6) ensures that a vertex is not assigned to an unused colour; the set (1.7)
prevents the same colour to be assigned to contiguous areas. The integrity con-
straints (1.8) can also be written with linear inequalities (yk ⩾ 0, yk ⩽ 1, yk ∈Z).

Linear programming is a very powerful tool for modelling and formalizing prob-
lems. If there are no integrity constraints, problems with thousands of variables and
thousands of constraints can be effectively solved. In this case, the resolution is
barely more complex than the resolution of a system of linear equations. The key
limitation is essentially due to the memory space required for data storage as well
as any numerical problems that may occur if the data is poorly conditioned.

1.1.2 Unconstrained Binary Quadratic Programming

Many combinatorial optimisation problems can also be formulated with an uncon-
strained binary quadratic model (UBQP or QUBO for Quadratic Unconstrained Bi-
nary Optimization). Given a square matrix Q ∈ RN×N , we look for a binary vector
−→x ∈ {0,1}N minimizing: −→x tQ−→x = ∑

N
i=1 ∑

N
j=1 qi jxix j

With the Lagrangian relaxation technique which is briefly discussed in Sec-
tion 3.1.1, we can impose that an optimal solution satisfies constraints by adjusting
the coefficients of the Q matrix. For example, the problem of colouring a map of n
countries with k colours can be translated into a QUBO of size N = nk, whatever
the number of common borders.

Today, QUBO solvers have not reached the popularity of linear solvers. However,
great efforts are currently being made in the design of quantum computers. Among
the various techniques being considered for exploiting quantum effects are chips
based on the tunnelling effect. The natural way to program these chips is through a
QUBO model.

However, QUBO or integer linear programs, like the colouring problem ex-
pressed above, are generally difficult to solve with classical computers. Specific
techniques should be designed. Metaheuristics are among these techniques.

If the formulation of a problem under the form of a linear program allows a
rigorous modelling, it does not help our mind much for its solving. Indeed, the
sight is the most important of our senses. The adage says a small drawing is better
than a long speech. The graphs represent a more appropriate way for our spirit to
perceive a problem. Before presenting other models for the colouring problem (see
Section 2.8), some definitions in graph theory are recalled so that this book is self-
contained.

1.1.3 A Small Glossary on Graphs and Networks

Graphs are a very useful tool for problem modelling when there are elements that
have relationships between them. The elements are represented by a point and two
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related elements are connected by a segment. Thus, the previously seen map colour-
ing problem can be drawn by a small graph, as shown in the Figure 1.2.

Fig. 1.2 Switzerland and its
neighbour countries that we
want to colour. Each country
is symbolized by a disk, and a
common border is symbolized
by a line connecting the
corresponding countries. The
map colouring can be reduced
to the colouring of the vertices
of a graph

1.1.3.1 Undirected Graph, Vertex, (Undirected) Edge

An undirected graph G is a pair of a set V of elements called vertices or nodes and
of a set E of undirected edges, each of them associated with a (unordered) pair of
nodes, which are their endpoints. Such a graph is noted as G = (V,E). A vertex of a
graph is represented by a point or a circle. An edge is represented by a line.

If two vertices i and j are joined by an edge, they are adjacent. The edge is
incident with i and j.

When several edges connect the same pair of vertices, we have multiple edges.
When both endpoints of an edge are the same vertex, this is a loop.

When V = ∅ (and E = ∅), we have the null graph. When V ̸= ∅ and E = ∅,
we have an empty graph. A graph with no loop and no multiple edges is a simple
graph; otherwise, this is a multigraph. In the case of a simple undirected graph, an
edge e can be denoted by the unordered pair i, j of its incident vertices.

Figure 1.2 depicts a simple graph.
The complement graph G of a simple graph G has the same set of vertices and

two distinct vertices of G are adjacent if and only if they are not adjacent in G.

1.1.3.2 Directed Graph, Arcs

In some cases, the relationships between the pairs of elements are ordered. This is
a directed graph or digraph. The edges of a digraph are called the arcs or directed
edges. An arc is represented by an arrow connecting its endpoints.

It is therefore necessary to distinguish both endpoints of an arc k. The starting
point i is called the tail and the arrival point j is the head. j is a direct successor of
i and i is a direct predecessor of j. The set of direct successors of a node i is written
Succ(i) and the set of its direct predecessors Pred(i). In the case of a simple directed
graph, an arc k can be denoted by the directed pair (i, j) of its incident vertices.
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An arc whose tail and head are the same vertex is also called a loop, as for the
undirected case. Two arcs having the same tail and the same head are parallel or
multiple arcs.

1.1.3.3 Incidence Matrix

The incidence matrix A of a graph with n vertices and m arcs and without loops is
a matrix with m columns and n rows. The coefficients aik(i = 1, . . . ,n,k = 1, . . . ,m)
of A are defined as follows:

aik =

−1 if i is the tail of the arc k
1 if i is the head of the arc k
0 else

In the case of an undirected graph, both endpoints are represented by 1s in the
vertex-edge incidence matrix. It should be noticed that the incidence matrix does
not allow to properly represent loops.

1.1.3.4 Adjacency Matrix

The adjacency matrix of a simple undirected graph is a square matrix with the co-
efficient ai j is 1 if vertices i and j are adjacent and 0 otherwise.

1.1.3.5 Degree

The degree of a vertex i of an undirected graph, noted deg(i), is the number of edges
that are incident to i. A loop increases by 2 the degree of a vertex. A vertex of degree
1 is pendent. A graph is regular if all its vertices have the same degree. For a directed
graph, the outdegree of a vertex, noted deg+(i), is the number of arcs having i as
tail. The indegree of a vertex, deg−(i), is the number of arcs having i as head.

1.1.3.6 Path, Simple Path, Elementary Path, Cycle

A path (also referred to as a walk) is an alternating sequence of vertices and edges,
beginning and ending with a vertex, such that each edge is surrounded by its end-
points. A simple path (also referred to as a trail) is a walk for which all edges are
distinct. An elementary path (also simply referred to as a path) is a trail in which
all vertices (and therefore also all edges) are distinct. A cycle is a trail where the
first vertex is corresponding to the last vertex. A simple cycle is a cycle in which
the only repeated vertex is the first/last one. The length of a walk is its number of
edges. Contrary to French, there is no difference in the wording between undirected
and directed graphs. So, the edges, paths, etc. must be qualified with “directed” or
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“undirected.” However, arcs are always directed edges. A number of these basic
concepts are illustrated in Figure 1.3

i

(Undirected) edge

Vertex, node

Arc, directed edge

Tail Head

Multiple edges

Loop

i j

deg(i) = 2 deg( j) = 4

Elementary unoriented path of length 4

Unoriented cycle

j
deg+( j) = 0

deg−( j) = 1

Fig. 1.3: Basic definition of graph components: vertex, directed and undirected edge,
degree, path, cycle

1.1.3.7 Connected Graph

An undirected graph is connected if there is a path between every pair of its vertices.
A connected component of a graph is a maximal subset of its vertices (and incident
edges) such that there is a path between every pair of the vertices. A directed graph
is strongly connected if there is a directed path in both directions between any pair
of vertices.

1.1.3.8 Tree, Subgraph, Line Graph

A tree is a connected graph without cycles (acyclic). A leaf is a pendent vertex of a
tree. A forest is a graph without cycles. Each of its connected component is a tree.
A rooted tree is a directed graph with a unique path from one vertex (the root of the
tree) to each remaining vertex.

G′ = (V ′,E ′) is a subgraph of G = (V,E), if V ′ ⊂V and E ′ ⊂ E contains all the
edges of E such that both their incident vertices are in V ′. A spanning tree of a graph
G is a subgraph of G which is a tree.

The line graph L(G) of a graph G is built as follows (see also Figure 2.12):

• Each edge of G is associated with a vertex of L(G).
• Two vertices of L(G) are joined by an edge if their corresponding edges in G

share an endpoint.
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1.1.3.9 Eulerian, Hamiltonian Graph

A graph is Eulerian if it contains a walk that uses every edge exactly once. A graph
is Hamiltonian if it contains a walk that uses every vertex exactly once. Sometimes,
Eulerian and Hamiltonian graphs are limited to the case when there is a cycle that
uses every edge or every vertex exactly once (the first/last vertex excepted).

1.1.3.10 Complete, Bipartite Graphs, Clique, Stable Set

In a complete graph, every two vertices are adjacent. All edges that could exist are
present. A bipartite graph G = (V,E) is such that V = V1 ∪V2, V1 ∩V2 = ∅ and
each edge of E has one endpoint in V1 and the other in V2. A clique is a maximal
set of mutually adjacent vertices that induces a complete subgraph. A stable set or
independent set is a subset of vertices that induces a subgraph without any edges. A
number of elements defined in the above paragraphs are illustrated in Figure 1.4

Leaf

Tree Forest (with 4 connected components)

Bipartite graph Complete graph, clique

Fig. 1.4: Basic definition of graph components: tree, forest, connected component,
bipartite, clique

1.1.3.11 Graph Colouring, Matching

The vertex colouring problem has been used as an introductory example in the Sec-
tion 1.1 devoted to combinatorial optimization. A proper colouring is a labelling of
the vertices of a graph by elements from a given set of colours such that distinct
colours are assigned to the endpoints of each edge. The chromatic index of a graph
G, noted χ(G), represents the minimum number of colours of a proper colouring of
G. An edge colouring is a labelling of the edges by elements from a set of colours.
The proper edge colouring problem is to minimize the number of colours required so
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that two incident edges do not receive the same colour. A matching is a set of edges
sharing no common endpoints. A perfect matching is a matching that matches every
vertex of the graph.

1.1.3.12 Network

In many situations, a weight w(e) is associated with every edge e of a graph. Typi-
cally, w(e) is a distance, a capacity or a cost. A network or weighted graph, noted
R = (V,E,w), is a graph together with a function w : E→R. The length of a path in
a network is the sum of the weights of its edges.

1.1.3.13 Flow

A classical problem in a directed network R = (V,E,w) is to assign a non-negative
flow xi j to each edge e = (i, j) so that : ∑ j∈Succ(i) xi j = ∑k∈Pred(i) xki ∀i ∈V, i ̸= s, t.
Vertex s is the source-node and t the sink-node. If 0⩽ xi j ⩽ wi j∀(i, j) ∈ E, the flow
from s to t is feasible.

A cut is a partition of the vertices of a network R = (V,E,w) into two subsets
A⊂V and A⊂V . The capacity of a cut from A to A is the sum of the weight of the
edges that have one endpoint in A and the other in A.

Network flows are convenient to model problems that have, at first glance, noth-
ing in common with flows, like resource allocation problems (see, for example Sec-
tion 2.5.1). Further, in this chapter, we will review some well-known and effective
algorithms for the minimum spanning tree, the shortest path or the optimum flow
in a network. Other problems, like graph colouring, are intractable. The only algo-
rithms known to solve them require a time that can grow exponentially with the size
of the graph.

Complexity theory focuses on classifying computational problems into easy and
intractable ones. Metaheuristics have been designed to identify satisfactory solu-
tions to difficult problems, while requiring a limited computing effort. Before devel-
oping a new algorithm on the basis of the principles of metaheuristics, it is essential
to be sure the problem addressed is an intractable one and that there are not already
effective algorithms to solve it. The rest of this chapter exposes some theoretical
bases in the field of classification of problems according to their difficulty.

1.2 Elements of Complexity Theory

The purpose of complexity theory is to classify the problems in order to predict
whether they will be easy to solve. To limit ourselves to sequential algorithms, we
consider, very roughly, that an easy problem can be solved by an algorithm, which
computational effort is limited by a function that polynomially depends on the size
of the data to be treated. We can immediately dare why the difficulty limit must
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be on the class of polynomials and not on that of logarithmic, trigonometric, or
exponential functions.

The reason is very simple: we can perfectly conceive that more effort is required
to process a larger volume of data, eliminating non-growing functions like trigono-
metric ones. Limited to sequential methods, it is clear that each record must be read
at least once, which implies a growth in the number of operations at least linear. This
eliminates logarithmic, square root, etc. functions. Naturally, for a parallel treatment
of the data by several tasks, it is quite reasonable to define a class of problems (very
easy), requesting a number of operations and memory per processor increasing at
most logarithmically with the data volume. An example of such a problem is finding
the largest number of a set.

Finally, we must consider that an exponential function (in the mathematical
sense, such as 2x, but also extensions such as xlogx, x! or xx) always grow faster
than any polynomial. This growth is incredibly impressive.

Let us examine the example of an algorithm that requires 350 operations for a
problem with 50 elements. If this algorithm is run on a machine able to perform 109

operations per second, the machine will not complete its work before 23 million
years. By comparison, solving a problem with ten elements — five times smaller —
with the same algorithm would take only 60 microseconds.

Hence, it would not be reasonable in practice to consider as easy a problem re-
quiring an exponential number of operations to be solved. But combinatorial prob-
lems include an exponential number of solutions. As a result, complete enumeration
algorithms, sometimes called “brute force”, cannot be reasonably considered ac-
ceptable. Thus, the computation of a shortest path between two vertices of a network
cannot be solved by enumerating the complete set of all paths since it is exponen-
tially large. Algorithms using mathematical properties of the shortest walks must be
used. These algorithms perform a number of steps that is polynomial in the network
size. On the one hand, finding a shortest walk is an easy problem. On the other hand,
finding a longest (or a shortest) path (without circuits or without visiting twice the
same vertex) between two vertices is an intractable problem, because no polynomial
algorithm is known to solve it.

Finally, we must mention that the class of polynomials has an interesting prop-
erty: it is closed. The composition of two polynomials is also a polynomial. In the
context of programming, it means that a polynomial number of calls to a subroutine
that requires a computational effort that grows polynomially with the data size leads
to a polynomial algorithm.

1.2.1 Algorithmic Complexity

Complexity theory and algorithmic complexity should not be mixed up. As already
mentioned, complexity theory focuses on the problem classification. The purpose
of algorithmic complexity is to evaluate the resources required to run a given al-
gorithm. It is therefore possible to develop an algorithm of high complexity for a
problem belonging to the class of “simple” problems.
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To be able to put a problem into a complexity class, we will not assume the use
of any given algorithm to solve this problem, but we will analyze the performance
of the best possible algorithm — not necessarily known — for this problem and run-
ning on a given type of machine. We must not confuse the simplicity of an algorithm
(expressed, for example, by the number of lines of code needed to implement it) and
its complexity. Indeed, a naive algorithm can be of high algorithmic complexity.

For instance, to test if an integer p is prime, we can try to divide it by all the
integers between 2 and

√
p. If all these divisions have a reminder, we can conclude

that p is prime. Otherwise, there is a certificate (a divider of p) proving that p is
not prime. This algorithm is easy to implement. However, it is not polynomial in
the size of the data. Indeed, just n = log2(p) bits are required to code the number p.
Therefore, the algorithm requires a number of divisions proportional to 2n/2, which
is not polynomial.

However, it has been proven in 2002 that there is a polynomial algorithm to detect
if a number p is prime. As we can expect, this algorithm is undoubtedly a sophis-
ticated one. Its analysis and implementation is just a task at the limits of human
capacities. So, testing whether a number is prime or not remains a simple problem
(because there is a polynomial algorithm to solve it). However, this algorithm is
difficult to implement and would require a prohibitive computational time to prove
that 282,589,933−1 is prime. Conversely, there are algorithms that could theoretically
degenerate but that consistently behave appropriately in practice, like the simplex
algorithm for linear programming.

The resources required during the execution of an algorithm are limited. They are
of several types: number of processors, memory space and time. Looking at this last
resource, we could measure the effectiveness of an algorithm by evaluating its run-
ning time on a given machine. Unluckily, this measure presents many weaknesses.
First, it is relative to a particular machine, whose lifetime is limited to a few years.
Then, the way the algorithm has been implemented (programming language, com-
piler, options, operating system) can notably influence its running time. Therefore,
it is preferred to measure the characteristic number of operations that an algorithm
will perform. Indeed, this number does not depend on the machine or language and
can be perfectly theoretically evaluated.

We call complexity of an algorithm a function f (n) that gives the characteristic
number of steps executed in the worst case, when it runs on a problem whose data
size is n. It should be mentioned that this complexity has nothing to do with the
length of the code or with the difficulty to code it. The average number of steps
is also seldom used since this number is generally difficult to evaluate. Indeed, it
would be necessary to take an average for all possible data sets. In addition, the
worst-case evaluation is essential for applications where the running time is critical.

1.2.2 Bachmann-Landau Notation

In practice, a rough overestimate is used to evaluate the number of steps performed
by an algorithm to solve a problem of size n. Suppose that two algorithms, A1
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and A2 perform, respectively, for the same problem of size n, f (n) = 10n2 and
g(n) = 0.2 ·n3 operations.

On the one hand, for n = 10, it is clear that A1 performs five times more oper-
ations than A2. On the other hand, as soon as n ⩾ 50, A2 will perform more steps
than A1.

As n grows large, the n3 term will come to dominate. The positive coefficients in
front of n2 and n3 in f (n) and g(n) become irrelevant. The function g(n) will exceed
f (n) once n grows larger than a given value. The order of a function captures the
asymptotic growth of a function.

1.2.2.1 Definitions

If f and g are two real functions of a real (or integer) variable n, it is said that f
is of an order lower or equal to g if there are two positive constants n0 and c such
that ∀n⩾ n0, f (n)⩽ c ·g(n). This means that g(n) grows larger than f (n) as soon as
n ⩾ n0, irrespective of the constant factor c. With Bachmann-Landau notation, this
is written f (n) = O(g(n)) or f (n) ∈ O(g(n)). This is the big O notation.

The diagram in Figure 1.5 illustrates the usefulness of this notation. It gives
the observed computation time to construct a travelling salesman’s tour for vari-
ous problem sizes. Observing the measurement dispersion for small sizes, it seems
difficult to find a function for expressing the exact computational time. However,
the observations for large sizes show the n logn behaviour of this method, presented
in Section 6.3.2.

The practical interest of this notation is that it is often easy to find a function g
that increases asymptotically faster than the exact function f which may be difficult
to evaluate. So, if the number of steps of an algorithm is smaller than g(n) for large
values of n, it is said that the algorithm runs at worst in O(g(n)).

Sometimes, we are not interested in the worst case but in the best case. It is said
that f (n) ∈Ω(g(n)) if f (n) increases asymptotically faster than g(n).

Mathematically, f (n) ∈Ω(g(n)) if ∀n⩾ n0, f (n)⩾ c ·g(x). This is equivalent to
g(n) = O( f (n)). This notation is useful to show that an algorithm A is less efficient
than another B: at best, the last performs at least as many steps than A . It can also
be used to show that an algorithm C is optimal: at worst, C performs a number of
steps that is not larger than the minimum number of steps required by any algorithm
to solve the problem.

If the best and the worst case are the same, i.e. if ∃c2 > c1 > 0 such that c1 ·g(n)⩽
f (n)⩽ c2 ·g(n), then it is written f (n) ∈Θ(g(n)).

The Θ(·) notation should be distinguished from a notion (often not well-defined)
of an average complexity. Indeed, taking the example of the Quicksort algorithm to
sort n elements, we can say it is in Ω(n) and in O(n2). But this algorithm is not in
Θ(n logn), even if its average computational time is proportional to n logn.

Indeed, it can be proven that the mathematical expectation of the computational
time of Quicksort for a set of n elements randomly mixed up is proportional to
n logn. The notations O(·) (theoretical expected value) and Ô(·) (empirical average)
are used later in this book. However, they are not frequently used in the literature. To
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Fig. 1.5: Observed computational time for building a travelling salesman tour as a
function of the number n of cities. For instances with more than a million cities,
the time remains below the c · n logn function. This verifies that the method is in
O(n logn)

use them properly, we must specify which data set is considered and the probability
of occurrence of each problem instance, etc.

In mathematics and more seldom in computer sciences, there also exist the little
o notations:

• f (n) ∈ o(g(n)) if limn→∞
g(n)
f (n) > 0

• f (n) ∈ ω(g(n)) if limn→∞
f (n)
g(n) > 0

• f (n)∼ g(n) if limn→∞
f (n)
g(n) = 1

There are many advantages to express the algorithmic complexity of an algorithm
with the big O notation:

• f (n) ∈ O(g(n)) means that g(n) is larger than the true complexity; this often
allows to find a function g(n) with an easy calculus while finding f (n)∈Θ(g(n))
would have been much more difficult;

• 25n3 = O(3n3) and 3n3 = O(25n3), this means that two functions that differ
solely from a constant factor have the same order; this allows to ignore the rela-
tive speed of computers; instead of writing O(25n3), we can write O(n3) which
is equivalent and simpler;

• 3n3 +55n = O(n3), this means that the lower order terms can be neglected; only
the larger power has to be kept.

It is important to stress that the complexity of an algorithm is a theoretical con-
cept, which is derived by reflection and calculations. This can be established with a
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sheet and a pencil. The complexity is typically expressed by the order of the com-
putational time (or an abstract number of steps performed by a virtual processor)
depending on the size of the problem.

Functions commonly encountered in algorithmic complexity are given below,
with the slower-growing functions listed first. Figure 1.6 depicts the growth of some
of these functions.

• O(1): constant.
• O(logn): logarithmic; the base is not provided since O(loga n) = O(logb n).
• O(nc): fractional power, with 0 < c < 1.
• O(n): linear.
• O(n logn): linearithmic.
• O(n2): quadratic.
• O(n3): cubic.
• O(nc): polynomial, with c > 1 constant.
• O(nlogn): quasi-polynomial, super-polynomial, sub-exponential.
• O(cn): exponential, with c > 1 constant.
• O(n!): factorial.
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Fig. 1.6: Illustration of the growth of some functions frequently used to express the
complexity of an algorithm. The horizontal axis indicates the size of the problem
(with exponential growth) and the vertical axis gives the order of magnitude of the
computation time (with iterated-exponential growth, from a nano second to the ex-
pected life of our universe)
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1.2.3 Basic Complexity Classes

Complexity theory has evolved considerably since the beginning of the 1970s, when
Cook showed there is a problem which, if we were able to solve it in polynomial
time, then it would allow us to solve many others efficiently, like the travelling
salesman, the integer linear programming, the graph colouring, etc. [10].

To achieve this result, it was necessary to formulate a generic problem in math-
ematical terms, how a computer works, and how computational time can be mea-
sured. To simplify this theory as much as possible, the type of problems considered
is limited to decision problems.

A decision problem is formalized by a generic problem and a question; the an-
swer should be either “yes” or “no.”

Example of a Generic Problem

Let C = {c1, . . . ,cn} be a set of n cities, integer distances di j between the cities ci
and c j (i, j = 1, . . . ,n) and B an integer bound.

Question :

Is there a tour of length not higher than B visiting every city of C? Put differently,
we look for a permutation p of the elements 1,2, . . . ,n such that
dpn,p1 +∑

n−1
i=1 dpi,pi+1 ⩽ B.

This is the decision version of the travelling salesman problem (TSP for short).
The optimization version of the problem seeks to find the shortest possible route
that visits each city exactly once and returns to the origin city. This is undoubtedly
the best-known combinatorial optimization problem that is intractable.

1.2.3.1 Encoding Scheme, Language and Turing Machine

A problem instance can be represented as a text file. We must subsequently use
given conventions, for example, put on the first line n, the number of cities, then
B, the bound, on the second line and each of the following line will contain three
numbers, interpreted as i, j and di j. Put differently, an encoding scheme is used.

We can adopt the formal grammar of language theory, which is similar to those
used in compiling techniques. Let Σ be a finite set of symbols or an alphabet. We
write Σ ∗ the set of all strings that can be built with the alphabet Σ . An encoding
scheme e for a generic problem π allows describing any instance I of π by a string
x ∈ Σ ∗. For the TSP, I contains n, B and all the di j values.

An encoding scheme e for generic problem π partitions the strings of Σ ∗ into
three classes:

1. the strings that do not encode a problem instance I of π;
2. the strings encoding a problem instance I of π for which the answer is “no”;
3. the strings encoding a problem instance I of π for which the answer is “yes”.
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This last class is called the language associated with π and e, denoted L(π,e).
In theoretical computer science, or more precisely in automata theory, the com-

puting power of various machine models is studied. Among the simplest automata,
there are finite-state automata. They are utilized to design or analyze a communica-
tion protocol for instance. Their states are represented by the vertices of a graph and
transitions, represented by arcs. Providing an input string, the automaton changes
from one state to another according to the symbol of the string being read and asso-
ciated transitions rules. Since an automaton maintains a finite number of states, this
machine possesses a bounded memory.

A slightly more complex model is a push-down automaton, functioning similarly
to a finite-state machine, but has a stack. At each step, a symbol of the string is
interpreted, as well as the symbol at the top of the stack (if the last is not empty).
The automaton changes its state and places a new symbol at the top of the stack.
This type of automaton is able to make more complex computations. For instance,
it can recognize the strings of a non-contextual language. Hence, it can perform
the syntax analysis of a program described by a grammar of type 2. An even more
powerful computer model than a stack automaton is the Turing machine.

Deterministic Turing Machine

To mathematically represent how a computer works, Alan Turing imagined a fictive
machine (there were no computers in 1936) whose operations can be modelled by
a transition function. This machine is able to implement all the usual algorithms. It
is able to recognize a string generated by a general grammar of type 0 in a finite
time. Figure 1.7 illustrates such a machine, composed of a program that controls the
scrolling of a magnetic tape and a read/write head.

Program δ

State

Read/Write head

0 1 0 1 10 0 1 00 1 1 b b0b b b 1 1b 00 · · ·· · ·
0 1 2 3 4−1−2

Cells

Infinite tape

Fig. 1.7: Schematic representation of a deterministic Turing machine, which allows
modelling and formalizing a computer

A program for a deterministic Turing machine is specified by:
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1. A tape alphabet Γ — the set of symbols that can be written on the tape. Γ con-
tains at least Σ , the set of symbols that encodes a decision problem instance, the
special blank symbol b not belonging to Σ and eventually other control symbols.

2. A set of states Q, containing at least q0, the initial state, qY , the final state indi-
cating that the answer to the instance is “yes” and qN , the final state indicating
that the answer is “no”.

3. A transition function δ : Q\{qY ,qN}×Γ → Q×Γ ×{−1,1}.

This function represents the actions to be performed by the machine when it is in
a certain state and reads a certain symbol. A Turing machine works as follows: its
initial state is q0, the read/write head is positioned on cell 1; the tape contains the
string x ∈ Σ ∗ in cells 1 through |x| and b for all other cells. Let q be the current state
of the machine, σ the symbol read from the tape and (q′,σ ′,∆) = δ (σ ,q). One step
of the machine consists in:

• Replacing σ by σ ′ in the current cell.
• Moving the head one cell to the left if ∆ =−1 or one cell to the right if ∆ = 1.
• Changing the internal state to q′.

The machine stops either in state qY or in state qN . This is the reason why the
transition function δ is only defined for non-final states of the machine.

Although very simple, a Turing machine can conceptually represent everything
that happens in a common computer. This is not the case for simpler machines, like
the finite-state automaton (which head always moves toward the same direction) or
the push-down automaton.

Example of a Turing Machine Program

Let M = (Γ ,Σ ,Q,δ ) be a Turing Machine Program:
Tape alphabet: Γ = {0,1,b}
Input alphabet: Σ = {0,1}
Set of states: Q = {q0,q1,q2,q3,qY ,qN}
Transition function δ : given in Table 1.1.

Symbol σ ∈ Γ on the tape
State 0 1 b

q0 (q0,0,1) (q0,1,1) (q1,b,−1)
q1 (q2,b,−1) (q3,b,−1) (qN ,b,−1)
q2 (qY ,b,−1) (qN ,b,−1) (qN ,b,−1)
q3 (qN ,b,−1) (qN ,b,−1) (qN ,b,−1)

Table 1.1: Specification of the transition function δ of a Turing Machine



1.2 Elements of Complexity Theory 21

1.2.3.2 Class P of languages

The class P (standing for polynomial) contains the problems considered easy: those
for which an algorithm can solve the problem with a number of steps polynomially
limited to the instance data size (the length of the string x initially written on the
tape). More formally, this class is defined as follows: we say the machine M accepts
x∈ Σ ∗ if and only if M stops in the state qY . The language recognized by M is the set
of strings x ∈ Σ ∗ such that M accepts x. We can verify that the language recognized
by the machine given by the program in Table 1.1 is the strings encoding a binary
number divisible by 4.

An algorithm is a program that stops for any string x ∈ Σ ∗. The computational
time of an algorithm is the number of steps performed by the machine before it stops.
The complexity of a program M is the largest computational time TM(n) required
by the machine to stop, whatever the string x of length n initially written on the
tape is. A deterministic Turing machine program is in polynomial time if there is a
polynomial p such that TM(n)⩽ p(n)

The class P of languages includes all the languages L such that there is a pro-
gram for deterministic Turing machine recognizing L in polynomial time. By abuse
of language, we say the problem π belongs to the class P if the language associated
with π and with an encoding scheme e (unspecified but supposed to be reasonable)
belongs to P. When we use the expression “there is a program”, we know this pro-
gram exists, but without necessarily knowing how to code it. Conversely, if we are
aware of an algorithm — not necessarily the best one — running in polynomial time
for this problem, then the problem belongs to the complexity class P.

1.2.3.3 Class NP of languages

Informally, the class NP (standing for non-deterministic polynomial) of languages
includes all the problems for which we can verify in polynomial time that a given
solution produces the answer “yes”. For a problem to be part of this class, the re-
quirements are looser than for the class P. Indeed, it is not required to be able to find
a solution in polynomial time, but only to be able to verify the correctness of a given
solution in polynomial time. Practically, this class contains intractable problems, for
which we are not aware of a polynomial time solving algorithm.

To formalize this definition, theoretic computer scientists have imagined a new
type of theoretical computer, the non-deterministic Turing machine, which has no
material equivalent in our real world. Conceptually, this machine is composed of a
module that guesses the solution of the problem and writes it into the negative index
cells of the tape (see figure 1.8). This artifice allows us to overcome our ignorance
of an efficient algorithm to solve the problem: the machine just does the job and
guesses the solution.

The specification of a program for a non-deterministic Turing machine is identi-
cal to that of a deterministic one. Initially, the machine is in state q0, the tape con-
tains the string x encoding the problem in cells 1 to |x| and the program is idle. At
that time, a guessing phase starts during which the module writes random symbols
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· · ·

Program δ

State

Read/Write head

0 1 0 110 0 1 00 1 1 b b0b 1 0 1 1b 00 · · ·

Cells

Infinite tape

Guessing Module

Guessing head

0 1 2 3 4−1−2

Fig. 1.8: Schematic representation of a non-deterministic Turing machine. This ma-
chine allows formalizing the NP class, but does not exist in the real world

in the negative cells and stops arbitrarily. Next, the machine’s program is activated,
and it works as a deterministic Turing machine.

With such a machine, it is obvious that a given string x can generate various
computations, because of the non-deterministic character of the guessing phase. The
machine can end in qN state even if the problem includes a feasible solution. Differ-
ent runs with various computational times can end in the qY state. But the machine
cannot end in the state qY for a problem that has no solution.

By definition, the language LM recognized by the non deterministic machine M
is the set of strings x ∈ Σ ∗ such that there is at least one computation for which the
string x is accepted. The computation time TM(n) is the minimum number of steps
taken by the machine to accept a string x of length n. The number of steps in the
guessing phase is not counted. The complexity of a program is defined in a similar
way to that of a deterministic machine.

The class NP of languages is formally defined as the set of languages L for which
there exists a program M for a non-deterministic Turing machine so that M recog-
nizes L in polynomial time. We insist on the fact that the name of this class comes
from “Non-deterministic Polynomial” and not from “Non-Polynomial”.

Polynomial Reduction:

The notion of polynomial reduction of an initial problem into a second one is fun-
damental in the theory of complexity, because it is of substantial help for problem
classification. Indeed, if we are able to efficiently solve the second problem — or,
for intractable problems, if we were able to efficiently solve the second problem —
and we know an inexpensive way of reducing the initial problem to the second one,
then we can also effectively solve the initial problem.

Formally, a first language L1 ⊂ Σ ∗1 can be polynomially reduced to a second lan-
guage L2 ⊂ Σ ∗2 if there is a function f : Σ ∗1 → Σ ∗2 that can be evaluated in polynomial
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time by a deterministic Turing machine, such that, for all problem instance x ∈ Σ ∗1
with “yes” answer, f (x) is an instance of the second problem with “yes” answer.
Such a polynomial reduction is written L1 ∝ L2. We write L1 ∝T (n) L2 if we want
to specify the time T (n) required to evaluate f .

Figure 1.9 illustrates the principle of a polynomial reduction. When reducing a
problem to another one, it is solely concerned about the complexity of the evaluation
of the f function and the answers “yes-no” of both instances should be the same. The
complexity of solving instance 2 or that of the decoding of a solution of instance 1
from that of instance 2 is not required.

Fig. 1.9 Polynomial reduc-
tion of Problem1 to Problem2
in time T (n). The theory only
requires to be able to carry
out the operations represented
with solid line arrows

Problem1

Data1

Solution1

Problem2

Data2

Solution2

Encode

f (Data1)

Decode

∝T (n)

Solving

Example of Polynomial Reduction:

Let us consider the problem of finding a Hamiltonian cycle in a graph (a cycle
passing only once by all the vertices of the graph before returning to the starting
vertex) and the travelling salesman problem. The last is to answer the question: is
there a tour of total length no more than B? The f function to reduce the Hamiltonian
cycle to an instance of a travelling salesman builds a complete network on the same
set of vertices as for the graph. In the network, it associates a weight of zero with
the existing edges of the graph and a weight of one with the edges that are missing
in the graph. The bound B is zero.

There is a solution of length 0 to the travelling salesman if and only if there is
a Hamiltonian cycle in the initial graph. We deduce the Hamiltonian cycle can be
reduced to a travelling salesman problem. It should be noted that the opposite is not
necessarily true.

1.2.3.4 Class NP-Complete

A problem π belongs to the class NP-Complete if π belongs to NP and every prob-
lem of NP can be polynomially reduced to π .

Starting from the definition of a polynomial reduction and noting the composition
of two polynomials is still a polynomial, we have the following properties:

• If π is NP-complete and π can be solved in polynomial time, then P = NP.
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• If π is NP-complete and π does not belong to P, then P ̸= NP.
• If π1 polynomially reduces to π2 and π2 polynomially reduces into π3, then π1

polynomially reduces into π3.
• If π1 is NP-complete, π2 belongs to NP and π1 polynomially reduces to π2, then

π2 is NP-complete.

No NP-complete problem that can be solved in polynomial time is known. It is
conjectured that no such problem exists, hence it is assumed that P ̸= NP. The latter
property listed above is frequently exploited to show that a problem π2, of a priori
unknown complexity, is NP-complete. For this, a problem π1 belonging to the NP-
complete class is chosen and a polynomial reduction of any instance of π1 into an
instance of π2 is exhibited.

The NP-complete class definition presented above is purely theoretical. Maybe,
this class is just an empty one! Therefore, it should be asked whether there exists
at least one problem belonging to this class or not? It is indeed far from obvious
to find a “universal” problem of NP such that all the other problems of NP can
be polynomially reduced to this problem. It is not possible to imagine what all the
problems of NP are, and even less to find a reduction for each of them into the
universal problem. However, such a problem exists, and the first that was shown to
be NP-complete was the satisfiability problem.

Satisfiability :

Let u1, . . .um be a set of Boolean variables. A literal is a variable or its negation. A
(disjunctive) clause is a finite collection of literals connected together with logical
“or” (∨). A clause is false if and only if all its literals are false. A satisfiability
problem is a collection of clauses connected together with the logical “and” (∧). An
instance of satisfiability is feasible if there are assignments of values to the Boolean
variables such that all the clauses are simultaneously true.

For instance, the satisfiability problem (u1∨u2)∧ (u1∨u2) is feasible. However,
(u1 ∨ u3)∧ (u1 ∨ u3)∧ (u1)∧ (u2) is not a feasible instance. The graph colouring
problem modelled with a Boolean formula given at the very beginning of this chap-
ter is a satisfiability problem.

In the early 1970s, Cook shows that satisfiability is NP-complete. From this re-
sult, it was quite easy to show that many others also belong to the class NP-complete,
using the principle stated in the remark above. In the late 1970s several hundred
problems were shown to be NP-complete.

Below is the example of the polynomial reduction of satisfiability to the stable
set problem. Since any problem of NP can be reduced to satisfiability and any satis-
fiability instance can be reduced to the stable set, the latter is NP-complete.

Stable Set:

Data: a graph G= (V,E) and k an integer. Question: Is there a subset V ′⊆V, |V ′|= k
such that ∀i, j ∈V ′,(i, j) /∈ E (i.e. a subset of k non-adjacent vertices)?
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Satisfiability is reduced to stable set as follows:

• a vertex is associated with all literals of each clauses;
• for each clause, a complete sub-graph is created;
• incompatible literals-vertices are connected together (a variable and its negation);
• a stable set of k vertices is searched in this graph, where k is the number of

clauses.

Such a reduction is illustrated in Figure 1.10 for a little instance with three literals
and three clauses.

Fig. 1.10 Polynomial reduc-
tion of satisfiability instance :
(x̄∨ y∨ z̄)∧ (x∨ ȳ)∧ (y∨ z) to
a stable set

y

x z

y

x̄∨ y∨ z̄ x∨ ȳ y∨ z

x̄

z̄

ȳ

Example of Unknown Complexity Problems

At this time, thousands of problems have been identified to be either in P or in NP-
Complete class. A number of them are not yet classified more precisely than in NP.
Here are two examples of such problems:

• In a soccer league, each team play each other once. The winning team receives
three points. The losing team receives zero points. In case of a tie, each team
receives one point. Given a series of scores for each team, can this series be the
result obtained at the end of a championship? Note: if the winner receives only
two points, then there is a polynomial algorithm to answer this question.

• Is it possible to orient the edges of a graph so that it is strongly connected and
that each vertex has an odd indegree?

1.2.3.5 Strongly NP-complete Class

In some cases, NP-complete problem instances are well solved by means of ad hoc
algorithms. For instance, dynamic programming can manage knapsack problems
(see Section 2.5.3) with numerous items. A condition for these instances to be eas-
ily solved is that the largest number appearing in the data is limited. For the knap-
sack problem, this number is its volume. On the contrary, other problems cannot be
solved effectively, even if the value of the largest number appearing in the problem
is limited.

We are addressing a number problem if there is no polynomial p(n) such that the
largest number M appearing in the data of an instance of size n is bounded by p(n).
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The partition of a set into two subsets of equal weight or the travelling salesman
are, therefore, problems on numbers because, if we add one bit to the size of the
problem, M can be multiplied by two. Therefore, for these problems, M can be in
O(2n), which is not polynomial.

We say an algorithm is pseudo-polynomial if it runs in a time bounded by a
polynomial depending on the size n of the data and the largest number M appearing
in the problem. The partition of a set into two subsets of equal weight is an NP-
complete problem for which there is a simple pseudo-polynomial algorithm.

Instance of a Partition Problem

Is it possible to divide the set {5,2,1,6,4} into two subsets of equal weights? The
sum of the weights for this partition problem instance is 18. Therefore, we look for
two subsets of weight 9.

To solve this problem, we create an array of n rows, where n is the number of
elements in the set, and M = 9 columns, where M is half of the sum of the element
weights. We eventually fill the cells of this table with × by proceeding line by line.
Using only the first element, of weight 5, we manage to create a subset of weight 0
(if we do not take this element) or a subset of weight 5 (taking it). Hence, we place
× in the columns 0 and 5 of the first line.

Using only the first two elements, it is possible to create subsets whose weight is
the same as with a single element (by not taking the second element). In the second
line of the table, we can copy the × of the previous line. By taking the second
element, we can create subsets of weights 2 and 7. Hence, we put × where we put
them for the previous line but shifted by the weight of the second element (here: 2).

The process is then repeated until all the elements have been considered. As soon
as there is a × in the last column, it means it is possible to create a subset of weight
M. This is the case for this instance. One solution is: {2,1,6}{5,4}. The complexity
of the algorithm is O(M ·n), which is indeed polynomial in n and M.

Sum of the weights
Element 0 1 2 3 4 5 6 7 8 9

5 × ×
2 × × × ×
1 × × × × × × × ×
6 × × × × × × × × ×
4 × × × × × × × × × ×

Let π be a number problem and πp(n) ⊂ π , the subset restricted to instances for
which M ⩽ p(n). The set πp(n) contains only instances of π with “small” numbers.
It is said that π is strongly NP-complete if and only if there is a polynomial p(n)
such that πp(n) is NP-complete.

With this definition, a strongly NP-complete problem cannot be solved in pseudo-
polynomial time if the class P is different from the class NP. Thus, the travelling
salesman problem is strongly NP-complete because the Hamiltonian cycle can poly-
nomially reduce to the travelling salesman with a distance matrix containing only
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0s or 1s. Since the Hamiltonian cycle is NP-complete, travelling salesman instances
involving only small numbers are also NP-complete.

Conversely, the problems that can be solved with dynamic programming, like
the knapsack or the partition problem are not strongly NP-complete. Indeed, if the
sum of the weights of the n elements of a partition problem is bounded by a poly-
nomial p(n), the algorithm presented above has complexity in O(n · p(n)) which is
polynomial.

1.2.4 Other Complexity Classes

Countless other complexity classes have been proposed. Among those which are
most frequently encountered in the literature and which can be described intuitively,
we can cite:

NP-Hard The problems considered above are decision problems, not optimization
ones. With a dichotomy algorithm we can easily solve the optimization problem
associated with a decision problem. A problem is NP-hard if any problem of NP
can reduce to this problem in polynomial time. Unlike the NP-complete class,
we do not force the latter to be part of NP. Thus, an optimization problem whose
decisional version is NP-complete falls into the category of NP-hard problems.

P-SPACE The problems that can be solved with a machine whose memory is
limited by a polynomial in the data size belong to the class P-SPACE. No limit is
imposed here on the computational time, which can be exponential. Thus, all the
problems of NP are in P-SPACE because we can design exhaustive enumeration
algorithms that do not require too much memory. An example of a problem in
this class is to determine whether a two-player deterministic game is unfair, i.e.
if player B is sure to lose if player A does not make mistakes. This problem is
unlikely to be part of the class NP, because it is hard to imagine that a concise
certificate can be given for solutions to problems of this class.

Class L The problems which can be solved with a machine whose working mem-
ory is bounded by a logarithmic in the size of the data — by disregarding the
space necessary for the storage of the problem data — are part of the class L.
This class includes problems of finding elements in databases whose size does
not fit in the computer RAM.

Class NC The class NC contains the problems that can be solved in poly-logarith-
mic time on a machine including a polynomial number of processors. The prob-
lems of this class can therefore be solved in parallel in a shorter time than that
which is needed to sequentially read the data. The sorting of the elements of an
array falls under the NC class.

Few results have been established regarding the relationships between these var-
ious complexity classes. With the exception of the obvious inclusions in the broad
sense L ⊆ P ⊆ NP ⊆ NP-complete ⊆ P-SPACE and NC ⊆ P, the only strict inclu-
sion established is L ̸= P-SPACE. It is conjectured that P ̸=NP. This is a millennium
problem. A deeper presentation of this topic can be found in [20].
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Problems

1.1. Draw five segments
Try to draw five segments of lines on the plane so that each segment cuts exactly
three others. Formalize this problem in terms of graphs.

1.2. O Simplification
Simplify the following expressions:

• O(n5 +2n)
• O(5n +22n

)
• Ω(n2 ·n!+(n+2)!)
• Ω(n log(log(n))+23n)
• O(nlog(n)+n5+cos(n))
• O(n log(n)+n3−2·sin(n))

1.3. Turing Machine Program
Write a deterministic Turing machine program that recognises if the substring ane is
written on the tape. The input alphabet is: Σ = {a,c,e,n}. Specify the tape alphabet
Γ , the state set Q and the transition function δ .

1.4. Clique is NP-Complete
Show that finding a clique of a given size in a graph is NP-complete.

1.5. Asymmetric TSP to Symmetric TSP
Show that the asymmetric travelling salesman problem — the distance from city i to
j can be different from the distance form city j to i — can be polynomially reduced
to the symmetric TSP by doubling the number of cities.



Chapter 2
A Short List of Combinatorial Optimization
Problems

After reviewing the main definitions of graph theory and complexity theory, this
chapter reviews several combinatorial optimization problems. Some of these are
easy, but adding a seemingly trivial constraint can make them difficult. We also
briefly review the operating principle of simple algorithms for solving some of these
problems. Indeed, some of these algorithms, producing a globally optimal solution
for easy problems, have strongly inspired heuristic methods for intractable ones; in
this case, they obviously do not guarantee that an optimal solution is obtained.

2.1 Optimal Trees

Finding a connected sub-graph of optimal weight is a fundamental problem in graph
theory. Many applications require discovering such a structure as a preliminary step.
A typical example is the search for a minimum cost connected network (water pipes,
electrical cables). Algorithmic solutions to this type of problem were already pro-
posed in the 1930s ([34], [35]).

2.1.1 Minimum Spanning Tree

The minimum spanning tree problem can be formulated as follows: given an undi-
rected network R = (V,E,w) on a set V of vertices, a set E of edges with a weight
function w→ R, we are looking for a connected, cycle-free subset of edges, inci-
dent to all vertices and whose total weight is as small as possible. Mathematically,
the minimum spanning tree problem is not so simple to formulate. An integer linear
program containing an exponential number of constraints is:

29
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Minimize z = ∑
e∈E

w(e)xe (2.1)

xe ∈ {0,1} ∀e ∈ E (2.2)

∑
e∈E

xe = |V |−1 (2.3)

∑
e∈E(S)

xe ⩽ |S|−1 ∀S⊆V,S ̸=∅ (2.4)

where E(S) is the subset of edges with both ends in the vertex subset S.
The variables xe are constrained to be binary by (2.2). They indicate if edge

e is part of the tree (xe = 1) or not (xe = 0). Constraint 2.3 ensures that enough
edges are selected for ensuring connectivity. Constraints 2.4 eliminate the cycles
in the solution. Such a mathematical model cannot be used as is, since the number
of constraints is far too large. It can be used interactively. The problem is solved
without cycle elimination constraints. If the solution contains a cycle on the vertices
of a subset S, the constraint that eliminates it is specifically added before restarting.

Such an approach is fastidious. Fortunately, there are very simple methods for
finding a minimum spanning tree. The most famous algorithms to solve this problem
are those of Kruskal and Prim. They are both based on a greedy method. Greedy
algorithms are discussed in Section 4.3. They build a solution incrementally from
scratch. At each step, an element is included in the structure in construction, never
changing the choice of this element later.

The Kruskal algorithm (2.1) starts with a graph T = (V,ET =∅). It successively
adds an edge of weight as low as possible to ET while ensuring no cycle is created.

Algorithm 2.1: (Kruskal) Building a minimum spanning tree. Efficient im-
plementations use a special data structure for managing disjoint datasets.
This is required to test if the tentative edge to add is part of the same con-
nected component or not. In this case, the complexity of the algorithm is
O(|E| log |E|)

Data: Undirected connected network R = (V,E,w)
Result: Minimum spanning tree T = (V,ET )

1 Sort and renumber the edges by nondecreasing weight w(e1)⩽ w(e2)⩽ · · ·⩽ w(e|E|)
2 ET =∅
3 for k = 1 . . . |E| do
4 if ET ∪{ek} has no cycle then
5 ET ← ET ∪{ek}

The Prim algorithm (2.2) starts with a graph T = (V ′ = {s},ET = ∅) and suc-
cessively adds a vertex v to V ′ and an edge e to ET , such that the weight of e is as
low as possible and one of its ends is part of V ′ and the other not. Put differently,
Kruskal starts with a forest with as many trees as there are vertices and seeks to
merge all these trees into a single one while Prim starts with a tree consisting of a
single vertex and seeks to make it growing until comprising all vertices.
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Algorithm 2.2: (Jarník) Building a minimum spanning tree. The algorithm
was later rediscovered by Prim and by Dijkstra. It is commonly referred
to as Prim or Prim-Dijkstra algorithm. For an efficient implementation,
an adequate data structure must be used to extract the vertex of L with
the smallest weight (Line 8) and to change the weights (Line 14). A Fi-
bonacci heap or a Brodal queue allow an implementation of the algorithm in
O(|E|+ |V | log |V |)

Data: Undirected connected network R = (V,E,w), a given vertex s ∈V
Result: Minimum spanning tree T = (V,ET )

1 forall Vertex i ∈V do
2 λi← ∞ // Cost for introducing i into T
3 predi←∅ // Predecessor of i

4 λs = 0; ET ←∅
5 L←V // List of vertices to introduce in T
6 while L ̸=∅ do
88 Remove the vertex i with the smallest λi from L
9 if i ̸= s then

10 ET ← ET ∪{predi, i}
11 forall Vertex j adjacent to i do
12 if j ∈ L and λ j > w({i, j}) then
1414 λ j ← w({i, j})
15 pred j ← i

2.1.2 Steiner Tree

The Steiner tree problem is very close to that of the minimum spanning tree. The
sole difference is that the vertices of a subset S ⊂ V must not necessarily appear in
the tree. S is the set of Steiner vertices. The other ones, that must belong to the tree,
are designated as terminal vertices. The Euclidean version of the Steiner tree is to
connect a given set of terminal points on the plane by lines whose length is as short
as possible. Figure 2.1 shows the minimum spanning tree, using solely the edges
directly connecting the terminals and a Steiner tree. The weight of the minimum
spanning tree may be larger than that of a Steiner tree where appropriately Steiner
nodes are added. The combinatorial choice of vertices to add makes the problem
NP-hard.

2.2 Optimal Paths

Searching for optimal paths is as old as the world. Everyone is aware of this prob-
lem, especially since cars are built with a navigation system. Knowing the current
position on a transport network, the aim is to identify the best route to a given des-
tination. The usual criterion for the optimality of the path is time, but it can also be
distance, especially if it is a walking route.
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Steiner nodes

Terminals

Minimum spanning tree Steiner tree

Fig. 2.1: Minimum spanning tree using only terminal nodes, which are therefore
directly connected to each other and minimum weight Steiner tree, where additional
nodes can be used

2.2.1 Shortest Path

Formally, let R = (V,E,w) be a directed network. We want to find a shortest walk
starting at node s and ending at node t. Naturally, “shortest" is an abuse of language
and designates the sum of the edge weights. The latter can represent something other
than a distance, such as a time, energy consumption, etc. Finding the optimal paths
from a specific node s to all vertices in V , or from all vertices in V to a specific node
s, has the same algorithmic complexity as finding the shortest path from s to t.

This formulation can be problematic in the case of a general weighting func-
tion. Indeed, if there are negative weights, the shortest walk may not exist if one
has a negative length circuit. Dijkstra’s algorithm is the most effective one to dis-
cover the shortest path in a network where the weighting function is not negative:
w(e) ⩾ 0 ∀e ∈ E. It is formalized by Algorithm 2.3.

The idea behind this algorithm is to store, in a set L, the vertices for which the
shortest path from the starting vertex s has not yet been definitively identified. A
value λi is associated with each vertex i. This value represents the length of an
already discovered path from s. Since we suppose non-negative weights, the node
i∈ L with the smallest value is a new vertex for which the shortest path is definitively
known. The node i can therefore be removed from L while checking whether its
adjacent vertices could be reached with a shorter path passing through i.

For an efficient implementation, an adequate data structure must be used to ex-
tract the vertex of L with the smallest value (Line 8) and to change the values
(Line 12) of its adjacent nodes. Similarly to Prim’s algorithm 2.3, a Fibonacci heap
or a Brodal queue allow an implementation of the algorithm in O(|E|+ |V | log |V |).

It is interesting to highlight the significant similarity between this algorithm and
that of Prim 2.2 for finding a minimum spanning tree. The recipe that worked for
this problem still works, with some restrictions, for discovering a shortest path. The
general framework of the greedy methods, on which this recipe is based, is presented
in Section 4.3 of the chapter devoted to constructive methods. Code 2.1 provides an
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Algorithm 2.3: (Dijkstra) Searching for a shortest path from s to all other
nodes in a non-negative weighting network. The colour highlights the two
differences between this algorithm and Prim’s one (Algorithm 2.2)

Data: Directed Network R = (V,E,w) with w(e)⩾ 0 ∀e ∈ E, given by successor lists
succ(i) for each vertex i ∈V , a given vertex s

Result: Immediate predecessor pred j of j on a shortest path from s to j, ∀ j ∈V and
length λ j of the shortest path from s to j

1 forall Vertex i ∈V do
2 λi← ∞

3 predi←∅
4 λs = 0
5 L←V // Vertices for which the shortest path is not definitive
6 repeat
88 Remove vertex i with smallest λi value from L
9 forall Vertices j ∈ succ(i) do

10 if j ∈ L and λ j > λi + w(i, j) then
1212 λ j ← λi + w(i, j)
13 pred j ← i

14 until L ̸=∅

implementation of Dijkstra’s algorithm, in case the network is dense enough for
reasonably specifying it with a square matrix.

Code 2.1: dijkstra.jl Implementation of Dijkstra’s algorithm for a complete net-
work specified by a matrix (di j) providing the weight of each arc (i, j). In this case,
managing L with a simple array (the last entries of order) is optimal

1 # Dijkstra algorithm for finding all shortest paths from start
2 function dijkstra(n, # Number of nodes
3 d, # Distance matrix (with no negative values)
4 start) # Starting node
5

6 order = collect(1:n) # Nodes sequenced by increasing shortest path
7 pred = fill(start, n) # Immediate predecessor on a shortest path from start
8 lengths = fill(typemax(d[1,1]), n) # Shortest path lengths
9 lengths[start] = 0 # Only shortest path to order[1] == start already known

10 order[1], order[start] = order[start], order[1]
11

12 for i in 1:(n-1) # Update shortest path for neighbours of order[i]
13 for j in (i+1):n # For all neighbours to update
14 if lengths[order[i]] + d[order[i], order[j]] < lengths[order[j]]
15 lengths[order[j]] = lengths[order[i]] + d[order[i], order[j]]
16 pred[order[j]] = order[i]
17 end
18 # Update order if a better i+1th shortest path is identified
19 if lengths[order[i+1]] > lengths[order[j]]
20 order[i+1], order[j] = order[j], order[i+1]
21 end
22 end
23 end
24

25 return lengths, pred
26 end

Also note that Code 4.3 implements one of the most popular greedy heuristics for
the travelling salesman problem. It displays exactly the same structure as Code 2.1.
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When the weights can be negative, the shortest walk exists only if there is no
negative length circuit in the network. Written differently, this walk must be a simple
path. A more general algorithm to find shortest paths was proposed by Bellman and
Ford (see Algorithm 2.4). It is based on verifying, for each arc, that the Bellman
conditions are satisfied: λ j ⩽ λi +w(i, j). In other words, the length of the path
from s to j should not exceed that of s to i plus the length of the arc (i, j). If it were
the case, there would be an even shorter path up to j, passing through i.

Algorithm 2.4: (Bellman-Ford) Finding shortest paths from s to all other
nodes in any network. The algorithm indicates if the network has a negative
length circuit accessible from s, which means that the (negative) length of
the shortest walk is unbounded. This algorithm is excessively simple to im-
plement (the code is hardly longer than the pseudo-code provided here). Its
complexity is in O(|E||V |)

Data: Directed network R = (V,E,w) given with an arc list, a starting node s
Result: Immediate predecessor pred j of j on a shortest path from s to j with its length λ j ,

∀ j ∈V , or: warning message of the existence of a negative length circuit
1 forall i ∈V do
2 λi← ∞ ; predi←∅
3 λs← 0
4 k← 0 // Step counter
5 continue← true // At least one λ modified at last step
6 while k < |V | and continue do
7 continue← f alse
8 k← k+1
9 forall arc (i, j) ∈ E do

10 if λ j > λi +w(i, j) then
11 λ j ← λi +w(i, j)
12 pred j ← i
13 continue← true

14 if k = |V | then
15 Warning: there is a negative length circuit that can be reached from s

The working principle of this algorithm is completely different from the greedy
algorithms we have seen so far. Instead of definitively including an element in the
partial solution at each step, the approach involves iteratively improving an initially
complete solution. This starting solution can be of low quality and easy to construct.

The general framework of this algorithm is that of a local improvement method.
At each step of the algorithm, the Bellman conditions are checked for all the arcs.
If they are satisfied, all the shortest paths have been found. If one finds a vertex j
for which λ j > λi +w(i, j), the best path known to the node j is updated by storing
the node i as its predecessor. Making such a modification can invalidate the Bellman
conditions for other arcs. It is therefore necessary to check again, for all arcs, if a
modification has no domino effect.

A question arises: without further precaution, does an algorithm based on this
labelling update stop for any entry? The answer is no: if the network has a negative
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length circuit, there are endless modifications. In case the network does not have
a negative length circuit, the algorithm stops after a maximum of |V | scans of the
Bellman conditions for all the arcs of E. Indeed, if a shortest path exists, its num-
ber of arcs is at most |V | − 1. Each scan of the arcs of E definitively fixes a value
satisfying the Bellman condition for at least one vertex.

The Bellman-Ford algorithm is based on an improvement method with a well-
defined stopping criterion: if there are still values updated after |V | steps, then the
network has a negative length circuit and the algorithm stops. If a scan finds out that
the Bellman conditions are satisfied for all the arcs, then all the shortest paths are
identified and the algorithm stops.

Seeking optimal paths appears in many applications, especially in project plan-
ning and scheduling. The problems that can be solved by dynamic programming
can be formulated as finding an optimal path in a layered network. This technique
uses the special network topology to find the solution without having to explicitly
construct the network.

2.2.1.1 Linear Programming Formulation of the Shortest Path

It is relatively easy to formulate the problem of finding the shortest path from a
vertex s to a vertex t in a network under the form of a linear program. For this
purpose, a variable xi j is introduced for each arc (i, j) to indicate whether the latter
is part of the shortest path. The formulation below may seem incomplete: indeed,
the variables xi j should either take the value 0 (indicating the arc (i, j) is not part
of the shortest path) or the value 1 (the arc is part of it). The constraints 2.8 are
sufficient: if a variable receives a fractional value in the optimal solution, it means
there are several shortest paths from s to t. Constraint 2.7 imposes that there is a
unit “quantity" arriving in t. This amount can be split inside the network, but each
fraction must use a shortest path. Constraints 2.6 impose that the quantity arriving at
any intermediate node j must depart from it. It is not required to explicitly impose
that a unit quantity leaves s. Such a constraint would be redundant with 2.7. The
objective 2.5 is to minimize the cost of the arcs retained.

Minimize z = ∑
i, j

w(i, j)xi j (2.5)

n

∑
i=1

xi j−
n

∑
k=1

x jk = 0 ∀ j ̸= s, j ̸= st (2.6)

n

∑
i=1

xit −
n

∑
k=1

xtk = 1 (2.7)

xi j ⩾ 0 ∀i, j (2.8)

Another formulation of this problem is to directly look for the lengths λi of the
shortest paths by imposing the Bellman conditions. This leads to the following linear
program, which is the dual of the previous one.
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Maximize λt (2.9)
Subject λ j−λi ⩽ w(i, j) ∀i, j (2.10)

to λs = 0 (2.11)

Duality carries out a significant role in linear programming. Indeed, it is shown
that any feasible solution to the primal problem has a value that can not be lower
than a feasible solution value to the dual. If a feasible solution value to the primal
problem exactly reaches a feasible solution value to the dual, then both solutions are
optimal. For the shortest path problem, the optimal λt value corresponds to the sum
of the lengths of the arcs that must be used in an optimum path from s to t.

2.2.2 Elementary Shortest Path — Travelling Salesman

The shortest walk problem is poorly defined, because of the negative length circuits.
However, one could add a very natural constraint, which makes it perfectly defined:
look for the shortest elementary path from a particular node s to all the others. It is
recalled that an elementary path visits each vertex at most once. In this case, even
if there are negative length circuits, the problem has a finite solution. Unfortunately,
adding this little constraint makes the problem difficult. Indeed, it can be shown that
the travelling salesman problem, notoriously NP-hard, can reduce polynomially to
the elementary shortest path problem.

The travelling salesman problem (TSP) is the archetype of hard combinatorial
optimization, on the one hand, because of the simplicity of its formulation and on the
other hand, because it appears in many applications, particularly in vehicle routing.

The first practical application of the travelling salesman problem is clearly find-
ing a shortest tour for a trading clerk. In the nineteenth century, Voigt edited a book
exhibiting how to make a round trip in Germany and Switzerland [68].

There are many practical applications to this problem. For instance, Section 2.2.3,
shows that vehicle routing implies solving many travelling salesman instances. As
presented further (see Section 3.3.1), it can also appear in problems that have noth-
ing to do with routing.

In combinatorial optimization, the TSP is most likely the one that has received the
most attention. Large Euclidean instances — more than 10,000 nodes — have been
optimally solved. There are solutions that do not deviate from more than a fraction
of a percent from the optimum for instances with several million cities. Since this
problem is NP-hard, there are much smaller examples that can not be solved by
exact solution methods. The TSP polynomially reduces to the shortest elementary
path as follows.

A vertex is duplicated in two vertices s and t and the weight w(i, j) of all the
arcs is replaced by w(i, j)−M, where M is a positive constant larger than the largest
weight of an arc. If there is no arc between s and t, the shortest elementary path from
s to t corresponds to a minimum tour length for the travelling salesman. Figure 2.2
illustrates the principle of this reduction. Knowing that the TSP is NP-hard, it proves
that the shortest elementary path is NP-hard too.
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Fig. 2.2: Polynomial reduction of a travelling salesman to an elementary shortest
path. Vertex 1 is duplicated and the weight of each edge is set to the original weight
minus 50. Finding the shortest elementary path from s to t is equivalent to finding
the optimal TSP tour in the original network

2.2.2.1 Integer Linear Programs for the TSP

There are numerous integer linear programs modelling the TSP. Two of the best
known are presented here.

Dantzig-Fulkerson-Johnson

The Dantzig-Fulkerson-Johnson formulation introduces an exponential number of
sub-tour elimination constraints. The binary variables xi j take the value 1 if the arc
(i, j) is used in the tour and 0 otherwise.

Minimize z = ∑
(i, j)

w(i, j)xi j (2.12)

xi j ∈ 0,1 ∀i, j (2.13)
n

∑
i=1

xi j = 1 ∀ j (2.14)

n

∑
j=1

xi j = 1 ∀i (2.15)

∑
(i, j)∈E(S)

xi j ⩽ |S|−1 ∀S ⊊V,S ̸=∅ (2.16)

Constraints 2.14 impose to enter exactly once in each city. Constraints 2.15 impose
to come out exactly once from each city. Constraints 2.16 ensures that no proper
subset S contains a sub-tour.

Compared to the linear program for finding a minimum weight tree, it differs
only in the constraints 2.14 and 2.15 which replace Constraint 2.3.
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Miller–Tucker–Zemlin

The Miller–Tucker–Zemlin formulation replaces the exponential number of con-
straints 2.16 by a polynomial number of constraints and introducing |V |−1 contin-
uous variables ui,(i = 2 . . . |V |). The new variables provide tour ordering. If ui < u j,
then city i is visited before city j. In this formulation, constraints 2.13 to 2.15 are
retained and constraints 2.16 are replaced by:

ui−u j + |V |xi j ⩽ |V |−1 2⩽ i ̸= j ⩽ |V | (2.17)
1⩽ ui ⩽ |V |−1 2⩽ i⩽ |V | (2.18)

This integer linear program is probably not the most efficient one, but it has
relatively few variables and constraints.

2.2.3 Vehicle Routing

Problems using the travelling salesman as a sub-problem naturally appear in the ve-
hicle routing problem (VRP). In its simplest form, the latter can be formulated as
follows: let V be a set of customers requesting quantities qi of goods (i = 1, . . . , |V |).
They are delivered by a vehicle with capacity Q, starting from and returning to
a warehouse d. The customers must be split into m subsets V1, . . .Vm such that
∑i∈V j qi ⩽ Q. For each subset Vj ∪ {d},( j = 1, . . . ,m), a travelling salesman tour
as short as possible must be determined. Figure 2.3 illustrates a solution of a small
VRP instance.

Fig. 2.3 Vehicle routing
problem instance. Trips from
and to the warehouse are not
drawn for not overloading
the illustration. This solution
was discovered by means of
a taboo search, but it took
decades before its optimality
was proven. This gives an
idea of the difficulty of the
problem

Warehouse
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This problem naturally occurs for delivering or collecting goods and in home
service planning. In concrete applications, many complications exist:

• the number m of tours can be fixed or minimized;
• the maximum length of the tours can be limited;
• the clients specify one or more time windows during which they should be ser-

viced;
• the goods can be split implying multiple passages at the same client;
• a tour can both collect and deliver goods;
• there is more than one warehouse;
• warehouses are hosting heterogeneous fleets of vehicles;
• the warehouses locations can be chosen;
• etc.

Since the problem is to find the service order of customers, the problem is also
referred to as “Vehicle Scheduling."

2.3 Scheduling

Scheduling is to determine the order to process a number of operations. Their pro-
cessing consumes resources, for instance time on a machine. Operations that need
to be processed in a specific order are grouped into jobs. The purpose of scheduling
is to optimize resource consumption. Various optimization criteria are commonly
used: minimizing the makespan; minimizing the total time; minimizing the average
delay; etc. A frequent constraint in scheduling is that a resource can not perform sev-
eral operations simultaneously and that two operations of a job can not be performed
simultaneously. Operations may include various features according to applications:

Resource An operation must take place on a given resource or subset of resources
or must require several resources simultaneously.

Duration Processing an operation takes time, which may depend on the operating
resource.

Set-up time Before performing an operation, the resource requires a set-up time
depending on the previously completed operation.

Interrupt After an operation has started, it can be suspended before ending.
Pre-emption A resource can interrupt an operation to process another one.
Waiting time There can be either a waiting time between two successive opera-

tions of the same task or a waiting time is prohibited.
Release date An operation can not take place before being available.
Deadline An operation can not be processed after a given date.

In addition, resources may have a variety of features. They can be mobile in the
case of carriers, resulting in colliding problems. There may be several machines of
the same type, machines that can perform different operations, etc.
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2.3.1 Permutation Flow Shop Scheduling

A fundamental scheduling problem is the permutation flowshop. This problem oc-
curs for example in an assembly line in which the n jobs must be successively pro-
cessed on the machines 1,2, . . . ,m, in that order. A job j must therefore undergo m
operations which take a time ti j,(i = 1, . . . ,m, j = 1, . . . ,n). The goal is to find the
order to process the job in the assembly line. Written differently, to find a permuta-
tion of the job such that the last job on the last machine finishes as early as possible.
There is a buffer that may store jobs between each machine. Hence, the jobs can
possibly wait for the next machine to finish processing a job that has arrived earlier.
A convenient way to represent a scheduling solution is the Gannt chart. The x-axis
represents time and the y-axis represents resources.

Figure 2.4 provides both Gannt charts of a non-optimal solution, where each
operation is planned as early as possible as well as an optimal scheduling where
each operation starts as late as possible.

Time
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Time
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Makespan

M
ac
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Fig. 2.4: Permutation flowshop scheduling. Gantt chart for a small instance with 4
resources and 5 jobs. Top: non-optimal schedule with the earliest starting time for
each operation. Bottom: optimal scheduling with the latest starting time

For problem instances with only 2 machines, there is a greedy algorithm finding
an optimal solution to this problem. The operations are ordered by increasing du-
rations and put in a list. The operation with the shortest duration is first selected.
If this operation takes place on the first machine, the corresponding job is placed
at the very beginning of the sequence. Else, if the operation takes place on the sec-
ond machine, the job is placed at the very end of the sequence. The operation is
removed from the list before examining the subsequent operation. The sequence is
thus completed by dispatching the jobs either after the block processed at the be-
ginning of the sequence or before the block at the end. As soon as the instance has
more than 2 machines, the problem is NP-hard. A mixed integer linear program for
the permutation flowshop is as follows:



2.3 Scheduling 41

Minimize dω (2.19)
dm j + tm j ⩽ dω ( j = 1 . . .n) (2.20)

di j + ti j ⩽ di+1 j (i = 1, . . .m−1, j = 1 . . .n) (2.21)
di j + ti j ⩽ dik +M · (1− y jk) (i = 1, . . .m, j = 1 . . .n, j < k = 2 . . .n) (2.22)
dik + tik ⩽ di j +M · y jk (i = 1, . . .m, j = 1 . . .n, j < k = 2 . . .n) (2.23)

di j ⩾ 0 (i = 1, . . .m, j = 1 . . .n) (2.24)
y jk ∈ {0,1} ( j = 1 . . .n, j < k = 2 . . .n) (2.25)

Objective 2.19 is to minimize the makespan dω . The variable di j corresponds to
the starting time of job j on machine i. The constraints 2.20 require that the end of
the process of each object j on the last machine occurs not later than the makespan.
A job j must have finished its processing on a machine i before being processed by
the machine i+1 (2.21). The y jk variables indicate whether the job j should be pro-
cessed before the job k. Only n ·(n−1)/2 of these y.. variables are introduced, since
yk j should take the complementary value 1− y jk. Both constraints 2.22 and 2.23
involve a large constant M for expressing disjunctive constraints: either the job j
is processed before the job k or k before j. If y jk = 1, j is processed before k and
the constraints 2.23 are trivially satisfied for any machine i, provided M is large
enough. Conversely, if y jk = 0, the constraints 2.22 are trivially satisfied while the
constraints 2.23 require finishing the processing of k on the machine i before the
latter can start the processing of j.

2.3.2 Jobshop Scheduling

The jobshop scheduling problem is somewhat more general. Each job undergoes a
certain number of operations, each of them being processed by a given machine.
The operation sequence for a job is fixed, but different jobs do not necessarily have
the same sequence and the jobs are not required to be processed by all machines.

Figure 2.5 illustrates how to express this problem in terms of a graph: Each oper-
ation is associated with a vertex. Two fictitious vertices-operations are added: start
(α) and end (ω). If operation k immediately follows operation i on the same job, an
arc (i, j) is introduced. The length of the arc is ti, corresponding to the duration of
operation i. Arcs of length 0 are added from start to the first operations of each job.
Arcs with a length corresponding to the duration of the last operation of each job
are connecting the end vertex.

All operations taking place on the same machine are forming a clique. The goal
of the problem is to direct the edges of these cliques to minimize the length of the
longest path from start to end.

An integer linear program for the jobshop is as follows:
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Fig. 2.5: Graph corresponding to the solution of a jobshop instance with three ma-
chines. One job undergoes 3 operations while two others have only 2. The weighting
of the arcs corresponds to the duration of the corresponding operation. The arcs rep-
resenting the precedence relations of the operations belonging to the same job are in
dotted lines. The longest path from α to ω is shown in bold. It is referred to as the
critical path

Minimize dω (2.26)
di + ti ⩽ d j ∀(i, j) (2.27)
di + ti ⩽ dω ∀i (2.28)
di + ti ⩽ dk +M · (1− yik) ∀i,k on the same machine (2.29)

dk + tk ⩽ di +M · yik ∀i,k on the same machine (2.30)
di ⩾ 0 ∀i (2.31)

yik ∈ {0,1} ∀i,k on the same machine (2.32)

The variable di is the starting time of operation i. The goal is to minimize the
makespan dω (the starting time of the dummy operation ω). Constraints 2.27 require
that operation i must be completed before starting operation j if i precedes j for a
given job. Constraints 2.28 require that the end of processing times for all operations
precede the end of the project. The variables yik associated with the disjunctive
constraints 2.29 and 2.30 determine whether operation i precedes operation k, which
takes place on the same machine.

2.4 Flows in networks

The concept of flow arises naturally when considering material, people or electricity
that must be transported over a network. In each node one must have the equivalent
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to Kirchhoff’s current law: the amount of flow coming to a node must be equal to
the amount going out of that node.

The most elementary form of flow problems is as follows. Let R = (V,E,w) be
a network. Flows values xi j passing through the arcs (i, j) ∈ E are sought such that
the sum of the flows issuing from a particular source-node s to reach a sink-node
t is maximized. The conservation of flows must be respected: the sum of the flows
entering a vertex must equal that of exiting the vertex, except for s and t. Then, the
flows xi j cannot be negative and cannot exceed the positive value w(i, j) associated
with the arcs. To solve this problem, Ford and Fulkerson proposed the relatively
simple Algorithm 2.5.

Algorithm 2.5: (Ford & Fulkerson) Maximum flow from s to t
Input: Oriented network R = (V,E,w), a source-node s and a sink-node t
Result: Maximum flow from s to t

1 Starts with a null flow in all arcs
2 repeat
3 Build the residual network R∗ corresponding to the current flow
4 if There is a path from s to t in R∗ then
5 Find the maximal possible flow from s to t in R∗ along this path
6 Superimpose this flow on the current flow (diminish the flow in the arcs (i, j) of R

appearing as ( j, i) arcs on the path in R∗)

7 until there is no path from s to t in R∗

It is based on an improvement method: its start from a null flow (which is always
feasible) increasing it at each step along a path from s to t until reaching the optimum
flow. The first step of this algorithm is illustrated in Figure 2.6. However, we can
be blocked in a situation where there is no augmenting path from s to t while not
having the maximal flow.

Fig. 2.6 Representation of
a flow problem in terms of
graphs. An empty triangle
indicates an unused flow
capacity. A unit flow passing
through an arc is indicated by
a filled triangle. The Ford and
Fulkerson algorithm starts
from a null flow (top) and
finds the largest increase
along a path from s to t.
For this example, the first
path discovered is s− 1−
2− t. After augmenting the
flow along this path, there
is no direct augmenting path
(bottom)

Capacity = 2

Capacity = 1

t2s 1

Flow = 0

Flow = 1

t2s 1
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To overcome this difficulty, it should be noted that we can virtually increase the
flow from a vertex j to a vertex i by decreasing it from i to j. Therefore, at each
stage of the algorithm, a residual network is considered.

The last is built as follows: an arc (i, j) with capacity w(i, j) and with a flow
xi j > 0 passing through is replaced by two arcs, one from the vertex i to j with
capacity w(i, j)− xi j (only if this value is strictly positive) and the other one from j
to i with capacity xi j. Figure 2.7 illustrates this principle.

Fig. 2.7 Residual network
associated with the flow of
Figure 2.6

t2s 1

Once a flow is found in the residual network, it is superimposed on the flow
obtained previously. This is shown in Figure 2.8.

Fig. 2.8 The flow found in the
residual network (Figure 2.7)
is superimposed on the pre-
vious flow (Figure 2.6). The
subset A⊂V cuts s from t and
the sum of the capacities of
all the arcs going out of A is
equal to the value of the flow.
This proves the optimality of
the flow

t2s 1

A

V \A

The complexity of this algorithm depends on the network size. Indeed, we have
to seek a path from s to t for each increasing flow. It also depends on the number
of augmenting paths. Unluckily, the increase can be marginal in the worst case.
For networks with integer capacities, the increase can be only 1. If the maximum
capacity of an edge is m, the complexity of the algorithm is in O(m · (|E|+ |V |)).
If m is small, for example if the capacity of all the arcs is 1, the Ford & Fulkerson
algorithm is fast.

We will see in section 2.8.1 how to solve the edge colouring problem of a bipartite
graph by solving maximum flow problems in a network where all the capacities are
1. Its complexity can be significantly diminished by using a breadth-first search as
a sub-algorithm to discover a path from s to t in the residual network. Hence, the
flow is increased along the shortest path at each step. This improvement has been
proposed by Edmonds and Karp.

Since the number of arcs of the path can not decrease from one step to the next,
no more than |E| steps are performed with a given number of arcs. Since the num-
ber of arcs of a path is between 1 and |V |, we deduce that the complexity can be
reduced to O(|V ||E|2). In the case of a dense network (with |E| ∈ O(|V 2|))), the
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complexity simplifies to O(|V |5). Many algorithms have been proposed for solving
the maximum flow problem. For general networks, the algorithmic complexity has
been recently reduced to O(|V ||E|).

For many applications, each unit of flow in arc (i, j) costs c(i, j). We therefore
consider a network R = (V,E,w,c), where w(i, j) is the capacity of the arc (i, j) and
c(i, j) the cost of a unit flow through this arc. Then arises the problem of the maxi-
mum flow at minimum cost. This problem can be resolved with the Algorithm 2.6 of
Busacker and Gowen, provided the network does not contain a negative cost circuit.

Algorithm 2.6: (Busacker & Gowen) Maximum flow from s to t with min-
imum cost

Input: Oriented network R = (V,E,w,c) without negative circuit, a source-node s and a
sink-node t

Result: Maximum flow with minimum cost from s to t
1 Start with a null flow in all the arcs
2 repeat
3 Build the residual network R∗ relative to the current flow
4 if A path form s to t exists in R∗ then
5 Find the maximal possible flow through the shortest path from s to t in R∗

6 Superimpose this flow on the current flow

7 until there is no path from s to t in R∗

As noted for the algorithms of Prim and Dijkstra, there is a very slight difference
between the Algorithms 2.5 and 2.6. Once more, we do not alter a winning formula!
When constructing the residual network, the costs should be taken into account.
If there is a flow xi j > 0 through the arc (i, j), then the residual network includes
an arc (i, j) with capacity w(i, j)− xi j (provided this capacity is positive) with an
unchanged cost c(i, j) and a reversed arc ( j, i) with capacity xi j and cost −c(i, j).

In the general case, finding the maximum flow with minimum cost is NP-hard.
Indeed, the TSP can be polynomially reduced to this problem. The reduction is
similar to that of the shortest elementary path (see Figure 2.2).

The algorithms for finding the optimal flows presented above can solve many
problems directly related to flow management, like electric power distribution or
transportation problems. However, they are chiefly exploited for solving assignment
problems (see next Chapter for modelling the linear assignment as a flow problem).

2.5 Assignment Problems

Assignment or matching problems occur frequently in practice. This is to match the
elements of two different sets like teachers to classes, symbols to keyboard keys and
tasks to employees.
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2.5.1 Linear Assignment

The linear assignment problem can be formalized as follows. Given an n×n matrix
of costs C = (ciu) each element i ∈ I must be assigned to an element u ∈U (i,u =
1, . . . ,n) in such a way that the sum of costs 2.33 is minimized. This problem can be
modelled by an integer linear program:

Minimize
n

∑
i=1

n

∑
u=1

ciuxiu (2.33)

Subject to
n

∑
i=1

xiu = 1 u = 1, . . . ,n (2.34)

n

∑
u=1

xiu = 1 i = 1, . . . ,n (2.35)

xiu ∈ {0,1} (i,u = 1, . . . ,n) (2.36)

Constraints 2.34 ensure to assign exactly one element of U to each element of
I. Constraints 2.35 ensure to assign exactly one element of I to each element of U .
Hence, these two sets of constraints ensure a perfect matching between the elements
of I and U . The integrality constraint 2.36 prevents elements of I to share fractions
of elements of U .

A more concise formulation of the linear assignment problem is to find a permu-
tation p of the n elements of the set U which minimizes ∑

n
i=1 cipi . The value pi is

the element of U assigned to i.

2.5.2 Generalized Assignment

In some cases, it is not necessary to have a perfect matching. This is particularly the
case if the size of the sets I and U differ. To fix the ideas, let I be a set of n tasks
to be performed by a set U of m employees, with m < n. If employee u performs
task i, the cost is ciu and the employee needs a time of wiu to perform this task. Each
employee u has a time budget limited by tu.

This problem, called the generalized assignment problem, occurs in various prac-
tical situations. For instance, it is closely related to the distribution of the loads
between vehicles for the vehicle routing problems presented in Section 2.2.3. The
generalized assignment problem can be modelled by the integer linear program:
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Minimize
n

∑
i=1

m

∑
u=1

ciuxiu (2.37)

Subject to
n

∑
i=1

wiuxiu ⩽ tu u = 1, . . . ,n (2.38)

m

∑
u=1

xiu = 1 i = 1, . . . ,n (2.39)

xiu ∈ {0,1} (i,u = 1, . . . ,n) (2.40)

This small modification of the assignment problem makes it NP-hard.

2.5.3 Knapsack

A special case of the generalized assignment problem (see Exercise 2.9) is the knap-
sack problem. It is certainly the simplest NP-hard problem to formulate in terms of
integer linear programming:

Maximize
n

∑
i=1

ci · xi (2.41)

Subject to:
n

∑
i=1

vi · xi ⩽ V (2.42)

xi ∈ {0,1} (i = 1, . . . ,n) (2.43)

Items of volume vi and value ci,(i = 1, . . . ,n) can be put into a knapsack of
volume V . The volume of the items put in the knapsack can not be larger than V .
The value of the selected items must be maximized.

This problem is used in this book to illustrate the working principles of a few
methods. The reader interested in knapsack problems and extensions like bin-
packing, subset-sum and generalized assignment can refer to [46].

2.5.4 Quadratic Assignment

There is another assignment problem where the elements of the set I have interac-
tions with each other. An assignment chosen for an element i ∈ I has repercussions
for the set of all the elements of I. Let us take the example of assigning n offices to
a set of n employees.

In the linear assignment problem, the ciu values only measure the interest for the
employee i to be assigned the office u. Assigning the office u to the employee i has
no other consequence than the office u is no longer available for another employee.
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In practice, employees are required to collaborate, which causes them to have to
move from one office to another. Let ai j be the frequency the employee i meets the
employee j. Let buv the travel time from office u to office v. If we assign the office v
to the employee j and the office u to the employee i, the last looses a time given by
ai j ·buv for travelling, on average. Minimizing the total time lost can be modelled by
the following quadratic 0-1 program, where the variable xiu takes the value 1 if the
employee i occupies the office u and the value 0 otherwise:

Minimize
n

∑
i=1

n

∑
j=1

n

∑
u=1

n

∑
v=1

ai jbuvxiux jv (2.44)

Subject to
n

∑
i=1

xiu = 1 u = 1, . . . ,n (2.45)

n

∑
u=1

xiu = 1 i = 1, . . . ,n (2.46)

xiu ∈ {0,1} (i,u = 1, . . . ,n) (2.47)

This formulation brings out the quadratic side of the objective due to the product
of the variables xiu · x jv. The constraints 2.45 to 2.47 are typical for assignment
problems. So, this problem is called the quadratic assignment problem. A more
concise model is searching for a permutation p that minimizes

n

∑
i=1

n

∑
j=1

ai j ·bpi p j

Many practical applications can be formulated as a quadratic assignment problem
(QAP):

Allocation of offices to employees This is the example just cited formerly.
Allocation of blocks in an FPGA A Field Programmable Gate Array requires con-

necting logic blocks on a silicon chip. These blocks allow implementing logic
equations, multiplexers or memory elements. Configuring an FPGA starts by es-
tablishing the way the modules must be connected. This can be described by
means of a routing matrix A = (ai j) which gives the number of connections be-
tween modules i and j. Next, each module i must be assigned a logic block pi on
the chip. Since the signal propagation delay depends on the length of the links,
the assignment must be carefully performed. Therefore, knowing the length buv
of the link between logic blocks u and v, the problem of minimizing the sum of
the propagation times is a quadratic assignment problem.

Configuring a keypad To enter text on a cellular phone keypad, the 26 letters of
the alphabet, as well as space, have been assigned to the keys 0,2,3, . . . ,9. As
standard, these 27 signs are distributed according to the configuration of Fig-
ure 2.9 (a).
Assume that typing a key takes one unit of time, moving from one key to another
takes two units of time, and finally that we have to wait 6 units of time before we
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Fig. 2.9 Standard cellular
phone keyboard and keyboard
optimized for the French
language (a) Standard keyboard (b) Optimized keyboard

can start typing a new symbol positioned on the same key. Then it takes 70 units
of time to type the text “a ce soir bisous".
Indeed, it takes 1 unit to enter the “a" on key 2, then moving to key 0 takes two
units, then 1 unit to press once for space, then 2 units to move to key 2 again
and 3 units for seizing “c", etc. With the optimized keyboard (for the French lan-
guage) given in Figure 2.9, it takes only 51 units of time, almost a third less. This
optimized keyboard was obtained by solving a quadratic assignment problem for
which the ai j coefficients represent the frequency of occurrence of the symbol j
after the symbol i in a typical text and buv represents the time between the typing
of a symbol placed in position u and another in position v.

The quadratic assignment problem is NP-hard. In practice, this is one of the most
difficult of this class. Yet, examples of problems of size n = 30 are not optimally
solved. Many NP-hard problems can be reduced to quadratic assignment problems.
Without being exhaustive, let us mention the travelling salesman, the linear ordering,
the graph bipartition or the stable set problems. Naturally, modelling one of these
problems under the form of a quadratic assignment is undoubtedly not leading to
the most efficient solving method!

2.6 Stable Set

Finding the largest independent set — maximal stable set — is a classical graph
theory problem. This problem is NP-difficult. Section 1.2.3.4 presents a polynomial
reduction of satisfiability to stable set. The latter is equivalent to finding the largest
subset of mutually adjacent nodes — a maximum clique — in the complementary
graph. A variant of the maximum stable set is the maximum weight stable set, when
weights are associated with vertices. In this case, we are looking for a subset of
independent vertices whose sum of the weights is as high as possible. Naturally, if
the weights are all the same, this variant is equivalent to the maximum stable set.

This problem appears in several practical applications: map labelling, berth allo-
cation to ships or assigning flight level to aircrafts. This is discussed in Section 3.3.3.
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2.7 Clustering

Like graph theory, clustering is a very useful modelling tool. There is a myriad of
applications of clustering. Let us quote social network analysis, medical imaging,
market segmentation, anomaly detection, and data compression. Clustering or un-
supervised classification consists in grouping items that are similar and separating
those that are not. There are specific algorithms to perform these tasks automatically.
Figure 2.10 gives an example of a large clustering instance where a decomposition
method, such as those presented in Section 6.4.2 is required. Image compression by
vector quantization involves dealing with instances with millions of elements and
thousands of clusters.

Fig. 2.10: Compression by vector quantization. An image compression technique
creates clustering instances with millions of items and thousands of clusters. Here,
the initial image was divided into blocks of b = 3× 5 pixels. We next looked for a
palette of 2k “colours" seen as vectors of length b×3, each pixel being characterized
by its red, green and blue brightnesses. For this image, we chose k = 14. Two of the
214 = 16384 “colours" are shown. The palette was found with a clustering method,
each colour being a centroid. Each block of the initial image is replaced by the most
similar centroid. As a block of the compressed image can be represented by k bits,
k/b bits are enough to encode one pixel

The supervised classification considers labelled items. It is frequently used in
artificial neural networks. These techniques are outside the scope of this book, as
are phylogenetic trees, popularized by Darwin in the 19th century.

Creating clusters supposes we can quantify the dissimilarity d(i, j)⩾ 0 between
two elements i and j belonging to the set E we are trying to classify. Often, the
function d(i, j) is a distance, (with symmetry: d(i, j) = d( j, i), separation: d(i, j) =
0 ⇐⇒ i= j and triangular inequality: d(i,k)⩽ d(i, j)+d( j,k)), but not necessarily.
However, to guarantee the stability of the algorithms, let us suppose that d(i, j)⩾ 0
and d(i, i) = 0,∀i, j ∈ E. As soon as we have such a function, the homogeneity of a
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group G⊂ E can be measured. Several definitions have been proposed. Figure2.11
shows some dissimilarity measures for a group of 3 elements.

Medoid

l1 star sum

Radius
(0,1)

(3,3)

(5,0)

Gravity centre (l2 star sum)
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Fig. 2.11: Optimal points for various homogeneity measures of a group with 3 ele-
ments in R2

Diameter of a group Maximum value of the function d(i, j) for two entities i and
j belonging to G: maxi, j∈Gd(i, j).

Star Sum of the dissimilarities between the most representative element of G and
the others: min j ∑i∈G d(i, j). When this element j must be in G, j is called a
medoid. For instance, if the elements are characterized by two numeric values
and G = {(0,1),(3,3),(5,0)}, the point j of R2 minimizing the sum of the dis-
similarities is (5/2+1/

√
12,1/2+5/

√
12) with norm l1 whereas it is the point

(8/3,4/3) if we consider the standard l2 norm. In general, there is no analytical
formula to find the central point with the l1 norm (it can be numerically esti-
mated). For the l2 norm, the best point is the centre of gravity or centroid (mean
measurements on each coordinate). The medoid of G is (3,3).

Radius Maximum dissimilarity between the most representative element j and
another of G: min jmaxi∈Gd(i, j). This element is not necessarily part of G. For
instance, we can take the median (on each characteristic) or the point which mini-
mizes any dissimilarity function. Using the numerical example above, the median
of the measures is (3,1), which does not belong to G. By taking the ordinary dis-
tance (l1 norm) or squared distance (l2 norm) as a dissimilarity measure, the point
(5/2,1/2) minimizes the radius of G.

Clique Sum of dissimilarities between all pairs of elements of G: ∑i∈G ∑ j∈G d(i, j).

Several definitions have been proposed to measure heterogeneity existing be-
tween two groups G and H:
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Separation Minimum distance between two elements belonging to different
groups: mini∈G, j∈Hd(i, j).

Cut Sum of dissimilarities between elements of two different groups:
∑i∈G ∑ j∈H d(i, j).

Normalized cut Average of the dissimilarities between elements of two different
groups: ∑i∈G ∑ j∈H d(i, j)/(|G| · |H|).

Once a criterion of homogeneity or heterogeneity has been defined, we can for-
mulate the problem of classification into p groups G1, . . .Gp by an optimization
problem using a global objective:

• Maximize the smallest separation (or the smallest cut) between elements of dif-
ferent groups;

• Minimize the largest diameter (or the largest radius, or the largest clique or even
the largest star) of a group;

• Minimize the sum of the stars (or the sum of the diameters, radius, clique).

2.7.1 k-Medoids or p-Median

The k-medoids problem is one of the best known in unsupervised classification. Fre-
quently, the terms p-median or k-medians are used instead of k-medoids in location
theory and statistics. Using the definitions presented above, it is about minimizing
the sum of the stars. In other words, we have to find the k elements c1, . . . ,ck of E
minimizing: ∑i∈E minr=1,...,kd(i,cr). This problem is NP-hard.

A well-known heuristic algorithm is the Partition Around Medoids (PAM 2.7).
This algorithm is a local search improvement method. Various authors have pro-
posed variations of this heuristic — while calling it PAM, which causes some confu-
sion. The method originally proposed [37] is a local search with best improvement
policy (see Section 5.1.2). This method requires an initial position of the centres.
Different authors have suggested various methods to build an initial solution. Gen-
erally, greedy algorithms are used (see Section 4.3). Algorithm 2.7 does not specify
how the latter is obtained; it is simply assumed that an initial solution is provided.
A random solution perfectly works.

The PAM algorithm has complexity in Ω(k ·n2). The computation of the cost of
the new configuration on Line 6 of the algorithm requires an effort proportional to n.
Indeed, it is necessary to check, for each element not associated with c j, if the new
medoid i is closer to the current one. For the elements previously associated with the
medoid c j, the best medoid is either the second best of the previous configuration,
which can be pre-calculated and stored in Line 3, or the new medoid i tried.

The number of repetitions of the loop ending in Line 9 is difficult to assess.
However, we observe a relatively low number in practice, depending on k more or
less linearly (there is a high probability that each centre will be repositioned once)
and a sub-linear growth with n. If we want a number of clusters k proportional to
n (for instance, if we want to decompose the set E into clusters comprising a fixed
number of elements, on average), the complexity of Algorithm 2.7 is higher than n4.
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Algorithm 2.7: (PAM) Local search for clustering around medoids
Input: Set E of items with a dissimilarity function d(i, j) between items i and j; k

medoids c1, . . . ,ck ∈ E
Result: Clusters G1, . . . ,Gk ⊂ E

1 repeat
2 forall item i ∈ E do
3 Assign i to the closest medoid, creating clusters G1, . . . ,Gk ⊂ E

4 forall medoid c j do
5 forall item i ∈ E do
6 Compute the improvement (or the loss) of a solution where c j is moved on

item i

7 if A strictly positive improvement is found then
8 Move the medoid on the item inducing the largest improvement

9 until no strict improvement is found

Thus, the algorithm is unusable as soon as the number of elements exceeds a few
thousand.

2.7.2 k-Means

In case the items are vectors of real numbers and the measurement of the dissimilar-
ity corresponds to the square of the distance (l2 norm), the point µ that minimizes
the homogeneity of the star criterion associated with a group G is the arithmetic
average of elements of G (the centre of gravity). The k-means heuristic algorithm
(2.8) is probably the best known algorithm for clustering.

Algorithm 2.8: (k-means) Local search improvement method for clustering
items of Rd into k groups. The dissimilarity measure is the l2 norm

Input: Set E of items in Rd with l2 norm measuring the dissimilarity between items; k
centres c1, . . . ,ck ∈ Rd

Result: Clusters G1, . . . ,Gk ⊂ E
1 repeat
2 forall item i ∈ E do
3 Assign each item i ∈ E to its nearest centre, creating clusters G1, . . . ,Gk ⊂ E

4 forall j ∈ 1, . . . ,k do
5 c j = gravity center of G j

6 until no centre has moved

Similar to the PAM algorithm, this is a local search improvement method. It starts
with centres already placed. Frequently, the centres are randomly positioned. It al-
ternates an assignment step of the item to their nearest centre (Line 3) and an optimal
repositioning step of the centres (Line 5). The algorithm stops when all items are
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optimally assigned and all centres optimally positioned considering their assigned
items. This algorithm is relatively fast, in Ω(k ·n). Unluckily, it is extremely sensi-
tive to the initial centre positions as well as isolated items. If the item dispersion is
high, another dissimilarity measure should be used. For instance, the centres can be
optimally repositioned considering the ordinary distance (l1 norm) at Line 5. This
variant is the Weber’s problem. By replacing the centre c j on the medoid item of
group G j at Line 5, a faster variant of Algorithm 2.7 is obtained.

2.8 Graph Colouring

Colouring the edges or the vertices of a graph allows us to mentally represent prob-
lems where incompatible items must be separated. Two compatible items can re-
ceive the same “colour" while they must be coloured differently if they are in-
compatible. Therefore, a colour represents a class of compatible elements. In the
edge colouring, two edges having a common incident vertex must receive different
colours. In the vertex colouring, two adjacent vertices must receive different colours.

The edge colouring can be reduced to a vertex colouring in the line graph. Build-
ing the line graph L(G) from the graph G is illustrated in Figure 2.12.
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Fig. 2.12: Proper edge colouring of a graph corresponding to the proper vertex
colouring of its line graph

The vertex colouring problem is to find the chromatic index of the graph, that is
to say, to minimize the number of colours of a feasible colouring. This problem is
NP-hard in the general case. However, the edge colouring of a bipartite graph can
be solved in polynomial time.
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2.8.1 Edge Colouring of a Bipartite Graph

It is clear that the vertices of a bipartite graph can be coloured with two colours. It is
a bit more complicated to colour the edges of a bipartite graph. But we can find an
optimal colouring in polynomial time. For this, we begin by completing the bipartite
graph G = (V = X ∪Y,E) by adding vertices to the smallest subset X or Y so that
they contain the same number of vertices. While maintaining the graph bipartite,
edges are added so that all vertices achieve the same degree. This degree equals the
largest of a vertex of G.

Let us call G′ the bipartite graph so obtained. A perfect matching can be found in
G′ by solving a maximum flow problem (see Section 2.5). The edges of this match-
ing can use colour number 1. Then, the edges of this matching are removed from G′

to obtain the graph G′′. The last has the same properties as G′: it is bipartite, both
subsets containing the same number of vertices and all their degree being the same.
So, a perfect matching can be found in G′′, the edges of this matching receiving the
colour number 2. The process is iterated until no edge remains in the graph. The
colouring so obtained is optimal for G (and for G′) because the number of colours
used is equals to the vertex of G with the highest degree. See also Problem 3.3.
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Problems

2.1. Connecting Points
A set V of points on the Euclidean plane must be connected. How to proceed to
minimize the total length of the connections? Application: consider the 3 points
(0,0), (30,57), and (66,0).

2.2. Accessibility by Lorries
In the road network of Figure 2.13, the maximum load (in tons) is given for each
edge. What is the weight of the heaviest lorry that can travel from A to B?
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Fig. 2.13: Maximum load problem in a road network

2.3. Network Reliability
Figure 2.14 gives a communication network where connections are subject to break-
downs. The reliability of the connections is given for each edge. How should we
transmit a message from the vertex s to all the others with the highest possible reli-
ability?

Fig. 2.14 Reliability in a
network
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2.4. Ford & Fulkerson Algorithm Degeneracy
Show that the Ford & Fulkerson algorithm for finding a maximum flow is not poly-
nomial.

2.5. TSP Permutation Model
Model the TSP under the form of finding an optimal permutation.

2.6. PAM and k-Means Implementation
Implement algorithms 2.7 and 2.8 by initializing the k medoids or the k centres
with the first k items. Investigate both methods on randomly generated problems in
the unit square with n = 100,200,400,1000,2000 items and k = 5,10,20,50,n/20
centres. Estimate the empirical complexity of the algorithms. Compare the quality of
the solutions obtained by the Algorithm 2.8 when the k centres are initially placed
on the medoids found by the Algorithm 2.7 rather than randomly choosing them
(with the k first items).

2.7. Optimality Criterion
Prove that the schedule given at the bottom of Figure 2.4 is optimal.

2.8. Flowshop Makespan Evaluation
Knowing the processing time ti j of the object i on the machine j, how to evaluate the
earliest ending time fi j and the latest starting time di j for a permutation flowshop?
The jobs are processed in an order given by the permutation p.

2.9. Reducing the Knapsack Problem to the Generalized Assignment
Knowing that the knapsack problem is NP-hard, show that the generalized assign-
ment problem is also NP-hard.





Chapter 3
Problem Modelling

In all fields, it is essential to choose a good model for the problem to be addressed.
Indeed, the best solution method will be useless if it is given inappropriate data or
constraints. Let us illustrate this on the Steiner tree problem. Two simple modellings
may naturally be imagined:

• Steiner nodes to retain A solution can be represented by the Steiner nodes to
belong to the tree; knowing these nodes, the tree is constructed by the application
of the Prim or the Kruskal algorithm.

• Edges to retain A solution can equally be represented by a set of edges; these
edges must produce a connected graph containing all terminals.

It is not possible to determine a priori which model is the best. It really depends on
the type of algorithm that will be developed to solve the problem. For example, the
first model might be better suited to a constructive algorithm while the second might
be better suited to a local search.

The first part of this chapter gives various modelling examples for the graph
colouring problem. It presents some techniques to transform the objective and the
constraints of an optimization problem in order to obtain a model facilitating the
design of solving algorithms.

Sometimes there is not just one clear objective to optimize, but several. The next
part of this chapter introduces some concepts of multi-objective optimization.

When faced with a new problem, it is not necessarily obvious how to find a good
model. Sometimes the “new" problem may even be a classic one that has not been
recognized. The last part of this chapter gives some examples of practical appli-
cations that can be modelled as combinatorial problems presented in the previous
chapter.

3.1 Objective Function and Fitness Function

To ensure the problem has been understood, it is necessary to formally express or
model its core. A problem can be modelled in various ways. Next, the solving meth-
ods must be adapted to the chosen model. This section presents various models for

59
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the vertex colouring problem. These models are illustrated with a small graph. Fig-
ure 3.1 gives an optimal colouring of this graph.

Fig. 3.1 Colouring the ver-
tices of a graph with a mini-
mum of colour. This colouring
is the best possible since the
graph contains a clique of four
vertices

In Section 1.1, we have seen that this problem could be modelled by a satisfiabil-
ity problem. If a colouring with a minimum number of colours is wanted, a series of
satisfiability problems can be solved. Unless working on small graphs and having an
efficient satisfiability solver, this approach is hardly practicable. Another modelling,
presented in the same section, consists in formulating an integer linear program. The
objective (1.4) is to directly minimize the number of colours used. In general terms,
a combinatorial optimization problem can be formulated as:

Optimize : f (s) (3.1)
Subject to : s ∈ S (3.2)

In this formulation, f is the objective function to be optimized, s a solution, and S
the set of feasible solutions for the given problem. The correspondence between this
general model and the linear program presented in Section 1.1.1 is as follows: the
objective (3.1) is to minimize (1.4), which is equivalent to minimizing the highest
colour index. Constraint (3.2) summarizes the constraints (1.5), (1.6), (1.7) and
(1.8).

The graph colouring problem can be expressed in a less formal way as:

Minimize : c = f1(s) (3.3)
Subject to : 2 adjacent vertices have different colours (3.4)

and : Number of colours used by s⩽ c (3.5)

Here, function f1 returns the number of colour used. Figure 3.2 provides a feasi-
ble colouring of a graph that is not optimal. For the solution given in this figure, we
have f1 = 5. For those given in Figure 3.1, we have f1 = 4.

Another model is less intuitive. The original undirected graph G is modified into a
directed graph G by assigning a direction to each edge. The objective is to minimize
the length of the longest path contained in G′:

Minimize : f2(s) = Longest path in G′ oriented (3.6)
Subject to : The edge orientation of G has no circuit
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Fig. 3.2 Graph coloured with
too many colours. A num-
ber of changes are required
to remove the unnecessary
colour

Once such a directed graph is obtained, a feasible solution can be easily found.
The vertices without predecessor receive the colour number 1. They cannot be con-
nected by an arc, so there is no constraint violation.

These vertices can be removed from the graph before assigning the colour num-
ber 2 to those staying without predecessor, and so on. Hence, the number of colours
obtained is one more than the length of the longest path. The colouring a graph with
this model is illustrated in Figure 3.3.

Fig. 3.3 Graph colouring
obtained by directing the
edges without circuit. One of
the longest path is indicated in
bold. For this solution, f2 = 4
corresponds to a 5-colouring

Minimizing a maximum — or maximizing a minimum — as (3.3) or (3.6) is
generally not a good way for easily discovering or improving solutions satisfying
all constraints. In the context of local search, such a modelling contains very large
plateaus (see Section 5.1.3, Figure 5.2).

What if a solution that has been discovered uses one colour more than the opti-
mum, as shown in Figure 3.2? Is there just a vertex that uses the extra colour or are
there many? The objective function is often replaced by a fitness function, easier to
optimize, for instance by including constraints that have been relaxed.

3.1.1 Lagrangian Relaxation

A problem that can be put in the form:

Minimize f (s)

Subject to: s ∈ S Easy constraint
and: g(s)⩽ 0 Makes the problem hard
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could be modelled :

Minimize f (s)+λ ·max(g(s),0) with λ being a parameter
Subject to: s ∈ S

If λ is large enough, both models have the same optimal solution.

3.1.1.1 Lagrangian Relaxation for the Vertex Colouring Problem

For the vertex colouring problem, Constraint (3.4) can be relaxed. A Lagrangian
relaxation of the problem is:

Minimize : f3(s) = c+λ · Number of violations of (3.4) (3.7)
Subject to : (3.5)

For a sufficiently large λ value (for instance by setting λ = chromatic number), a
solution optimizing (3.7) is also optimal for (3.3). In that manner, a triangle coloured
with a single colour has a fitness of 1+ 3λ . The fitness is 2+λ with two colours
and the optimal colouring has a fitness of 3. For 0 < λ < 1/2, the optimum solution
of f3 has one colour, for 1/2 < λ < 1 it has two colours and for λ > 1 the optimum
is a feasible solution with three colours. For instance, the solution of Figure 3.1 has
a fitness of f3 = 4, that of Figure 3.2 is f3 = 5 and that of Figure 3.4 is f3 = 4+2λ .

Fig. 3.4 Unfeasible colour-
ing of a graph with a given
number of colours. For this
solution, we have f3 = 4+2λ .
For those of Figure 3.1, we
have f3 = 4. For those of
Figure 3.2, we have f3 = 5

Instead of relaxing the constraint that no two adjacent vertices receive the same
colour, we can relax the constraint that each vertex be coloured:

Minimize : f4(s) = Number of uncoloured vertices (3.8)
Subject to: : (3.4)

A partial colouring of a graph with f4 = 1 is given in Figure 3.5.
Generally, the value of the multiplier λ associated with a relaxed constraint

placed in the fitness function is modulated according to the success of the search:
if a feasible solution is discovered, the value of λ is diminished. Conversely, if all
generated solutions are unfeasible, the value of λ is increased. Let us illustrate this
for the TSP.
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Fig. 3.5 Partial colouring of a
graph with a given number of
colours. For this solution, we
have f4 = 1

3.1.1.2 Lagrangian Relaxation for the TSP

A 1-tree in a network with vertices 1,2, . . . ,n is a spanning tree on the vertices
2, . . . ,n plus two edges adjacent to vertex 1. Node 1 carries out a particular role,
hence the term 1-tree. We can reformulate the TSP by specifying that one seeks a
1-tree of minimum weight with the constraint imposing a degree of two for every
vertex. A minimum weight 1-tree is obtained by constructing a minimum spanning
tree on the vertices 2, . . . ,n and adding the 2 lowest-weight edges incident to vertex
1.

minz = ∑(i, j)∈H di jxi j
Subject to: ∑

n
j=1 xi j = 2 (i = 1, . . . ,n)

and H is a 1-tree
(3.9)

By relaxing the constraints 3.9 on the degree of each vertex and including them
with Lagrange multipliers in the objective, we get:

minz(λ ) = ∑(i, j)∈H di jxi j +∑
n
i=1 λi(∑

n
j=1 xi j−2)

Subject to: H is a 1-tree
(3.10)

For fixed λi(i = 1 . . .n), the problem reduces to the construction of a 1-tree of
minimum weight in a network where the weight of the edge (i, j) is shifted to
di j +λi +λ j. With these modified weights, the length of a tour is the same as with
unmodified weights, but increased by 2 ·∑i λi. Indeed, it is necessary to enter once in
each vertex i and come out once, having to “pay" a λi penalty twice. Therefore, z(λ )
provides a lower bound to the length of the optimal tour. The value of this bound
can be improved by finding λi maximizing z(λ ).

Figure 3.6 illustrates various 1-tree that can be obtained by modifying the λ

values for a small TSP instance.

3.1.2 Hierarchical Objectives

Rather than introducing several constraints with penalties in the fitness function,
another possibility is to consider hierarchical objectives. For the graph colouring
problem, a primary objective counts the number of colours used. The value of this
objective is chosen and fixed. A secondary objective measures the number of con-
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1

Fig. 3.6: Left: 1-tree on the TSP instance tsp225 obtained with all λ values set to 0.
The size of filled disks is proportional to the value to add to the λ associated with
penalized vertices and circles are proportional to the value to remove. Top right: the
1-tree obtained with the first modification of the λ . Bottom right: the 1-tree obtained
after iterating the process. Only 12 vertices have a degree different from 2 and the
length of this 1-tree is about 7.5% above the length of the initial 1-tree and 1.1%
below the optimum tour length

straints violation. Once a feasible solution is found, one can try reducing the number
of colours before starting again. If no feasible solution is achieved, the number of
colours of the primary objective is increased. Proceeding like this allows not com-
pletely losing the work done so far.

The modelling choice has a significant influence on the problem-solving capacity
of a given method. Therefore, it is worth paying close attention to the problem anal-
ysis phase. For instance, if a timetable problem is modelled by a graph to colour, the
user might not necessarily be interested in the timetable using the smallest possible
time slots. This last objective is minimized by solving a standard graph colouring
problem. The user might just specify the maximum number of time slots available.
Then any timetable using no more than these time slots could be fine. In this case, a
fitness function of type f3 (with λ close to 0 and c fixed to the maximum number of
time slots desired) or f4 would certainly be more convenient than f1 or f2.

Relaxing constraints by including a penalty for their violations in the fitness func-
tion can only be considered for a relatively small number of constraints. However,
proceeding like this is very common when we are dealing with “soft" constraints.
The last correspond rather to preferences than to strict constraints. In this case, using
a model with hierarchical objectives may be a good option.

A more flexible and commonly used approach is to consider several objectives
simultaneously and allow the user to choose a trade-of — preferring a solution that
is better for one objective over another. Such an approach implies the methods to
be able to propose various solutions rather than a single one optimizing a unique
objective.
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3.2 Multi-Objective Optimization

Route planning is a typical multi-objective optimization example. To go from a
point A to a point B, we have to use a given transportation network. This constitutes
the constraints of the problem. We want to minimize the travel time of the journey,
minimize the energy consumption and maximize the pleasure of the journey.

These objectives are generally antagonists. The same route can be done by re-
ducing the energy consumption at the cost of an increased travel time. The user will
choose an effective route on a more subjective basis: for instance, by “slightly" in-
creasing duration, the energy consumption “sensibly" decreases and the landscape
is “picturesque."

Figure 3.7 illustrates the case of someone who has to travel by air and who has
the choice between several means of transportation to get to an airport and reach the
final destination.

Start Train station

Airport 2

Airport 1

Airport 3 Arrival
3/22

15/12

110/50

19/55

30/120

250/55

200/45

3/30

35/15

Fig. 3.7: Example of a multi-objective problem: To travel from a departure place to
a destination, several routes can be selected. Each trip has a given cost and duration,
indicated next to the arcs. From the departure place, we can either go to the train
station by bus, or by taxi, or go directly to the nearest airport by taxi. From the train
station, we can reach either the nearest airport or another airport. The latter is a little
further away but better serviced and flights are more competitive. Then we fly up
to the airport the closest to the destination, where we can go to the final destination
either by bus or by taxi

An optimization problem with K goals can be generally formulated by:

“Minimize" : f⃗ (s) = ( f1(s), . . . , fK(s)) (3.11)
Subject to : s ∈ S

This formulation assumes that one seeks to minimize each objective. This does
not constitute a loss of generality. Indeed, it is equivalent to maximizing or mini-
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mizing the opposite. It is said that a solution s1 dominates a solution s2 if s1 is better
than s2 on at least one objective and at least as good as s2 on the other objectives.

The purpose of multi-objective optimization is therefore to exhibit all non-
dominated solutions. These solutions are qualified as efficient or Pareto-optimal.
By representing the solutions in a diagram where the axes represent the values of
the objectives, the Pareto set define the Pareto front or Pareto frontier. Those located
on the convex hull are the supported solutions.

Figure 3.8 provides all the solutions to the problem instances given in Figure 3.7
in a cost/time diagram. We see in this figure that there are efficient solutions not
located on the convex hull.

The ultimate choice of a solution to the problem is left to the decision-maker.
This choice is subjective, based, for instance, on political, ethical or other consider-
ations that cannot be reasonably quantified and therefore introduced neither in the
objectives nor in the constraints.

Cost

Efficient and supported
Efficient

Not efficient

Ti
m

e

100

150

200

250

300

350

200 250 300 350

Pareto frontier

Fig. 3.8: Representation of the solutions of the problem of Figure 3.7 in a cost/time
diagram. The nine efficient solutions are highlighted. Only supported solutions may
be discovered by an exact scalar method

3.2.1 Scalarizing

A technique for generating various solutions to a multi-objective problem is to mod-
ify the latter in a single-objective problem. This single-objective problem has as
many parameters, w1, . . . ,wK , as there are objectives in the multi-objective prob-
lem 3.11.
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Minimize :
K

∑
i=1

wi · fi(s) (3.12)

Subject to : s ∈ S

This technique is known as linear scalarization. Let us suppose we have an exact
method for solving the problem (3.12). The supported solutions can be discovered
by varying the value of the weights wi. For instance, by setting wi = 1 for a given i
and zero weights for the other objectives, the best possible solution for the ith crite-
rion can be found. Once these K solutions are known, other supported solutions can
be found, if any exist. Indeed, vectors (wi) orthogonal to the hyperplane supported
by the K objectives of these K solutions can be considered. By reiterating the pro-
cess with this new solution, the proper set of supported solutions can be generated.

3.2.2 Sub-goals to Reach

The main issue with linear scalarization is that the unsupported efficient solutions
are not achievable. The extreme case is that the only supported solutions are the K
individually optimizing a single objective. Unsupported solutions can be extracted
by fixing the minimum quality of a solution on one or more objectives. The idea is
to include one or more constraints while removing the same number of objectives.
If the solutions are constrained to get a value at most v1 for the first objective, we
have the problem with d−1 objectives:

Minimize : f⃗ (s) = ( f2(s), . . . , fK(s)) (3.13)
Subject to : f1(s)⩽ v1

with : s ∈ S

In the example of Figure 3.8, imposing a maximum budget v1 = 250, the solution
of cost 248 for a time of 207 is found. The latter is not supported.

3.3 Practical Applications Modelled as Classical Problems

Let us conclude this chapter by giving some examples of practical applications that
can be modelled as academic problems.



68 3 Problem Modelling

3.3.1 Travelling Salesman Problem Applications

As we have taken the travelling salesman problem as the main thread of this book,
we start by showing how to model in this form problems that have a priori nothing
to do with performing tours.

3.3.1.1 Minimizing Unproductive Moves in 3D Printing

To produce parts in small quantities, especially to make prototypes directly with
CAD software, additive manufacturing or 3D printing techniques are now used. One
of these techniques is to extrude a thermoplastic filament which is deposited layer
by layer and hardens immediately.

It is particularly useful to minimize the unproductive moves of the extrusion head
when printing three-dimensional parts. To produce such a piece, the 3D model is
sliced into layers of thickness depending on the diameter of the extrusion head. Each
layer is then decomposed into a number of segments. If the extrusion head must start
printing a segment at a different position than those of the previous segment, it must
perform an on-air move. The total length travelled by the head is consistent: for the
part shown in Figure 3.9 — about 10 cm wide —, it represents nearly a kilometre.
The unproductive moves can represent a relatively consequent fraction of all the
moves. As a result, minimizing the latter allows a significant productivity gain.

Fig. 3.9 Part of a bicy-
cle lamp, viewed in the
PrusaSlicer software

The transformation principle of this problem into the travelling salesman is the
following: a naive attempt would create a city per segment endpoint. However, a tour
comprising only these cities does not necessarily provide a solution to the extrusion
problem, as a segment might not be printed when visiting one of its endpoints.

Therefore, it is necessary to force the tour to visit the other endpoint of a segment
immediately after visiting the first endpoint. For this purpose, a city is included in
the middle of each segment. The standard TSP does not have constraints on the
city visiting order. To ensure a good TSP tour corresponds to a feasible solution
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to the extrusion problem, the distance matrix must be adapted. To force printing a
segment, the distance between the cities’ endpoints and the middle city is zero. The
head will truly take a while to print the segment, but this time is incompressible
since the segment must be printed anyway.

To prevent certain moves of the head, a large distance M is associated with pro-
hibited moves. In this manner, a proper tour will not include such moves of the head.
The value of M should not be too large, to avoid numerical problems. A value about
100 times the size of the object to be printed may be suitable. This technique pre-
vents connecting the middle city of a segment to all other cities but excepted both
endpoints of the corresponding segment. Another constraint is to print all segments
of a layer before printing the subsequent layer.

Indeed, it is no longer possible to extrude material below an already printed
layer. Moreover, this would significantly complicate the management of the extru-
sion head. The latter can collide with the material of an upper layer when printing
a lower one. This can be prevented in the travelling salesman model by a technique
similar to that presented above. Figure 3.10 illustrates how to build the distance
matrix for printing two segments.
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Fig. 3.10: Transformation of the problem of minimizing non-productive moves of a
3D printing into a TSP. Principle for assigning distances between six cities corre-
sponding to segments [a,c] and [e,g] to print. The “cities" b and f are placed in the
middle of the segments to force the extrusion head to go from one endpoint of a seg-
ment to the other one. The M value is relatively large (typically, 100 times the size
of the object). The value of p depends on the respective layers of both segments:
either 0 if they are in the same layer or M/10 if they are in adjacent layers or M if
they are in different and non-adjacent layers

The distance between two endpoints of segments is penalized by a value p de-
pending on the segment layers. If both segments belong to the same layer, the
penalty is zero. Else, if the segments are in adjacent layers, we can set p = M/10.
Thus, a proper tour goes only once from a layer to the next one. The length of a
good tour corresponds to that of the unproductive moves plus M/10 times the num-
ber of layers to print. Otherwise, if the segments are neither in the same layer nor in



70 3 Problem Modelling

adjacent layers, the penalty is set to p = M. Finally, two cities corresponding to the
initial and ultimate positions of the extrusion head are added to complete the model.

It should be noted that travelling salesman models for minimizing unproductive
moves can lead to large size instances. The part illustrated in Figure 3.9 has a few
hundred thousand segments. Figure 3.11 illustrates the productivity gain that can be
obtained by optimizing unproductive moves. On the one hand, we have the moves
proposed by the PrusaSlicer software for just one layer. On the other hand are the
optimized moves obtained with a travelling salesman model. The length of the un-
productive moves can be divided by about 9 for this layer.

Fig. 3.11: On the left, moves of the extrusion head, as produced by the PrusaSlicer
software. Darker segments correspond to unproductive moves. The total length of
these moves is about 740.8 mm. On the right, optimized moves using a travelling
salesman model. The length of non-productive moves is about 84.5 mm

3.3.1.2 Scheduling Colouring Workshop

One of the simplest scheduling problems is that of painting objects. The unique
resource is the machine colouring the objects. Each task has only one operation:
colour the object i (i = 1, . . . ,n); the duration of the operation is ti. After colouring
the object i, the machine must be cleaned to correctly colour the next, j; this set-up
time is si j. Note that, generally, si j ̸= s ji: indeed, dark pigments in a pastel colour
are more visible than the opposite. After colouring all the objects, the machine must
be cleaned to be ready for the next day; the duration of this operation is r. The goal
is to find the best colouring order of the objects. Hence, we look for a permutation
p of the n objects minimizing ∑

n−1
i=1 (tpi + spi pi+1)+ tpn + r. This scheduling problem

with set-up time can be reduced to a travelling salesman instance with n+1 cities.
For proving this, let wi j = ti+si j(i, j = 1, . . . ,n), wi0 = r, and w0i = 0,(i = 1, . . . ,n).
We can verify that the shortest tour on the cities 0, . . . ,n provides the optimal order
to colour the objects. The “object" 0 represents the beginning of a workday.
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3.3.2 Linear Assignment Modelled by Minimum Cost Flow

The linear assignment mathematical model given in Section 2.5.1 is both concise
and rigorous. However, it does not indicate how to solve a problem instance. Us-
ing general integer linear programming solvers might be inappropriate — unless the
solver automatically detects assignment constraints (2.34) and (2.35) and incorpo-
rates an ad hoc algorithm to process them. This is frequently the case.

A special case of the linear assignment problem is the maximum matching prob-
lem, i.e. finding a maximum number of edges without common vertices. If i can be
matched with u (edge {i,u} exists) then we can set a cost of 0 to the edge; otherwise
the cost is 1. If an assignment of minimum cost is found, it uses as few edges with
positive cost and as many edges with 0 cost as possible. The maximum matching
problem in a bipartite graph can be modelled with a maximum flow in a bipartite
network. Figure 3.12 illustrates how a matching problem can be solved with a flow
in a network.
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Fig. 3.12: Matching problem: how many mixed couples can be formed between girls
and boys? A compatible matching is represented by an edge in a bipartite graph. The
problem can be modelled by searching for a maximum possible flow from a vertex
s to a vertex t in a network

Similarly, the linear assignment problem can be modelled by a minimum cost
flow. A bipartite network R = (I ∪U ∪ {s} ∪ {t},E,w,c) is built similarly to the
matching problem presented in Figure 3.12. Every pair of nodes (i ∈ I,u ∈ U) is
connected by an arc (i,u) with capacity w(i,u) = 1 and cost c(i,u). An arc (s, i)
of capacity w(s, i) = 1 with cost 0 connects s to each node i ∈ I. An arc (u, t) of
capacity w(u, t) = 1 with cost 0 connects each node u ∈U to t.

Finding an optimum cost flow in R allows finding the optimal assignment in
polynomial time, for instance with Algorithm 2.6.

More efficient algorithms have been designed for the linear assignment problem.
This leads us to make a comment on the integer linear program presented in Sec-
tion 2.5.1. A peculiarity of the constraint matrix is that it contains only 0s and 1s.
It can be proved that the adjacency matrix of a bipartite graph is totally unimodu-
lar. This means that the determinant of any square sub-matrix is either −1 or 1 or
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0. Hence, the integrality constraints (2.36) can be omitted. Therefore, the standard
linear program provides an integer optimal solution.

3.3.3 Map Labelling Modelled by Stable Set

An application of the maximum weight stable set appears for map labelling. When
one wishes to associate information with objects drawn on a plan, the problem is to
choose the label position so that they do not overlap. Figure 3.13 illustrates a tiny
problem of labelling three cities.

Fig. 3.13 Map labelling prob-
lem: The name of three ob-
jects must be placed on a map.
The texts should not overlap
to maintain readability. For
this instance, four possibilities
are considered for the label
position of each object. In
terms of a graph, this problem
can be modelled by a maxi-
mum stable set. The vertices
of the stable set correspond
to the chosen label positions.
Here, the name of each city
can be placed at the top, right
corner

This problem can be transformed into the maximum stable set as follows: A
vertex is created for each potential label position. The set of vertices corresponding
to the same label is connected in a clique. Indeed, there should be only one label per
object. The vertices corresponding to overlapping labels are also connected with an
edge. Hence, a stable set corresponds to label positions without overlap. To display
as many labels as possible on the map, a maximum stable is searched in the graph.

In practice, not all positions are equivalent. Indeed, according to the language
and the culture, there are preferred positions. For instance, in Western countries one
prefers to place the names at the top, right corner rather than at the bottom, left
one. Preferences can be modelled as weights associated with positions. The map
labelling problem then consists in finding a maximum weight stable set.

Other problems can be modelled in exactly the same way. First is the berth al-
location for docking ships. Translated in terms of labelling, a rectangular label is
associated with each ship. The label width is the expected duration of the stopover
and the label height is the length of the ship. The possible positions for this label are
determined by the ship’s arrival time and by the dock locations that can accommo-
date the boat.

Another application of this problem is the flight levels allocation for commercial
aircraft. Knowing the expected departure times of each aircraft and the routes they
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take, the potential areas of collision between aircraft are first determined. The size
of these zones depends on the uncertainty of the actual departure times and the
effective routes followed. A label will therefore correspond to a zone. The possible
positions of the labels are the various flight levels that the aircraft could use.
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Problems

3.1. Assigning Projects to Students
Four students (A,B,C,D) must choose among a set of four semester projects
(1,2,3,4). Each student makes a prognosis quote for each project. What should the
student choices be to maximize the quote average?

Project
1 2 3 4

A 6.0 5.0 5.8 5.5
Student B 6.0 5.5 4.5 4.8

C 4.5 6.0 5.4 4.0
D 5.5 4.5 5.0 3.8

3.2. Placing Production Units
A company has three existing production units 1,2 and 3 and wants to open three
new units, 4, 5 and 6. Three candidate locations a,b and c are retained for the new
units. Figure 3.14 illustrates the locations of the existing and new production units.

Fig. 3.14 Location of produc-
tion units 1 2 3 4 5 6
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The parts produced must be transferred from an existing unit to a new unit using
only the connections indicated in the figure. For instance, the distance between the
unit 1 and the location b is 3+ 4 = 7. The numbers of daily transfers between the
existing and new units are given in Table 3.1.

Table 3.1: Number of daily transfers between existing an new units

4 5 6
1 7 3 1
2 3 8 6
3 2 1 9

Where to place these new production units to minimize the total transfer dis-
tance?
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If parts are also transferred between new units, what kind of problem should we
solve?

3.3. Oral Examination
Six students (A, . . . ,F) undergo oral examinations for different modules (1, . . . ,5).
The duration of each examination is 1 hour. How to build a timetable as short as
possible, knowing that both students and teachers can have only one examination at
a time?

Student
A B C D E F

1 × × ×
2 × × × × ×

Module 3 × × ×
4 × ×
5 × ×

3.4. Written Examination
The following table summarizes the student enrolments for written examinations
of various modules. Each student can undergo one examination a day at most. All
students to pass the same module are examined the same day. How many days, at
minimum, are needed to organize the examination session?

Student
A B C D E F G H I J K L M

1 × × × ×
2 × ×
3 × × × ×
4 × × × ×

Module 5 × × × ×
6 × × ×
7 × ×
8 × × × × ×

3.5. QAP with More Positions than Items
How to adapt or change the QAP model when there are fewer elements to be placed
(n) than positions (m)? Same question if there is a fixed cost cir for assigning the
item i to the position r.

3.6. Mobile Phone Keyboard Layout
We wish to configure the keys of an old mobile phone. We want to place only the 26
lowercase letters as well as the space on the keys 0,2,3, . . . ,9. Up to four symbols
can be placed per key.

For the language considered, gi j represents the frequency of appearance of the
symbol j after symbol i. To enter a symbol in position p on a key, it is necessary to
press p times the key. This requires p time units. To switch from one key to another,
the travel time is one unit. To enter two symbols located on the same key, we have
to wait 6 time units. How to build a numerical instance of a QAP for this problem?
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3.7. Graph Bipartition to QAP
The bipartition problem is to separate the vertices of a graph into two subsets X
and Y of identical size (assuming an even number of nodes) so that the number of
edges having an end in X and the other in Y are as low as possible. How to build a
quadratic assignment instance for the graph bipartition?

3.8. TSP to QAP
How to build a quadratic assignment instance corresponding to a TSP instance?

3.9. Special Bipartition
We consider a set of cards numbered from 1 to 50. We want to split up the cards into
two subsets. The sum of the numbers of the first should be 1170 and the product of
the others should be 36,000. How to code a solution attempt to this problem? How
to assess the quality of a solution attempt?

3.10. Magic Square
We want to create a magic square of order n. This square has n×n cells to be filled
with the numbers of 1 to n2. The sum of the numbers in each line, column and
diagonal must be (n3 +n)/2. A magic square of order 4 is given below.

34
↗

4 14 15 1 → 34
9 7 6 12 → 34
5 11 10 8 → 34
16 2 3 13→ 34
↓ ↓ ↓ ↓ ↘
34 34 34 34 34

How to code a solution attempt to this problem? How to assess the quality of a
solution attempt?

3.11. Glass Plate Manufacturing
For producing glass plates, the molten glass passes on a chain of m machines in the
order 1,2, . . . ,m. Depending on the desired features for each plate, the processing
time on each machine differs. It is assumed there are n different plates to produce
(in an order which can be decided by the chain manager). The processing time of
the plate i on the machine j is ti j. Additionally, when a machine has completed
the processing of a plate, the latter must immediately switch to the next machine
without waiting time; otherwise the glass cools down. A machine only processes
one plate at a time. The chain manager must determine in which order to produce
the n plates to complete the production as quickly as possible. How to model this
no-wait permutation flowshop problem as a TSP?

3.12. Incorporating constraints in a QUBO model Consider a quadratic problem
in binary variables, given by its matrix C, with the constraint that any solution −→x ∈
{0,1}n must satisfy A−→x =

−→
b , where A is an m× n matrix and

−→
b is a vector with

m components. Construct a matrix Q such that any optimal (unconstrained) solution
of−→x tQ−→x is also an optimal solution of−→x tC−→x satisfying the constraints A−→x =

−→
b .
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3.13. Optimal 1-Tree Find values λ1 . . .λ5 to assign to the five nodes of the network
given in Figure 2.2 such that:

• ∑
5
i=1 λi = 0

• The weight of the 1-tree associated with these values is as high as possible





Part II
Basic Heuristic Techniques



This part introduces the building blocks of heuristics. First are the constructive
methods. Then, once a solution is available, it can be improved with a local search.
Finally, if either the problem is complex or the dataset is relatively large, decompo-
sition methods can be used.



Chapter 4
Constructive Methods

Having ascertained that the problem to be solved is intractable and that the design of
a heuristic is justified, the next step is to imagine how to construct a solution. This
step is directly related to the problem modelling.

4.1 Systematic Enumeration

When we have to discover the best possible solution for a combinatorial optimiza-
tion problem, the first idea that comes is to try to build all the solutions to the prob-
lem, evaluate their feasibility and quality, and return the best that satisfies all con-
straints. Clearly, this approach can solely be applied to problems of moderate size.
Let us examine the example of a small knapsack instance in 0−1 variables with two
constraints:

maxr = 9x1 +5x2 +7x3 +3x4 + x5
Subject 4x1 +3x2 +5x3 +2x4 + x5 ⩽ 10

to : 4x1 +2x2 +3x3 +2x4 + x5 ⩽ 7
xi ∈ {0,1}(i = 1, . . . ,5)

(4.1)

To list all the solutions of this instance, an enumeration tree is constructed. The
first node separates the solutions for which x1 = 0 from those where x1 = 1. The
second level consists of the nodes separating x2 = 0 and x2 = 1, etc. Potentially, this
problem has 25 = 32 solutions, many of which are unfeasible, because of constraint
violations. Formally, the first node generates two sub-problems that will be solved
recursively. The first sub-problem is obtained by setting x1 = 0 in (4.1):

maxr = 0+5x2 +7x3 +3x4 + x5
Subject 3x2 +5x3 +2x4 + x5 ⩽ 10

to : 2x2 +3x3 +2x4 + x5 ⩽ 7
xi ∈ {0,1}(i = 2, . . . ,5)

The second sub-problem is obtained by setting x1 = 1 in (4.1):

81
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maxr = 9+5x2 +7x3 +3x4 + x5
Subject 3x2 +5x3 +2x4 + x5 ⩽ 6

to : 2x2 +3x3 +2x4 + x5 ⩽ 3
xi ∈ {0,1}(i = 2, . . . ,5)

To avoid enumerating too many solutions, the tree can be pruned by noting all
branches arising from a node with a constraint violation will lead to unsuccess-
ful solutions. Indeed, for this problem instance, all constraint coefficients are non-
negative. For instance, if the x1,x2,x3 variables are already fixed to 1, both con-
straints are violated and all the sub-problems that could be created from there will
produce unfeasible solutions. Therefore, it is useless to develop this branch by trying
to set values of the x4 and x5 variables.

Another way to prune the non-promising branches is to estimate by a short com-
putation whether a sub-problem could lead to a better solution than the best found
so far. This is the branch and bound method.

4.1.1 Branch and Bound

To quickly estimate whether a sub-problem may have a solution, and if the latter
is promising, a technique is to relax one or more constraints. The optimal solu-
tion of the relaxed problem is not necessarily feasible for the initial one. However,
few interesting properties can be deduced by solving the relaxed problem: If the
latter has no solution or if its optimal solution is worse than the best feasible solu-
tion already found, there is no need to further explore this sub-problem’s branch,
as it cannot improve the objective by developing this branch. If the relaxed sub-
problem contains an optimal solution feasible for the initial problem, then devel-
oping the branch is also unnecessary. In addition to the Lagrangian relaxation seen
above (Section 3.1.1), several relaxation techniques are commonly used to simplify
a sub-problem.

Variable integrality Imposing integer variables makes Problem ((4.1)) difficult.
We can therefore remove this constraint and solve the problem:

maxS = 9x1 +5x2 +7x3 +3x4 + x5
Subject 4x1 +3x2 +5x3 +2x4 + x5 ⩽ 10

to: 4x1 +2x2 +3x3 +2x4 + x5 ⩽ 7
0⩽ xi ⩽ 1(i = 1, . . . ,5)

(4.2)

This linear problem can be solved efficiently in polynomial time. Its optimal solu-
tion is (0.5;1;1;0;0) with objective value of 16.5. Since it comprises a fractional
value, this solution is not feasible for the initial problem. However, it informs us
that there is no solution to Problem ((4.1)) whose value exceeds 16.5 (or even 16
since all the coefficients are integers). Therefore, if an oracle gives us the feasible
solution (1;0;1;0;0) of value 16, we can deduce this solution to be optimal for
the initial problem.
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Constraint aggregation (surrogate constraint) A number of constraints are linearly
combined to get another one. In our simple example, we get:

maxS = 9x1 +5x2 +7x3 +3x4 + x5
Subject 8x1 +5x2 +8x3 +4x4 +2x5 ⩽ 17

to : xi ∈ {0,1}(i = 1, . . . ,5)
(4.3)

This problem is a standard knapsack. It is easier to solve than the initial problem.
The solution (1;1;0;1;0) is optimal for the relaxed problem ((4.3)) but is not
feasible for the initial problem because the second constraint is violated. As the
relaxed problem is NP-hard, this approach may be problematic.

Combined relaxation Clearly, several types of relaxation can be combined, for
instance the aggregation of constraints and the integrality variables. For our small
example, we get:

maxS = 9x1 +5x2 +7x3 +3x4 + x5
Subject 8x1 +5x2 +8x3 +4x4 +2x5 ⩽ 17

to : 0⩽ xi ⩽ 1(i = 1, . . . ,5)
(4.4)

This problem can be solved in O(n logn) as follows: the variables are sorted in
the order of decreasing ri/vi values, where ri represents the revenue of the object
i and vi its aggregated volume. In our example, the indices are already sorted.
The objects are selected one after the other in this order until a new object would
overcharge the knapsack. This leads to x1 = x2 = 1. The next object is split to
completely fill the knapsack ( =⇒ x3 = 4/8 for a total value of the knapsack
S = 9+5+7 ·4/8 = 17,5). Since all the coefficients are integers in our example,
S = ⌊17,5⌋= 17 is also a valid bound for the optimal value of the initial problem.

Algorithm 4.1 provides the general framework of the branch & bound method. Fig-
ure 4.1 shows a partial enumeration tree that can be obtained by solving the small
problem instance (4.1). Three components should be specified by the user for im-
plementing a complete algorithm.

First, the management policy of the set Q of sub-problems awaiting treatment
must be specified. If Q is managed as a queue, we have a breadth-first search. If Q is
carried as a stack, we have a depth-first search. The latter promotes a rapid discovery
of a feasible solution to the initial problem.

A frequent choice is to manage Q as a priority queue. This implies computing an
evaluation for each sub-problem. Ideally, this evaluation should be strongly corre-
lated with the best feasible solution that can be obtained by developing the branch.
A typical example is to use the value S of the relaxed problem. The choice of a
management method for Q is frequently based on very empirical considerations.

The second component to be defined by the user is the relaxation technique. This
is undoubtedly one of the most delicate points for designing an efficient branch
& bound. This point strongly depends on both the problem to be solved and the
numerical data.

The third choice left is how to separate the problem into sub-problems. A sim-
ple policy is to choose the smallest index variable, or a non-integer variable in the
solution of the relaxed problem. Frequently, the policy adopted for branching is em-
pirical.
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Algorithm 4.1: Branch & Bound framework for an objective to maximize.
It is necessary to provide three methods: α for the management of the sub-
problems to be solved (generally, a priority queue (based on a heuristic
criterion) or a stack), a method β for evaluating the relaxation of the sub-
problems and a heuristic γ for choosing the next variable to separate for
generating new sub-problems

Input: A problem with n variables x1, . . . ,xn, policy α for managing sub-problems,
relaxation method β , branching method γ

Result: An optimal solution x∗ of maximal value value f ∗

1 f ∗←−∞ // Value of best solution found
2 F ←∅ // Set of fixed variables
3 L←{x1, . . . ,xn} // Set of free variables
4 Q←{(F,L)} // Set of sub-problems to solve
5 while Q ̸=∅ do
6 Remove a problem P = (F,L) from Q according to policy α

7 if P can potentially have feasible solutions with values already fixed in F then
8 Compute a solution x to a relaxation of P with method β , modifying only

variables xk ∈ L
9 if x is feasible for the initial problem and f ∗ < f (x) then Store the improved

solution
10 x∗← x
11 f ∗← f (x)
12 else if f (x)> f ∗ then Expand the branch
13 Choose xk ∈ L according to policy γ

14 forall possible value v of xk do
1616 Q← Q∪{(F ∪{xk = v},L\{xk})}

17 else No solution better than x∗ can be obtained
18 Prune the branch

8 9

6

5

7

4

3

1

2

unfeasible

unfeasible
S = 15

(1,1,0,0,1)

Pruned by 11
S = 17

S = 17.5

S = 17.5

S = 15
(0,1,1,1,0)

S = 17.5

S = 16.75

x1 = 0 x1 = 1

x2 = 1x2 = 0

x3 = 1x3 = 0

x4 = 1x4 = 0

10 11

x3 = 0 x3 = 1

(1,0,1,0,0)
S = 16S = 16.75

Fig. 4.1: Solving problem (4.1) with a branch & bound. Sub-problem set Q man-
aged as a stack. The nodes are numbered by creation order. Branching is done by
increased variable index. Nodes 9 and 7 are pruned because they cannot lead to fea-
sible solutions. Node 10 is pruned because it cannot lead to a solution better than
node 11



4.1 Systematic Enumeration 85

A simple implementation of this framework is the A* search algorithm. The latter
manages Q as a priority queue and evaluates a heuristic value before inserting a sub-
problem in Q.

In some cases, the number of possible values for the next xk variable to set is
significant, especially when xk can take any integer value. A branching technique is
to consider the fractional value y taken by a variable xk and to develop two branches,
one with the additional constraint xk ⩽ ⌊y⌋ and the other with xk ⩾ ⌊y⌋+ 1. In this
case, the sets of fixed and independent variables are unchanged on Line 16. This
technique was proposed by Dakin [12].

Another technique, known as branch & cut is to add constraints to the relaxed
sub-problem. The goal of the new constraints is to remove the unfeasible solution
obtained by solving the sub-problem. For instance, such a constraint may prevent a
variable to take a given fractional value.

4.1.1.1 Example of Implementation of a Branch and Bound

A naive branch and bound implementation manages the sub-problem set as a stack
(policy α). This is performed automatically with a recursive procedure.

For the TSP, a solution is a permutation p of the n cities. The element pi provides
the ith city visited. Assume that the order of cities has been fixed up to and including
i, and L is the set of cities remaining to be ordered. A lower bound on the optimal
tour length can be obtained by considering that:

1. The ith city is connected to the closest of L.
2. Each city of L is connected to another of L that is the closest.
3. The first city is connected to the closest of L.

Doing so, a valid tour could eventually be obtained for the complete problem.
For instance, when only one “free” city remains (|L|= 1), we have to go to this one
and then to return to the departure city. In this situation, a valid tour is obtained.
The procedure given by Code 4.1 returns a flag indicating whether a feasible tour is
found.
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Code 4.1: tsp_lower_bound.jl Code for computing a naive lower bound to the op-
timal tour. The procedure returns the bound and can alter the order of the last cities
of the tour. In the event the length of the modified tour is equal to the value of the
lower bound, the procedure indicates that the tour is optimal

1 # Computation of a naive lower bound for the TSP
2 function tsp_lower_bound(d, # Distance matrix
3 depth, # tour[1] to tour[depth] fixed
4 tour) # TSP tour
5

6 n = length(tour)
7 lb = 0 # Length of the path for the cities already fixed in tour
8 for j in 1:depth-1
9 lb += d[tour[j], tour[j+1]]

10 end
11

12 valid = true # Set to true if every closest successor of j build a tour
13 for j in depth:n-1 # j connected to its closest free city
14 minimum = d[tour[j], tour[j+1]]
15 for k in n:-1:depth+1
16 if k != j && minimum > d[tour[j], tour[k]]
17 minimum = d[tour[j], tour[k]]
18 if k > j
19 tour[k], tour[j+1] = tour[j+1], tour[k]
20 else
21 valid = false
22 end
23 end
24 end
25 lb += minimum
26 end
27

28 minimum = d[tour[n], tour[1]] # Come back to first city of the tour
29 for j in depth+1:n
30 if minimum > d[tour[j], tour[1]]
31 valid = false
32 minimum = d[tour[j], tour[1]]
33 end
34 end
35 lb += minimum
36

37 return lb, tour, valid # Lower bound, tour modified, lb == tour length
38 end

To implicitly list all possible tours on n cities, an array as well as a depth
index can be used. From the depth index, all the possible permutations of the
last elements of the array are enumerated. This procedure is called recursively with
depth + 1 after trying all the remaining possibilities for the depth array entry.
To prune the enumeration, no recursive call is performed either if the lower bound
computation provides an optimal tour or if the lower bound of the tour length is
larger than that of a feasible tour already found. Code 4.2 implements an implicit
enumeration for the TSP.

It should be noted here that this naive approach requires a few seconds to a few
minutes to solve problems up to twenty cities. However, this represents a significant
improvement over an exhaustive search, which would require a computing time of
several millennia. The relaxation based on the notion of 1-tree presented in Sec-
tion 3.1.1.2 could advantageously replace that provided by Code 4.1.

In recent years, so-called exact methods for solving integer linear programs have
made substantial progresses. The key improvements are due to more and more so-
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phisticated heuristics for computing relaxations and branching policies. Software
like CPLEX or Gurobi include methods based on metaheuristics for computing
bounds or obtaining good solutions. This allows a faster pruning of the enumera-
tion tree. Despite this, the computational time grows exponentially with the problem
size.

Code 4.2: tsp_branch_and_bound.jl Code for implicitly enumerating all the per-
mutations of n elements

1 # Basic Branch & Bound for the TSP
2 function tsp_branch_and_bound(d, # Distance matrix
3 depth, # current_tour[1] to [depth] fixed
4 current_tour, # Solution partially fixed
5 best_tour, # Best solution found
6 upper_bound) # Optimum tour length
7

8 n = length(current_tour)
9

10 for i in depth:n
11 tour = copy(current_tour)
12 tour[depth], tour[i] = tour[i], tour[depth] # City enumeration at depth
13 lb, tour, valid = tsp_lower_bound(d, depth, tour)
14 if upper_bound > lb
15 if valid
16 upper_bound = lb
17 best_tour = copy(tour)
18 println("Improved: ", upper_bound, best_tour)
19 else
20 best_tour, upper_bound =
21 tsp_branch_and_bound(d, depth+1, tour, best_tour, upper_bound)
22 end
23 end
24 end
25

26 return best_tour, upper_bound
27 end

4.2 Random Construction

A rapid and straightforward method to obtain a solution is to generate it randomly
among the set of all feasible solutions. We clearly cannot hope to reliably find an
excellent solution like this. However, this method is widely implemented in iterative
local searches repeating a constructive phase followed by an improvement phase. It
should be noted here that the modelling of the problem plays a significant role, as
noted in Chapter 3. In case finding a feasible solution is difficult, one must wonder
whether the problem modelling is adequate.

Note that it is not necessarily easy to write a procedure generating each solution
of a feasible set with the same probability. Exercise 4.1 deals with the generation of
a random permutation of n items. Naive approaches such as those given by Algo-
rithms 4.5 and 4.6 can lead to non-uniform solutions and/or inefficient codes.
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4.3 Greedy Construction

In Chapter 2, the first classical algorithms of graphs passed in review — Prim and
Kruskal for building the minimum spanning tree and Dijkstra for finding the short-
est path — were greedy algorithms. They are building a solution by including an
element at every step. The element is permanently added on the base of a function
evaluating its relevance for the partial solution under construction.

Assuming a solution is composed of elements e∈ E that can be added to a partial
solution s, the greedy algorithm decides which element to add by computing an
incremental cost function c(e,s). Algorithm 4.2 provides the framework of a greedy
constructive method.

Algorithm 4.2: Framework of a greedy constructive method. Strictly speak-
ing, this is not an algorithm since different implementation options are pos-
sible, according to the definition of the set E of the elements constituting the
solutions and the incremental cost function

Input: A trivial partial solution s (generally ∅); set E of elements constituting a solution;
incremental cost function c(s,e)

Result: Complete solution s
1 R← E // Elements that can be added to s
2 while R ̸=∅ do
3 ∀e ∈ R, compute c(s,e)
4 Choose e′ optimizing c(s,e′)
5 s← s∪ e′ // Include e′ in the partial solution s
6 Remove from R the elements that cannot be added any more to s

Algorithms with significantly different performances can be obtained according
to the definition of E and c(s,e). Considering the example of the Steiner tree, one
could consider E as the set of edges of the problem and the incremental cost function
as the weight of each edge. In this case, a partial solution is a forest.

Another modelling could consider E as the Steiner points. The incremental cost
function would be to calculate a minimum spanning tree containing all terminal
nodes plus e and those already introduced in s.

We now provide some examples of greedy heuristics that have been proposed for
a few combinatorial optimization problems.

4.3.1 Greedy Heuristics for the TSP

Countless greedy constructive methods have been proposed for the TSP. Here is a
choice illustrating the variety of definitions that can be made for the incremental
cost function.
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4.3.1.1 Greedy on the Edges

The most elementary way to design a greedy algorithm for the TSP is to consider the
elements e to add to a partial solution s are the edges. The incremental cost function
is merely the edge weight. Initially, we start from a partial solution s = ∅. The set
R consists of the edges that can be added to the solution, without creating a vertex
of degree > 2 or a cycle not including all the cities. Figure 4.2 illustrates how this
heuristic works on a small instance.

Fig. 4.2: Steps of a greedy constructive method based on the edge weight for the
TSP

4.3.1.2 Nearest Neighbour

One of the easiest greedy methods to program for the TSP is the nearest neighbour.
The elements to insert are the cities rather than the edges. A partial solution s is,
therefore, a path in which the cities are visited in the order of their insertion. The
incremental cost is the weight of the edge that connects the next city. Figure 4.3
illustrates the execution of this heuristic on the same instance as above. It is a coin-
cidence to get a solution identical to the previous method.

Fig. 4.3: Running the nearest neighbour for a tiny TSP instance

The nearest neighbour greedy heuristic can be programmed very concisely, in
Θ(n2), where n is the number of cities (see Code 4.3).
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Code 4.3: tsp_nearest_neighbour.jl Nearest neighbour for the TSP. Note the simi-
larities with the implementation of the Dijkstra algorithm given by Code 2.1

1 # Nearest Neighbour greedy heuristic for the TSP
2 function tsp_nearest_neighbour(d, # Distance matrix
3 tour) # List of cities to be sequenced
4 n = length(tour)
5 tour_length = 0 # Tour length
6 for i in 2:n # Cities from tour[1] to tour[i-1] are fixed
7 nearest = i # Next nearest city to insert
8 cost_ins = d[tour[i-1], tour[i]] # City insertion cost
9 for j in (i+1):n # Find next city to insert

10 if d[tour[i-1], tour[j]] < cost_ins
11 cost_ins = d[tour[i-1], tour[j]]
12 nearest = j
13 end
14 end
15 tour_length += cost_ins
16 tour[i], tour[nearest] = tour[nearest], tour[i] # Definitive insertion
17 end
18 tour_length += d[tour[n], tour[1]] # Come back to start
19 return tour, tour_length
20 end

4.3.1.3 Largest Regret

A defect of the nearest neighbour is to temporarily forget a few cities, which sub-
sequently causes significant diversions. This is exemplified in Figure 4.3. To try
to prevent this kind of situation, we can evaluate the increased cost for not visit-
ing city e just after the last city i of the partial path s. In any case, the city e must
appear in the final tour. This will cost at least min j,k∈R d je +dek. Conversely, if e
is visited just after i, the cost is at least minr∈R die +der. The largest regret greedy
constructive method chooses the city e maximizing c(s,e) = min j,k∈R (d je +dek)−
minr∈R (die +der).

4.3.1.4 Cheapest Insertion

The cheapest insertion heuristic involves inserting a city in a partial tour. The set E
consists of cities, and the trivial initial tour is a cycle on both cities which are the
nearest. The incremental cost c(s,e) of a city is the minimum diversion that must be
consented to insert the city e in the partial tour s between two successive cities of s.
Figure 4.4 illustrates this greedy method.

Fig. 4.4: Running the cheapest insertion for a tiny TSP instance
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4.3.1.5 Farthest Insertion

The farthest insertion heuristic is similar to the previous one, but it selects the city
whose insertion causes the most significant diversion. However, each city is inserted
at the best possible place in the tour. Figure 4.5 illustrates this greedy method. It
seems counter-intuitive to choose the most problematic city at each step. However,
this type of construction reveals less myopic and frequently produces better final
solutions than the previous heuristics.

Fig. 4.5: Running the farthest insertion for a tiny TSP instance

Here, we have provided only a limited range of greedy constructive methods that
have been proposed for the TSP. The quality of the solutions they produce varies. It
is usually not challenging to find problem instances for which a greedy heuristic is
misguided and makes choices increasingly bad. On points uniformly distributed on
the Euclidean plane, they typically provide solutions a few tens of percent above the
optimum.

4.3.2 Greedy Heuristic for Graph Colouring

After reviewing several methods for the TSP, it is necessary to present a not too
naive example for another problem.

A relatively elaborate greedy method for colouring the vertices of a graph tries to
determine the node for which assigning a colour may be the most problematic. The
DSatur [6] method assumes it corresponds to the node with already coloured neigh-
bours using the broadest colour palette. For this purpose, the saturation degree of a
vertex v is defined, noted DS (v), corresponding to the number of different colours
used by the vertices adjacent to v. At equal degree of saturation — particularly at
the start, when no vertex is coloured — the node with the highest degree is selected.
At equivalent degree and saturation degree, the nodes are arbitrarily selected. Algo-
rithm 4.3 formalizes this greedy method.

4.4 Improvement of Greedy Procedures

The chief drawback of a greedy construction is that it never changes a choice per-
formed in a myopic way. Conversely, the shortcoming of a complete enumerative
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Algorithm 4.3: DSatur algorithm for graph colouring. The greedy criterion
used by this algorithm is the saturation degree of the vertices, corresponding
to the number of different colours used by adjacent nodes

Input: Undirected graph G = (V,E);
Result: Vertex colouring

1 Colour with 1 the vertex v with the highest degree
2 R←V \ v
3 colours← 1
4 while R ̸=∅ do
5 ∀v ∈ R, compute DS(v)
6 Choose v′ maximizing DS(v′), with the highest possible degree
7 Find the smallest k (1⩽ k ⩽ colours+1) such that colour k is feasible for v′

8 Assign colour k to v′

9 if k > colours then
10 colours = k

11 R← R\ v′

method is the exponential growth of the computational effort with the problem size.
To limit this growth, it is therefore necessary to limit the branching. This is typically
achieved on the basis of greedy criteria. This section reviews two partial enumera-
tion techniques that have been proposed to improve a greedy algorithm.

First, the beam search was proposed within the framework of an application in
speech recognition [44]. Second is the more recent pilot method, proposed by Duin
and Voß [17]. It was presented as a new metaheuristic. Other algorithm frameworks
have been derived from it [19].

4.4.1 Beam Search

Beam search is a partial breadth-first search. Instead of keeping all the branches, at
most p are kept at each level, on the basis of the incremental cost function c(s,e).
Arriving at level k, the partial solution at the first level is completed with the element
e which leads to the best solution at the last enumerated level. Figure 4.6 illustrates
the principle of a beam search.

A beam search variant proceeds by making a complete enumeration up to a level
containing more than p nodes. The p best of them are retained to generate the can-
didates for the next level.

4.4.2 Pilot Method

The framework of the pilot method requires a so-called pilot heuristic to fully com-
plete a partial solution. This pilot heuristic can be a simple greedy method, for ex-
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Partial initial solution

p best candidates at level 1

p best candidates at level 2

Best candidate at level k

Element added to the initial solution

Fig. 4.6: Beam search with p= 3 and k= 3. Before definitively choosing the element
to insert in the partial solution, a breadth-first search is carried out up to a depth of
k, only retaining the p best candidates at each depth

ample the nearest neighbour heuristic for the TSP, but it can equally be a much more
sophisticated method, such as one of those presented in the following chapters.

The pilot method enumerates all the partial solutions that can be obtained by in-
cluding an element to the starting solution. The pilot heuristic is then applied to all
these partial solutions to end up with as many complete solutions. The partial solu-
tion at the origin of the best complete solution is used as the new starting solution,
until there is nothing more to add. Figure 4.7 illustrates two steps of the method.

Fig. 4.7 Pilot method. An
element is included in the
partial solution, then a pi-
lot constructive heuristic is
applied to fully complete it.
The process is repeated with
another element added to the
partial solution. The element
finally inserted is the one
that led to the best complete
solution

Initial partial solution

Best complete solution

Element added to the initial solution

Pilot heuristic completion

Next partial solution

Algorithm 4.4 specifies how the pilot metaheuristic works. In this framework,
the ultimate “partial" solutions represent a feasible complete solution which is not
necessarily the solution returned by the algorithm. Indeed, the pilot heuristic can
generate a complete solution that does not necessarily include the elements of the
initial partial solution, especially if it includes an improvement technique more elab-
orated than a simple greedy constructive method.

Code 4.4 provides an implementation of the pilot method for the TSP. The pilot
heuristic is the nearest neighbour.
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Algorithm 4.4: Frame of a pilot method
Input: sp trivial partial solution; set E of elements constituting a solution; pilot heuristic

h(se) for completing a partial solution se; fitness function f (s)
Result: Complete solution s∗

1 R← E // Elements that can be added to s
2 while R ̸=∅ do
3 v← ∞

4 forall e ∈ R do
5 Complete sp with e to get se
6 Apply h(se) to get a complete solution s
7 if f (s)⩽ v then
8 v← f (s)
9 sr ← se

10 if s is better than s∗ then Store the improved solution
11 s∗← s

12 sp← sr // Add an element to the partial solution sp
13 Remove from R the elements that cannot properly be added to sp

Code 4.4: tsp_pilot_nearest_neighbour.jl Implementation of a pilot method with
the nearest neighbour (Code 4.3) as pilot heuristic

1 # Constructive algorithm with Nearest Neighbour as Pilot method
2 function tsp_pilot_nearest_neighbour(d) # n x n Distance matrix
3 n = size(d, 1)
4 tour = collect(1:n) # All cities must be in tour
5

6 for q in 1:(n-1) # Cities up to q at their final position
7 length_r = tsp_length(d, tour)
8 to_insert = q
9 for r in q:n # Choose next city to insert at position q

10 sol = copy(tour)
11 sol[q], sol[r] = sol[r], sol[q] # Tentative sol: tour[q] at pos. r
12 sol[q:n], _ = tsp_nearest_neighbour(d, sol[q:n])
13 tentative_length = tsp_length(d, sol)
14 if length_r > tentative_length
15 length_r = tentative_length
16 to_insert = r
17 end
18 end
19 # Put definitively to_insert at position q
20 tour[q], tour[to_insert] = tour[to_insert], tour[q]
21 end
22

23 return tour, tsp_length(d, tour)
24 end
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Problems

4.1. Random Permutation
Write a procedure to generate a random permutation of n elements contained in an
array p. It is desired a probability of 1/n to find any element in any position in p.
Describe the inadequacy of Algorithms 4.5 and 4.6.

Algorithm 4.5: Bad algorithm to generate a random permutation of n ele-
ments

Input: A set of n elements e1, . . . ,en
Result: A permutation p of the elements

1 i← 0 // Number of element already chosen
2 while i ̸= n do
3 Draw a random number u uniformly between 1 and n
4 if eu is not already chosen then
5 i← i+1
6 pi← eu

Algorithm 4.6: Another bad algorithm to generate a random permutation of
n elements

Input: A set of n elements e1, . . . ,en
Result: A permutation p of the elements

1 i← 0 // Number of element already chosen
2 while i ̸= n do
3 Draw a random number u uniformly between 1 and n
4 i← i+1
5 if eu is already chosen then
6 Find the next u′ such that eu′ is not chosen
7 pi← eu′

8 else
9 pi← eu

4.2. Greedy Algorithms for the Knapsack
Propose three different greedy algorithms for the knapsack problem.

4.3. Greedy Algorithm for the TSP on the Delaunay
We want to build the tour of a travelling salesman (on the Euclidean plane) using
only edges belonging to the Delaunay triangulation. Is it always possible? If this is
not the case, provide a counter-example, otherwise, propose a greedy method and
analyze its complexity.

4.4. TSP with Edge Subset
To speed up a greedy method for the TSP, only the 40 shortest edges adjacent to
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each vertex are considered. Is this likely to reduce the algorithmic complexity of the
method? Can this cause some issues?

4.5. Constructive Method Complexity
What is the complexity of the nearest neighbour heuristic for TSP? Same question
if we use this heuristic in a beam search by retaining p nodes at each depth and
that we go to k levels down. Similar question for the pilot method where we equally
employ the nearest neighbour as the pilot heuristic.

4.6. Beam Search and Pilot Method Applications
We consider a TSP instance on five cities. Table 4.1 gives its distance matrix. Apply

Table 4.1: Distance matrix for Problem 4.6

1 2 3 4 5
1 — 5 3 19 7
2 13 — 1 18 6
3 12 4 — 14 6
4 11 9 8 — 10
5 23 11 7 21 —

a beam search to this instance, starting from the city 1. At each level, only p = 2
nodes are retained and the tree is developed up to k = 3 levels down.

Apply a pilot method to this instance, considering the nearest neighbour as the
pilot heuristic.

4.7. Greedy Algorithm Implementation for Scheduling
Propose two greedy heuristics for the permutation flowshop problem. Compare their
quality on problem instances of literature.

4.8. Greedy Methods for the VRP
Propose two greedy heuristics methods for the vehicle routing problem.

4.9. Greedy Methods for the SameGame
SameGame is a single-player game played on a rectangular grid of m× n cells,
initially filled randomly with tiles of k different colours. The player can eliminate a
block of adjacent tiles of the same colour. A block must contain at least 2 tiles.

Once a block is eliminated, the tiles above it fall down. The remaining columns
are thus always without gaps, but their height depends on the number of tiles elimi-
nated. Columns to the right of one or more empty columns are shifted to the left. As
a result, any empty columns end up on the right side of the board. By eliminating a
block of b tiles, the player is rewarded with b · (b− 2) points. The player can then
continue until there are no more blocks to eliminate. There are other versions of this
game, including giving an additional reward if the player manages to eliminate all
the tiles or using a different scoring formula depending on the size of the blocks.

Propose different greedy methods for this game and compare their performances
for boards of m = 15 rows and n = 20 columns filled randomly and uniformly with
tiles of k = 5 colours.



Chapter 5
Local Search

Improvement techniques are a cornerstone in the design of heuristics. As will be
seen later, most metaheuristics incorporate a local search.

By examining the solutions produced by greedy constructive heuristics like those
presented in the previous chapter, we immediately notice they are not optimal. For
example, the solution of the Euclidean travelling salesman problem obtained by the
nearest neighbour heuristic, shown in Figure 4.3, has intersecting edges, which is
obviously suboptimal. Indeed, it is possible to replace the two intersecting edges by
two others whose sum of the lengths is lower while preserving a tour. Replacing two
edges by two others that are shorter can then be repeated until a solution cannot be
improved by the same process as shown in Figure 5.1.

Fig. 5.1 Successive improve-
ments of a TSP solution with
the 2-opt local search. Two
edges (in colour) are replaced
by two others (dotted), and
the sum of their lengths is
lower

5.1 Local Search Framework

The general idea is therefore to start from a solution obtained using a constructive
method and improve it locally. The process is repeated until no further improvement
is achieved. This frame is well known in continuous optimization, to seek an opti-
mum of a differentiable function with gradient methods. The gradient concept for
finding an improving direction does not exist in discrete optimization; it is replaced
by the definition of “minor" changes of the solution called moves, or the concept of
neighbourhood.

To be able to apply Algorithm 5.1, it is necessary to define how to obtain the
neighbour solutions. Formally, a neighbourhood set N(s) ⊂ S must be defined for

97
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Algorithm 5.1: General framework of a local improvement method. It is
assumed to have a solution to the problem as well as a method able to gen-
erate, from any solution, a number of other ones

Input: Solution s, method modifying a solution
Result: Improved solution s

1 repeat
2 if there is a modification of s into s′ improving s then
3 s← s′

4 until no improvement of s is found

any solution s∈ S. Therefore, the search for a modification of s implies enumerating
the solutions of N(s) to extract one of them, s′, which is better than s.

A convenient way to define a neighbourhood N(s) is to specify the modifications,
commonly called the moves, that can be applied to the solution s. In the example of
Figure 5.1 for the TSP, a move m can be specified by a pair of cities [i, j]. It consists
in replacing the edges [i,si] and [ j,s j] by the edges [i, j] and [si,s j], where si and s j
are, respectively, the cities that follow i and j in the solution s.

This neighbourhood of replacing two edges by two others is known in the litera-
ture as 2-exchange or 2-opt [11]. The set M(s) of 2-opt moves that can be applied to
the solution s can be formally defined by M(s) = {[i, j], i, j ∈ s, i ̸= j, j ̸= si, i ̸= s j}.
Applying a move m ∈M(s) to the solution s is sometimes noted s⊕m.

The definition of the neighbourhood can be obtained with the definition of the
set of moves: N(s) = {s′|s′ = s⊕m,m ∈ M(s)}. The size of the 2-opt neighbour-
hood is |N(s)| = Θ(|s|2). The application of an improvement method to the TSP
can therefore be reasonably achieved by enumerating the neighbour solutions. This
enumeration can be done according to two policies, either the first improvement or
the best improvement.

5.1.1 First Improvement Heuristic

With this policy, the current solution is immediately changed as soon as an improv-
ing move is identified. The neighbourhood is therefore not thoroughly examined at
each iteration. This policy is therefore aggressive. It allows a solution to be improved
quickly. It generally leads to a greater number of changes to the initial solution than
the best improvement policy. The framework of the first improvement method is
provided by Algorithm 5.2.
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Algorithm 5.2: Framework of the first improvement heuristic
Input: Solution s, neighbourhood specification N(·), fitness function f (·) to minimize.
Result: Improved solution s

1 forall s′ ∈ N(s) do
2 if f (s′)< f (s) then Move to s′, break the loop and initiate the next one
3 s← s′

5.1.2 Best Improvement Heuristic

With the best improvement policy, the neighbourhood is thoroughly examined at
each iteration. The best neighbour solution identified is the current one for the sub-
sequent iteration. Algorithm 5.3 formalizes this policy.

Algorithm 5.3: Framework of the best improvement method
Input: Solution s, neighbourhood specification N(·), fitness function f (·) to minimize.
Result: Improved solution s

1 repeat
2 end← true
3 best_neighbour_value← ∞

4 forall s′ ∈ N(s) do
5 if f (s′)< best_neighbour_value then A better neighbour is found
6 best_neighbour_value← f (s′)
7 best_neighbour← s′

8 if best_neighbour_value < f (s) then Move to the improved solution
9 s← best_neighbour

10 end← false

11 until end

It performs more work between each change to the solution. The improvements
are therefore larger and fewer in number. This policy is less frequently used in meta-
heuristics. We will see later that taboo search is based on this framework. Indeed,
this technique tries to learn how to modify a solution smartly. It is therefore ap-
propriate to examine the neighbourhood thoroughly rather than rushing to the first
small improvement encountered.

However, there are problems where there is an interest in exploiting this policy.
For the quadratic assignment problem, it can be shown that evaluating a neighbour
solution takes a time proportional to O(n) whereas it is possible to evaluate the set
of O(n2) neighbour solutions in O(n2). With the same computational effort, it is
therefore possible to evaluate more solutions with the best improvement policy.

Sometimes, the set N(s) is so large that its enumeration is done either implicitly
to extract the best neighbour solution, or heuristically; we will come back to this in
particular in chapter 6 with the large neighbourhood search technique 6.4.1.
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Code 5.1 implements the best improvement framework for the TSP. The algo-
rithm seeks the best replacement of two edges by two others.

Code 5.1: tsp_2opt_best.jl Implementation of a best improvement method for the
TSP with 2-opt neighbourhood. To avoid numerical problems, it is important to
ensure that distances are integer.

1 # Local search based on 2-opt moves, best move policy
2 function tsp_2opt_best(d, tour, tour_length)
3 n = length(tour)
4 best_delta = -1
5 while best_delta < 0
6 best_delta, best_i, best_j = typemax(Int), -1, -1
7 for i = 1:n-2
8 for j = i+2:n
9 if i == 1 || j == n

10 continue
11 end
12 delta = d[tour[i], tour[j]] + d[tour[i+1], tour[mod1(j+1,n)]] -
13 d[tour[i], tour[i+1]] - d[tour[j], tour[mod1(j+1,n)]]
14 if delta < best_delta
15 best_delta, best_i, best_j = delta, i, j
16 end
17 end
18 end
19 if best_delta < 0
20 tour_length += best_delta
21 i, j = best_i+1, best_j # Reverse path from best_i+1 to best_j
22 while i < j
23 tour[i], tour[j] = tour[j], tour[i]
24 i, j = i + 1, j - 1
25 end
26 end
27 end
28 return tour, tour_length
29 end

5.1.3 Local Optima

By applying Algorithm 5.1, whether one of its variants (5.2 or 5.3), a locally opti-
mal solution is obtained with respect to the neighbourhood used. Indeed, there is no
guarantee that the returned solution is the best for the particular instance. Globally
optimal solutions are therefore opposed to those which are only locally optimal. It
should be emphasized that a local optimum relative to one neighbourhood is not nec-
essarily a local optimum for another neighbourhood (see Problem 5.1). A plateau is
a set of neighbouring solutions all having the same value. Figure 5.2 illustrates the
notion of local optimum, plateau and global optimum.

Objective functions such as min(max(. . .)) generate many plateaus with many
solutions. Their optimization with a local search is therefore difficult. Indeed, all
solutions in a plateau are local optima.

However, for some problems, that frame provides globally optimal solutions.
These include, in particular, the shortest path problem with the Bellman-Ford Algo-
rithm 2.4 and linear programming with the simplex algorithm.
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Fig. 5.2: Local minima, global minimum, and plateau of a function of a discrete
variable x relative to a neighbourhood consisting in changing x by one unit

Since the set of solutions to a combinatorial problem is finite and Algorithms 5.2
and 5.3 only modify the solution if it is strictly improved, we deduce these algo-
rithms end after a finite time. However, their calculation time is not necessarily
polynomial, even if the size of the neighbourhood is. In practice, as with the sim-
plex algorithm, we do not observe such a degeneration.

Figure 5.3 shows the evolution of the average computing time for two methods
applied to the TSP (the best improvement and first improvement policies) as a func-
tion of the number of cities. The starting solution is randomly generated, and the
instances are selected from the 2D Euclidean ones of the TSPLIB [53].
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computational times approximately aligned on a straight line indicates a polynomial
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5.1.3.1 TSP 3-Opt

The beginning of this chapter presents a local search for the TSP based on replacing
two edges by two others. It is naturally possible to define other neighbourhoods, for
instance replacing three edges (or arcs in the case of a non-symmetrical problem)
by three others. Figure 5.4 shows this type of move, called 3-opt.

Fig. 5.4: 3-opt move. Three arcs are replaced by three others. They connect three
sub-paths traversed in the same direction, before and after modification. Another
way to apprehend the 3-opt neighbourhood is the displacement of a sub-path else-
where in the tour

An attractive property of this neighbourhood is not to change the path direction
between the three nodes whose successors are modified. In the case of symmetrical
problems, there are several ways to reconnect the three sub-paths (see Problem 5.4)

Representing a solution by means of a permutation s whose element si indicates
the city visited just after the city i, a 3-opt move can be implemented in constant
time. Checking that a solution is 3-optimal can be done in O(n3). Hence, without
using neighbourhood reduction techniques, it can only manage relatively small in-
stances. Code 5.2 implements a local search for the TSP with 3-opt moves. It applies
the first improvement policy.
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Code 5.2: tsp_3opt_first.jl Implementation of an improvement method based on
3-opt neighbourhood. In practice, its complexity in Ω(N3) is excessive for tackling
instances with several hundred cities

1 ######### Local search with 3-opt neighborhood and first improvement policy
2 function tsp_3opt_first(d, succ, tour_length)
3 last_i, last_j, last_k = 1, succ[1], succ[succ[1]]
4 i, j, k = last_i, last_j, last_k
5

6 while true
7 delta = d[i, succ[j]] + d[j, succ[k]] + d[k, succ[i]] -
8 d[i, succ[i]] - d[j, succ[j]] - d[k, succ[k]] # Move cost
9 if delta < 0

10 tour_length += delta # Update solution cost
11 succ[i], succ[j], succ[k] = succ[j], succ[k], succ[i]# Perform move
12 j, k = k, j # Replace j between i and k
13 last_i, last_j, last_k = i, j, k
14 end
15

16 k = succ[k] # Next k
17 if k == i # k at its last value, next j
18 j = succ[j]
19 k = succ[j]
20 end
21 if k == i # j at its last value, next i
22 i = succ[i]
23 j = succ[i]
24 k = succ[j]
25 end
26 if i == last_i && j == last_j && k == last_k
27 break
28 end
29 end
30

31 return succ, tour_length
32 end

5.1.3.2 TSP Or-Opt

Another type of neighbourhood proposed by Or [49] is to modify the visiting order
of a few consecutive cities. The idea is to examine whether it is pertinent to place
three successive cities somewhere else in the current tour.

The originality of the method proposed by Or is exploiting several neighbour-
hoods. Once it is no longer possible to improve the solution by changing the visit-
ing order of three cities, we try to change only two. As soon as changing two cities
improves the solution, we return to the first neighbourhood. When the solution is
locally optimal with respect to these two neighbourhoods, we try changing the po-
sition of a unique city. Figure 5.5 illustrates a possible Or-opt move.

This neighbourhood is distinct from a limitation of the 3-opt neighbourhood in
which a sub-road would be limited to 3, 2 or 1 city. Indeed, Or neighbourhood tries
to reverse the sub-path direction. Testing if a tour is Or-optimal takes Θ(n2) time.
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Fig. 5.5: Or-opt move, where three successive vertices are moved within the tour.
Possibly, it is worthier to modify the sub-path direction

5.1.3.3 Data Structure for TSP 2-Opt

The 2-opt neighbourhood reverses the direction of a sub-path. Visually, this seems
innocuous for a symmetrical instance. But, it is not so for the computer representa-
tion of a solution. A data structure, inspired by the work of [50], enables performing
a 2-opt move in constant time. For each city, an array stores both adjacent cities. The
array components at indices 2i and 2i+1 provide both adjacent cities of the city i.

An array t with 2n indices represents a solution. Initially, t2i/2 provides the num-
ber of the city succeeding i and (t2i+1−1)/2 the number of the city preceding i. A
2-opt move consists in modifying four values of the array t. This can be realized in
constant time. Figure 5.6 illustrates the operating principle of this data structure.

Code 5.3 initializes an array t implementing this data structure from a given tour.
The latter is provided by the sequence of cities successively visited (and not the
successor of each city).

Code 5.3: build_2opt_data_structure.jl Implementation and initialization of the
data structure presented in Figure 5.6. The tour is provided by the sequence of the
cities to visit. The data structure allows performing a 2-opt move in a constant time

1 ######### Data structure building for performing 2-opt move in constant time
2 function build_2opt_data_structure(tour) # Sequence of visit of the cities
3 n = length(tour)
4 t = Vector{Int}(undef, 2n + 1) # Index 1 lost
5 for i in 1:n # Forward tour
6 t[2tour[i]] = 2tour[mod1(i + 1, n)]
7 end
8 for i in 2:n # Backward tour
9 t[2tour[i] + 1] = 2tour[i - 1] +1

10 end
11 t[2tour[1] + 1] = 2tour[n] + 1
12 return t
13 end

Code 5.4 implements a first improvement heuristic based on this principle. It uses
the shift operator i>>1 to quickly evaluate the expression i/2. The latter is the
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Fig. 5.6: Data structure for performing 2-opt moves in constant time. The numbers
from 0 to 7 above the pairs of cells in the table correspond to the city numbers. The
numbers below the cells correspond to the table indices. The 2i and 2i+ 1 entries
of the array allow identifying both cities adjacent to the city i. Starting from the
index 0, we can reconstitute the tour by following the adjacent city. Starting from
the index 1, we can reconstitute the tour in the other direction. Performing a 2-opt
move consists in altering four entries in the array

number of the ith city. The “exclusive or” operator iˆ1 allows quickly calculating
the expression i+1-2*(i%2) providing the index to access the adjacent city.
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Code 5.4: tsp_2opt_first.jl Implementation of a first improvement heuristic for the
TSP based on 2-opt neighbourhood. This implementation exploits the data structure
shown in Figure 5.6 for performing the moves in constant time

1 include("tsp_utilities.jl") # Code 12.2
2 include("build_2opt_data_structure.jl") # Code 5.3
3

4 # Local search based on 2-opt moves, first move policy
5 function tsp_2opt_first(d, tour, tour_length)
6 n = length(tour)
7 t = build_2opt_data_structure(tour)
8 i, last_i = 2, 2
9 while t[t[i]] != last_i

10 j = t[t[i]]
11 while j != last_i && (t[j] != last_i || i != last_i)
12 delta = d[i ÷ 2, j ÷ 2] + d[t[i] ÷ 2, t[j] ÷ 2] -
13 d[i ÷ 2, t[i] ÷ 2] - d[j ÷ 2, t[j] ÷ 2]
14 if delta < 0
15 next_i, next_j = t[i], t[j]
16 t[i], t[j] = j ⊻ 1, i ⊻ 1
17 t[next_i ⊻ 1], t[next_j ⊻ 1] = next_j, next_i
18 tour_length += delta
19 last_i = i
20 j = t[i]
21 end
22 j = t[j]
23 end
24 i = t[i]
25 end
26 return tsp_2opt_data_structure_to_tour(t), tour_length
27 end

5.1.4 Neighbourhood Properties

A neighbourhood connects various solutions of the problem. Thus, a graph can rep-
resent it. The vertices are the solutions. An edge connects two neighbour solutions.
The edges can be directed if the moves are not immediately reversible. An efficient
neighbourhood, or its representative graph, should have certain properties.

5.1.4.1 Connectivity

The connectivity property of a neighbourhood stipulates that any feasible solution
can reach at least one globally optimal solution. In other words, there must be a path
from any vertex to one representing an optimal solution. This path is not necessarily
monotonously improving.

5.1.4.2 Low Diameter

A neighbourhood is expected to allow discovering an optimal solution in a few
steps. By definition, the diameter of a graph is the maximum length of a shortest
path connecting two vertices.
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5.1.4.3 Low Ruggedness

A neighbourhood should have as few local optima as possible and a strong corre-
lation between the values of neighbour solutions. The ideal would be to have only
one, which would then be the global optimum, achievable every time starting from
any solution. This property is certainly not satisfied for intractable problems and
polynomial neighbourhoods. However, finding an adequate neighbourhood for the
problem under consideration is essential for the success of an improvement method.

For problems like the TSP, many neighbourhoods have been devised, some being
remarkably effective for obtaining excellent solutions. This can most likely be ex-
plained by the visual side of the problem, which considerably supports us in decid-
ing what modifications to make to a solution to improve it. For other problems, it is
challenging to imagine neighbourhoods, and these sometimes lead to “egg carton"-
type landscapes, very poorly suited to optimization.

One possibility for smoothing a neighbourhood is to modify the fitness function.
The flying elephant method of [70] exploits this trick for the optimization of con-
tinuous functions. The |x| terms in the objective function are replaced by

√
x2 + τ2

and terms of the type max(0,x) by (x+
√

x2 + τ2)/2. When the parameter τ tends
toward 0, the modified fitness function gets closer to the original objective function.
Flying elephants is a metaphor that makes the analogy with a large round object
dropped on a rugged field. Such an object will roll further to a lower altitude than a
small one that will stop at the first small basin.

5.1.4.4 Small Size

Since improvement methods are based on the systematic evaluation of neighbour
solutions, the neighbourhood size should not be excessively large. For instance, the
2-opt neighbourhood for the TSP is in O(n2). This allows addressing problems with
several thousand cities. This is not possible with the 3-opt neighbourhood, in O(n3).

5.1.4.5 Fast Evaluation

Finally, the algorithmic complexity of evaluating the quality of the neighbour solu-
tions should be as low as possible. For an asymmetric travelling salesman problem,
the advantage of the small 2-opt neighbourhood size is negated by the fact that
a constant time cost evaluation is no longer possible. In this case, evaluating the
larger 3-opt neighbourhood could be faster. As shown in Figure 5.7, part of the tour
is reversed with the 2-opt neighbourhood. Thus, the ruggedness of the 2-opt neigh-
bourhood is also higher than that of the 3-opt for highly asymmetric problems.
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Fig. 5.7: 2-opt move where two edges are replaced by two other edges. This type
of move is only suitable for symmetrical problems because a part of the tour is tra-
versed in the opposite direction, which can significantly alter its cost if the problem
is not symmetrical

5.2 Neighbourhood Limitation

Typically, the size of a neighbourhood grows quadratically or cubically with the
size of the problem instance. As local searches require repeatedly evaluating the en-
tire neighbourhood, the computations are prohibitive as the instance size increases.
Various techniques have been proposed to limit the computational growth.

5.2.1 Candidate List

A first idea is to make the hypothesis that a favourable move for a solution will re-
main good for similar solutions. A general method for limiting the computational
effort is first to evaluate all moves applicable to a given solution. A selection of
the best ones is stored in a candidate list. Only the moves contained in the list are
evaluated for some iterations. Periodically, the whole neighbourhood must be eval-
uated. Indeed, the solution is likely to have been quite modified since the candidate
list elaboration. Moves that were unfavourable can thus become interesting and vice
versa.

5.2.1.1 Candidate List for the Euclidean TSP

In the case of the TSP, the move evaluation is independent of the solution. A can-
didate list of moves does not need to be periodically reconstructed. But, it implies
developing a mechanism to detect whether a given move is valid. For instance, a
move can create two or more sub-cycles. If the TSP cities are on the Euclidean
plane, building a Delaunay triangulation requires a work in O(n logn).
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The candidate moves only consider the edges present in the triangulation. It can
be proved that a Delaunay triangulation has Θ(n) edges and an average vertex de-
gree not exceeding six. Hence, the size of this limited neighbourhood is in Θ(n).
Empirical observation reveals the edges of an optimal tour are almost all part of the
Delaunay triangulation. This is illustrated in Figure 5.8.

Fig. 5.8: Optimal tour of the TSP instance tsp225 on which is superimposed the
Delaunay triangulation. Here, all the edges of the optimal tour are part of the trian-
gulation

Unluckily, this technique solely applies to Euclidean problems. Indeed, the con-
struction of a Delaunay triangulation relies on geometric properties. A general
neighbourhood limitation technique uses a form of learning with solutions (see
Chapter 10) or vocabulary building (see Section 8.2).

The idea behind this technique is to generate a number of solutions and limit the
neighbourhood to moves comprising only elements making part of these solutions.
They do not need to be of exceptional quality. But, they must have diverse structures
and have similar portions with good solutions to the problem. Also, obtaining them
should not need excessive computational effort. Chapter 6 shows how to proceed
with large instances.

5.2.1.2 TSP Neighbourhood Limitation with 1-Trees

Another general neighbourhood limitation technique for the TSP, proposed by Hels-
gaun [31], uses the concept of 1-tree (see Section 3.1.1.2 presenting a Lagrangian
relaxation for the TSP). Shortly, the idea is to compute the extra cost that would
result if the edge (i, j) is part of the 1-tree. The neighbourhood reduction proceeds
by keeping a few edges — typically 5 — adjacent to each vertex with the lowest
extra costs. A beneficial collateral effect of this edge length modification technique
is to lower the ruggedness of the neighbourhood.
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Its algorithmic complexity depends on the construction of a minimum spanning
tree. As seen in Section 2.1, this complexity depends on the number of edges. For
large instances, it is necessary to start by reducing their number, for example with
the merging tour technique presented in the previous section. Both neighbourhood
reduction techniques have similarities with granular search.

5.2.2 Granular Search

Granular search is to a priori eliminate solutions with certain characteristics. Illus-
trating this on the vehicle routing problem, one can assume that good solutions will
not include a path directly connecting distant customers. For this problem, [67] pro-
posed to ignore the solutions which involve trips between two clients whose length
is greater than a value. The latter is set to β times the average trip length of a solu-
tion obtained using a fast constructive heuristic, where β is a parameter generally
slightly greater than 1. This parameter is called the local search granularity. How-
ever, the paths between the depot and the customers should remain, whatever their
length is.

A similar technique has been used extensively for the TSP. Instead of considering
a complete graph where each city is connected to all others, it is only connected to
its p closest neighbours, with p limited to a few dozen. Thus, the size of a 2-opt
neighbourhood is n · p2 instead of n2. The quality loss of the solutions obtained with
such a neighbourhood reduction is often negligible.

However, implementation of this idea is not trivial. First, the reduced graph where
each node is connected to its p nearest neighbours may be not connected. It is there-
fore necessary to add longer edges so that the graph contains at least one cycle
passing through all nodes. Second, the local search implementation is more com-
plex.

For instance, the data structure shown in Section 5.1.3.3 for the 2-opt neighbour-
hood cannot be used directly. Indeed, it is fast to determine the city si succeeding to
city i and a city j close to i (there are only p candidates). But it is not possible to im-
mediately identify the city s j succeeding to j by following the tour in the direction
i→ si.

In the same way, for the 3-opt neighbourhood, we can quickly detect three cities
i, j and k that are close and can be candidates for a 3-opt move. But we cannot
determine in a constant time if, starting from i, the tour visits first the city j before
the city k. Indeed, if the 3-opt move (i, j,k) is feasible for a solution, the move
(i,k, j) is not: it creates three sub-tours.

5.3 Neighbourhood Extension

There are problems for which it is challenging to imagine reasonable neighbour-
hoods which substantially modify a solution. Hence, the following problem arises:
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how to implement substantial changes to a solution on the basis of a simple and
limited neighbourhood.

Let us remark there is no contradiction in both limiting the size of a simple neigh-
bourhood with the techniques described above (to eliminate the moves that will
never lead to good solutions) and extending this limited neighbourhood with the
techniques presented in this section.

5.3.1 Filter and Fan

To construct a neighbourhood Ne extended from the definition of a small set M of
moves applicable to a solution, we can consider k successive modifications Ne(s) =
{s′|s′ = s⊕m1⊕·· ·⊕mk,m1, . . .mk ∈M(s)}. The size of Ne increases exponentially
with k. To avoid such a growth, we can use the beam search strategy presented in
Section 4.4.1, but adapted to a local search rather than a constructive method.

This technique, proposed by Glover [28] is called the filter and fan strategy. Each
level only retains the p best neighbour solutions. Few of them may be worse than the
starting solution. Then their neighbours are evaluated before repeating the process
up to level k. Thus, at each step, up to k modifications are made according to the
original neighbourhood. It should be noted here that the best solution encountered
when evaluating the extended neighbourhood is not necessarily one of the ultimate
level. This process is illustrated in Figure 5.9.

Starting solution

p best neighbours at level 1

p best neighbours at level 2

Best solution visited: Starting solution for the next step

Moves applied to the starting solution

Level k

Fig. 5.9: Filter and fan with p= 3 and k = 3. Each level retains p neighbour solutions
at most. The next current solution is the best of those listed

A variant of filter and fan search is not to retain a static number p of neighbour
solutions at each level, but all the improving neighbour solutions. The choice of
the ultimately retained neighbour solution at level 1 is not the one that leads to the
best solution up to level k, but the one which most opens the fan, that is to say, the
solution of level k−1 which has the most improving solutions at level k.
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5.3.2 Ejection Chain

Another way to build a large neighbourhood from basic modifications is to go
through unfeasible solutions. The name of ejection chain has been proposed by
Glover [26]. It combines and generalizes ideas from different sources. The most
famous is certainly the Lin & Kernighan neighbourhood for the TSP.

A starting solution is transformed into an object called a reference structure.
The latter is not a proper solution, but it can easily be transformed either into other
reference structures or into feasible solutions. The starting solution is disrupted by
the ejection of one of its components to obtain a reference structure which can also
be transformed by the ejection of another component. This chain of ejections ends
either when a better solution than the starting one has been identified, or when all
the elements to eject have been tested.

If an improving solution is discovered, the process is reiterated from it. Other-
wise, the chain is initiated by trying to eject another item from the initial solution.
The process stops when all possible chain initializations have been vainly tried. To
prevent an endless process, it is forbidden either to add an item previously ejected
to the reference structure or to propagate the chain by ejecting an element that was
added to the reference structure.

Lin-Kernighan Neighbourhood

One of the most effective neighbourhoods for the TSP is due to Lin & Kernighan
[42]. It is based on an ejection chain. The initial tour is transformed into a path by
removing an edge [a,b]. This path is transformed into a reference structure. The
latter consists of a path linked to a cycle by including an edge [b,d]. The removal of
the edge [c,d], which is part of the cycle of the reference structure, transforms the
reference structure into another path.

The latter is either transformed into a tour by adding the edge [a,c] or in another
reference structure by adding another edge incident to c. This node then plays the
role of b of the previous step. Figure 5.10 illustrates the operating principle of this
process.

The Lin & Kernighan local search is presented in Algorithm 5.4.
The ejection chain mechanism may seem artificial. However, it is possible to ob-

tain relatively complex modifications and improve not awful solutions, as illustrated
in Figure 5.11.

A basic Lin & Kernighan implementation is given in Code 12.3. Much more
elaborated, highly efficient implementations are due to [3] and [32].
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a bd c

Initial tour

Path

Reference structure

New path

New reference structure

New tour

a′ b′d′ c′

Fig. 5.10: Operating principle of an ejection chain for the TSP. Eject an edge [a,b]
to get a path. Insert an edge [b,d] to get a reference structure. It can be transformed
either into another reference structure, by ejection of the edge [c,d] and addition of
another edge, or into a tour by ejection of [c,d] and addition of the edge [a,c]

Algorithm 5.4: Ejection chain (Lin & Kernighan) for the TSP
Input: TSP Solution s
Result: Improved solution s

1 repeat
2 Eject edge [a,b] to initiate the chain
3 repeat
4 Find the edge [b,d] to add, minimizing the reference structure weight, with [c,d]

not has been removed in the current ejection chain
5 if Edge [b,d] found and reference structure weight smaller than tour s then
6 if Adding [a,c] and removing [c,d] improve the tour then
7 Success: Replace solution s by the new discovered tour
8 else
9 Add edge [b,d]

10 Remove edge [c,d]
11 b← c

12 else
13 Ejection failure: come back to s and try another ejection

14 until s improved or no edge [b,d] exists
15 until all edges of s have vainly initiated a chain
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Fig. 5.11 Application of an
ejection chain on a small
TSP. After four ejections, it
is possible to improve the
starting solution

Initial solution Path Structure 1

Structure 2 Structure 3 Accepted solution

5.4 Using Several Neighbourhoods or Models

A local optimum is relative to a given neighbourhood structure. Hence, it is possible
to use multiple neighbourhoods simultaneously. For instance, a 2-optimal TSP tour
is not necessarily 3-optimal.

Once a 2-optimum solution has been found, it is potentially possible to improve
it with a method using a 3-opt neighbourhood (see, for instance, Figure 9.4). Simi-
larly, a 3-optimal solution is not necessarily 2-optimal. We can therefore repeat the
improvement processes as long as the solution found is not a local optimum with
respect to all the neighbourhood structures considered. The reader can verify this
fact by running Code 12.7.

Finally, let us mention that one can switch from one modelling of the problem
to another. To the extent that the neighbourhood structure is not the same for the
various modelling, it is equally possible to iterate improvement methods using dif-
ferent models. This technique may be inapplicable as is, since a feasible solution for
one model can be unfeasible for another. In this case, repair methods should be pro-
vided when changing the modelling. This implies the process is no longer a strict
improvement method. A corollary is that the search could enter an infinite cycle.
Indeed, repairing a solution obtained with a first model and then improving it with
a second model can cancel out the improvements obtained with the first model.

5.5 Multi-Objective Local Search

Various relatively simple local search techniques have been proposed for multi-
objective optimization. We will examine two approaches not so difficult to imple-
ment and producing good solutions.
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5.5.1 Scalarizing

A technique mentioned in Section 3.2.1 for multi-objective optimization is scalar-
izing. It aggregates the objectives by associating a weight wi with the ith one. By
providing a vector of weights and transmitting a scalar function to a local search, we
can thus get an approximation of a supported solution. By varying the weight vector,
we can discover more of these approximations. However, this technique produces at
best one solution approximating the Pareto set for each local search run.

Algorithm 5.5: Framework of an improvement method for multi-objective
optimization. The user must provide a parameter Imax giving the number of
scalarizations. Here, the weights are just randomly generated

Input: Solution s, neighbourhood N(·), objective functions
−→
f (·) to minimize; parameter

Imax
Result: Approximation P of the Pareto set

1 P = s
2 for Imax iterations do
3 Randomly draw a weight vector −→w
4 repeat
5 end← true
6 best_neighbour_value← ∞

7 forall s′ ∈ N(s) do
8 if s′ is not dominated by solutions of P then
9 Insert s′ in P and remove the solutions of P dominated by s′

10 if −→w ·−→f (s′)< best_neighbour_value then
11 best_neighbour_value←−→w ·−→f (s′)
12 best_neighbour← s′

13 if best_neighbour_value <−→w ·−→f (s) then
14 s← best_neighbour
15 end← false

16 until end

Without needing much more programming efforts, it is possible to get a better
approximation of the Pareto set by transmitting all the objectives to the local search.
Hence, we can check each neighbour solution whether it improves the Pareto set
approximation. An elementary implementation of this principle is presented in Al-
gorithm 5.5. Figure 5.12 illustrates the behaviour of Algorithm 5.5 for three different
scalarizations.

5.5.2 Pareto Local Search

An alternative approach to scalarization is the Pareto Local Search (PLS) [51]. The
idea is to start with any solution to the problem. The latter is the first estimate — of
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Fig. 5.12: Trajectory and evolution of an iterated local search for the bi-objective
TSP instance (EuclidAB100) using the scalarization technique. The improvement
method is based on an ejection chain. The weights associated with the objectives
are randomly drawn each time the search reaches a local optimum. The starting
solution is obtained by a greedy constructive method working solely on the first
objective

poor quality — of the Pareto set. While the estimated Pareto set is not stabilized,
generate all the neighbour solutions of the estimated Pareto set and update it with
them.

Recursive procedures allow expressing the method very concisely, as shown by
Algorithm 5.6. Code 5.5 implements a Pareto local search for the TSP.
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Algorithm 5.6: Framework of Pareto Local Search for multi-objective opti-
mization. The interest of the method is to contain no parameter

1 Neighbourhood_evaluation
Input: Solution s; neighbourhood N(·) objective functions

−→
f (·)

Result: Approximation of Pareto set P completed with neighbours of s
2 forall s′ ∈ N(s) do
3 Update_Pareto(s′,

−→
f (s′))

4 Update_Pareto
Input: Solution s, objective values −→v
Result: Updated Pareto set P

5 if (s,−→v ) either dominates a solution of P or P = /0 then
6 From P, remove all the solutions dominated by (s,−→v )
7 P← P∪ (s,−→v )
8 Neighbourhood_evaluation(s)

Code 5.5: tsp_3opt_pareto.jl Implementation of Pareto local search for the TSP,
based on 3-opt moves. This function calls another one (Code 12.6) that updates the
Pareto set for each neighbour of the provided solution. The data structure used to
store the Pareto set is discussed in Section 5.5.3

1 include("kd_tree_update_pareto.jl") # Code 12.6
2

3 ######### Pareto local search for the TSP based on 3-opt neighbourhood
4 function tsp_3opt_pareto(pareto, # Pareto front
5 costs, # Tour length (for each dimension)
6 s, # Solution (successor of each city)
7 d) # Distance matrix (one for each dimension)
8 costs_neighbour = fill(-1, K) # Cost of neighbour solution
9 start = unif(1,length(s)) # Random starting city for move evaluation

10 i, j, k = start, s[start], s[s[start]] # Indices of a 3opt move
11 while s[s[i]] != start # Neighbourhood not completely evaluated
12 for dim in 1:K
13 costs_neighbour[dim] =
14 costs[dim] + d[dim][i,s[j]] + d[dim][j,s[k]] + d[dim][k,s[i]] -
15 d[dim][i,s[i]] - d[dim][j,s[j]] - d[dim][k,s[k]]
16 end
17 s[i], s[j], s[k] = s[j], s[k], s[i] # Change solution to neighbour
18 pareto = update_3opt_pareto(pareto, costs_neighbour, s, d)
19 s[k], s[j], s[i] = s[j], s[i], s[k] # Back to solution
20 k = s[k] # Next k
21 if k == i # k at its last value, next j
22 j = s[j]; k = s[j]
23 end
24 if k == i # j at its last value, next i
25 i = s[i]; j = s[i]; k = s[j]
26 end
27 end
28 return pareto
29 end

However, the method can be sped up by not starting with an arbitrary solution,
but by calling it several times with good solutions obtained by scalarizing the objec-
tives. Indeed, there are habitually very effective methods for solving mono-objective
problems. This allows us to immediately get supported solutions.
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For instance, polynomial algorithms exist for the linear assignment problem
while the multi-objective version is NP-hard. Starting Pareto local search with a
reliable estimate of the Pareto set limits the number of updates and the procedure
stops faster. This also avoids too deep recursive calls, likely overflowing the recur-
sion stack.

5.5.3 Data Structures for Multi-Objective Optimization

Both techniques presented above for multi-objective optimization can be relatively
inefficient if no adequate data structure is used to store the Pareto set. Indeed, it
often requires a constant time to evaluate the objectives of a neighbour solution.
This means a few nano-seconds on current computers. Checking for the domination
of a solution can consume much more time than computing the objectives. Using a
simple list to store the p solutions of the Pareto set may slow down the search by a
factor proportional to p.

It is not uncommon for the Pareto set to contain thousands of solutions. Hence, an
appropriate data structure for testing the dominance of a solution should not require
a computational time growing linearly with the Pareto set size.

5.5.3.1 Array

Assuming a limited number of different integer values for the K objectives, a K−1
dimensional array is a simple and extremely efficient data structure to store the
Pareto set.

The size of this array in a dimension is given by the distinct possible values the
corresponding objective can take. A cell of this array stores the value of the best
solution found for the Kth objective. For a bi-objective problem, we have a simple
array. For instance, if we know that the first objective can vary from 2 to 13 and we
have identified solutions with objectives (2,27), (4,24), (6,23), (7,21) and (11,17),
the array contains [27,27,24,24,23,21,21,21,21,17,17,17]. The first element of
this table has an index of 2, corresponding to the value of the first objective in the
solution (2,27). At this index, the table contains 27, which is the value of the second
objective in this solution. At index 3, the table contains the same value, as the second
objective only decreases to 24 for a value of 4 in the first objective.

After discovering the solution (5,20), the table entries are updated with the value
of 20 from index 5 until an entry with a value lower than 20 is encountered. So, we
get: [27,27,24,20,20,20,20,20,20,17,17,17].

This data structure is limiting, because the objectives are not necessarily integers
or do not involve a reasonable number of different values. However, if this data
structure is usable in practice, it is incomparably fast, since it is possible to know
the domination status of a solution in constant time.
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5.5.3.2 KD-Tree

In the general case, a data structure whose query time is weakly growing with the
number p of elements stored is the KD-tree. This data structure partitions points in
a K-dimensional space. Each node contains a point. A node at depth d implicitly
generates a hyperplane along dimension d (modulo K), which separates the remain-
ing points into two groups. The first group contains only points whose value for that
dimension is less than or equal to that of the splitting point, while the second group
contains all complementary points, whose value for that dimension is greater than
or equal to that of the splitting point. Code 12.4 presents the basic procedures for
including a new element in a KD-tree and inspecting all the elements stored in the
tree.

The removal of a given node is a tricky procedure to program for a KD-tree.
Figure 5.13 gives an example of updating a KD-tree after the discovery of a new
efficient solution. Unlike a single-dimensional binary tree, the rightmost node from
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Fig. 5.13: KD-tree update for a bi-objective cost/time problem. On the left, the tree
contains an approximation of the Pareto frontier. After the discovery of the efficient
solution 287/152, the dominated solution 298/217 must be searched and eliminated.
To do this, we look for the solution with the highest time in its left subtree (307/147).
It replaces the node of the dominated solution. The old node 307/147 must be recur-
sively replaced, here, by the node (319/137) with the lowest cost in its right subtree
(because the left subtree is empty). On the right is the situation of the KD-tree after
insertion of the new efficient solution

the left subtree or the leftmost one of the right subtree can generally not replace
the removed node. Indeed, a KD-tree discriminates on a different dimension at each
level. So, a walk through both sub-trees is required to find the replacing node. The
latter is itself recursively replaced, until it is a leaf, simply eliminated.

Code 12.5 implements a removal procedure of a given node within a KD-tree.
Finally, to use a KD-tree to update a Pareto set, a function must find a point of the
tree that dominates an attempted solution, if any. For this, it is necessary to look if
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the KD-tree possesses a point between the ideal point, which is the one whose values
on all dimensions are those of the optimum of the objectives, taken separately.

In practice, the ideal point is unknown, but a coarse approximation is appropriate,
for instance (−∞, . . . ,−∞) if all the objectives must be minimized. If the KD-tree
contains points in the hyper-rectangle delimited by (−∞, . . . ,−∞) and the attempted
solution, then these points dominate the trial solution. The latter is thus ignored.
Otherwise, the trial solution dominates others, which must be eliminated from the
KD-tree. The trial solution is then added to the KD-tree. Code 12.6 allows updating
a Pareto set when seeking to include a new point.
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Problems

5.1. Local Minima
Figure 5.2 shows the local optima of a function of a discrete variable x relative to a
neighbourhood consisting in changing x by one unit. On this figure, locate the local
optima relative to an asymmetric neighbourhood consisting in either adding 4 or
subtracting 3 from x. Does this neighbourhood have the connectivity property?

5.2. Minimizing an Explicit Function
An integer function of integer variables [−7,6]× [−6,7]→ [−10,650] is explicitly
given in Table 5.1. We seek the minimum of this function by applying a local search
with the first improvement policy, starting from the solutions (6,7) of value 650
and from the solution (6,−6) of value of 510. It is assumed that the moves consist
in modifying by a unit the value of a variable. The moves are checked in the or-
der: (+1,0), (0,+1), (−1,0) and (0,−1). Next, apply a local search with the best
improvement policy, starting from the solution (−7,7) of value 248 and from the
solution (−7,−6) of value of 92.

x
−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

7 248 216 210 222 230 234 256 304 336 372 428 495 585 650
6 193 175 157 166 174 181 215 249 295 329 382 454 539 597
5 138 144 126 116 124 150 184 194 250 305 361 425 480 566
4 123 89 85 97 105 109 129 179 209 246 302 368 458 525
3 92 58 70 70 78 94 98 148 168 223 282 339 413 510
2 68 34 46 46 54 70 74 124 144 199 258 315 388 486

y 1 51 17 14 25 33 38 57 107 136 174 230 296 386 454
0 18 25 5 −4 3 29 65 74 131 185 240 305 361 445
−1 27 6 −10 0 8 13 46 83 126 160 213 284 371 429
−2 33 0 −3 8 15 20 39 89 118 156 212 278 368 436
−3 33 12 −4 6 14 19 52 89 132 166 219 290 377 435
−4 30 37 17 7 15 41 77 86 143 197 252 317 373 457
−5 69 35 32 43 51 56 75 125 154 192 248 314 404 472
−6 92 58 70 70 78 94 98 148 168 223 282 339 412 510

Table 5.1: Integer function f (x,y) explicitly given

5.3. 2-Opt and 3-Opt Neighbourhood Properties
Show the following properties of the 2-opt and 3-opt neighbourhoods:

• The inversion of two cities or a 3-opt move can be obtained by a succession of
2-opt moves.

• 2-opt and 3-opt neighbourhoods have connectivity property.

Provide an upper bound to the diameter of these neighbourhoods.

5.4. 3-Opt for Symmetric TSP Section 5.1.3.1 introducing the 3-opt neighbour-
hood shows a possibility to replace three arcs with three other arcs. This possibility
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respects the direction of travel of the three sub-paths located between the modified
arcs. In the case of a symmetric problem where one accepts to change the direction
of travel of some sub-paths, how many possibilities are there to replace three edges
with three other edges while keeping an admissible tour?

5.5. 4- and 5-Opt For an asymmetric TSP, how many ways are there to replace four
arcs with four other arcs while maintaining the direction of travel of the sub-paths?
Same question for replacing five arcs.

5.6. Comparing 2-Opt Best and First
How many moves should be tested to show that a TSP tour with n cities is 2-optimal?
Empirically evaluate the number of repetitions of the external loop. Provide this
number as a function of the problem size for both procedures tsp_2opt_first
and tsp_2opt_best. Analyse the difference if the procedures start either with
the nearest neighbour solution or with a random one. Consider examples of Eu-
clidean problems, randomly, uniformly generated in a square. Explain the results.

5.7. 3-Opt Candidate List
To limit the size of a TSP neighbourhood, only the 40 shortest arcs incident to each
city are considered. With such a limitation, what is the complexity of verifying if a
solution is 3-optimal? Is a special data structure required to achieve this minimum
computational complexity? Is the neighbourhood generated by such a limitation
connected?

5.8. VRP Neighbourhoods
Suggest four different neighbourhoods for the vehicle routing problem. Give the size
of these neighbourhoods as a function of the number n of customers and the num-
ber m of tours. Specify whether these neighbourhoods have connectivity property,
depending on the problem modelling.

5.9. Steiner Tree Neighbourhood
Two solution modellings have been proposed in Section 2.1.2 for the Steiner tree
problem. Suggest neighbourhoods adapted to each of these modellings.

5.10. Ejection Chain for the VRP
Propose a technique based on ejection chains for the vehicle routing problem. Spec-
ify how to initialize the chain, how to propagate it, and how to stop it. Estimate
the computational complexity of evaluating an ejection chain for a solution with n
customers and m tours.

5.11. Local Search for the SameGame
Propose two different local search methods for the SameGame problem. Consider
two different initial solutions for each of these local searches: either a random so-
lution or a greedy method where the largest block with the lowest colour number is
eliminated first. Compare the performances of these four methods for boards of of
m = 15 rows and n = 20 columns filled randomly and uniformly with tiles of k = 5
colours.



Chapter 6
Decomposition Methods

In the process of developing a new algorithm, this chapter should logically have been
placed just after the one devoted to problem modelling. But, decomposition methods
are only used when the data size to process is large. Thus, the phase is optional. The
reader can glance it over before moving on to the following parts, devoted to the
stochastic and learning methods. This is the reason justifying its place at the end of
the first part of this book, devoted to the essential ingredients of metaheuristics.

6.1 Consideration on the Problem Size

The algorithmic complexity, very briefly exposed in Section 1.2.1, aims to evaluate
the computational resources necessary for running an algorithm according to the
data size it has to treat. We cannot classify the problems — large or small — only
by their absolute size: sorting an array of 1000 elements is considerably easier than
finding the optimal tour of a TSP instance with 100 cities. The time available to ob-
tain a solution is clearly important: the perception of what a large instance is might
not be the same if we have to perform a real-time processing in a few microseconds
or a long-term planning for which a 1-day computation is perfectly convenient. Very
roughly, we can put NP-hard problem instances in the following categories:

Toy Instances Approximative size: n ≈ 10. To ensure an algorithm works cor-
rectly, it is performed by hand. Another possibility is to compare its results to
those of a method, easy to implement, but much less efficient. For instance, this
can be an exhaustive enumeration of all solutions. Yet, we can empirically con-
sider a computer is able to perform 109 elementary operations per second. If one
has a time budget of this order of magnitude, one can consider an exhaustive enu-
meration for a permutation problem instance up to n ≈ 10; for a binary variable
problem, we have n≈ 20. Naturally, for polynomial algorithms, the instance size
processed in one second varies from n ≈ 50 for complexity in O(n3) to n ≈ 108

for linear complexity, passing through n ≈ 104 for quadratic complexity, and
n≈ 106 for an algorithm in O(n log n).

123
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Small Instances Typical size: 10⪅ n⪅ 102. When the size no longer allows an ex-
haustive enumeration of all solutions, we go into the category of small instances.
We could characterize them by those for which we know robust algorithms that
allow getting an optimal solution in a reasonable time. It should be mentioned
that the literature frequently reports exact algorithms for solving examples of
“difficult" problems of much larger size than those mentioned above. However,
one should be careful with such statements: indeed, optimal solutions of travel-
ling salesman or knapsack instances with tens of thousands of elements have been
found, but much smaller instances are out of the scope of these programs. Small
instances are useful for designing and calibrating heuristic methods. Knowing
the optimal solutions allows determining the quality of heuristics and tuning the
value of their parameters while maintaining reasonable computational times.

Standard Instances Typical size: 102 ⪅ n ⪅ 104. This is the typical application
area of metaheuristics. These are frequently encountered in real-world applica-
tions. They are too large to be solved efficiently by exact methods or for a human
to guess a good quality solution. The maximum instance size a metaheuristic can
handle is related to its algorithmic complexity, whether in terms of computational
time or memory. With more than 104 elements, it becomes challenging to use a
constructive method or a neighbourhood size in O(n2). This is specially the case
if one has to memorize an n× n matrix for efficiency reasons. The algorithmic
complexity of a metaheuristic-based program is frequently larger than O(n3).
Thus, many authors speak of a “large" instance for a size of 100.

Large Instances Typical size: 103 ⪅ n ⪅ 108. Some real instances often have a
higher number of items than standard instances, or they must be solved with
less computational effort than a direct method would take. We can think, for
instance, to vehicle routing for mail delivery or item labelling on a geographic
map. For such problems, a size of 105 is not exceptional. In this case, decom-
position methods must be used. This chapter presents some general techniques
for approaching large instances. Let us mention that these techniques sometimes
can advantageously be applied to smaller instances, even with just a few dozen
elements.

Huge Instances Size: n > 108 items. When the size of the problem exceeds 108

to 1010 items, it is no longer possible to completely store the data in RAM. In
this case, it is necessary to work on parts of the instance, usually using parallel
algorithms to maintain adequate processing times. The treatment of this type of
instances essentially raises mainly technical issues and is beyond the scope of
this book.

6.2 Recursive Algorithms

When a large instance has to be solved with limited computational effort, it is cut
into small parts, independently solved. Finally, they are put together to reconstruct
a solution to the complete problem. An efficiency gain is only possible with such
a technique by the conjunction of several conditions: directly solving the problem
requires a computational effort more than linear; otherwise, a decomposition only
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makes sense for a parallel computation. The parts must be independent of each
other. Combining the parts together should be less complex than directly solving
the problem. The difficulty lies in how to define the parts: they must represent a
logical portion of the problem so that their assembly, once solved, is simple.

The merge sort is a typical decomposition algorithm. A list to sort is split into
two roughly equal parts. These are sorted by two recursive calls, if they contain more
than one element. Finally, two locally sorted sub-lists are scanned to reconstruct a
complete sorted list.

6.2.1 Master Theorem for Divide-and-Conquer

In many cases, the complexity of a recursive algorithm can be assessed by the
divide-and-conquer master theorem. Suppose the time to address a problem of size
n is given by T (n). The algorithm proceeds by splitting the data into b parts of ap-
proximately identical size, n/b. Among them, a are recursively solved. Next, these
parts are combined to reconstruct a solution to the initial problem, which requires a
time given by f (n). To assess the complexity of such an algorithm, we must solve
the functional equation T (n) = a · T (n/b) + f (n) whose solution depends on the
reconstruction effort.

Introducing ε , a positive constant forcing the function f (n) to be either smaller
or larger than nlogb(a), the master theorem allows deducing the complexity class of
T (n) in some case:

• If f (n) = O(nlogb(a)−ε), then T (n) =Θ(nlogb(a))
• If f (n) =Θ(nlogb(a)), then T (n) =Θ(nlogb a · logn)
• If f (n) = Ω(nlogb(a)+ε) and if a · f (n/b) < c · f (n), with c < 1, constant, then

T (n) =Θ( f (n))

Often, a = b: we have a recursive call for all parts. In this case, the theorem states
that, if the reconstruction can be done in a sublinear time, then we can deal with the
problem in linear time. If the reconstruction takes a linear time — which is typically
the case for sorting algorithms — then the problem can be solved in O(n logn). The
last case simply indicates all the difficulty of the algorithm is concentrated in the
reconstruction operations. Finally, let us mention that the theorem does not cover all
cases for the function f (n).

There are also cases where a ̸= b. An example is a query for a point of the Eu-
clidean plane from a set of n points stored in a balanced 2D-tree (see the data struc-
ture discussed in Section 5.5.3.2). With such a data structure, one can halve the
number of points remaining to be examined by processing a maximum of a = 2
parts among b = 4. Indeed, unlike a binary tree in one dimension, we cannot ensure
to divide this number by two at every single level of the tree but only every two lev-
els. Since this is a query problem, there are no reconstruction and f (n) = O(1). As
log4(2) = 1/2, we can choose ε = 1/2, and we are in the first case. We can deduce
that the complexity of a query in a 2D-tree is in Θ(n1/2). However, if the points are
well spread, the empirical behaviour is better, closer to logn.
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Heuristic algorithms proceeding by recursion commonly stop prematurely, be-
fore the part size is so small that its resolution becomes trivial. Even if the parts
are exactly solved, the reconstitution phase does not generally guarantee optimality.
Hence, both cutting and reconstitution procedures are heuristics. This means that
the “border areas" between two parts are, more or less obviously, not optimum. To
limit this effect of sub-optimality, it is necessary to assemble as few parts as pos-
sible, while being able to process them. Indeed, if they are excessively large, their
exact resolution requires too much time or the heuristics may produce low-quality
parts.

6.3 Low Complexity Constructive Methods

Solving large instances implies limiting the complexity of the constructive method
for generating an initial solution. This means that even the most basic greedy method
is not appropriate. If the function c(s,e) that provides the cost of the addition of an
element e actually depends on the partial solution s, then its complexity is in Ω(n2).
Indeed, before including one of the n elements, it is necessary to evaluate c(s,e) for
all the remaining elements. A random construction in linear time is not suitable, due
to the bad quality of the solution produced.

It is therefore necessary to “cheat," making the hypothesis that not all the ele-
ments of the problems have a direct relationship with all the others. Put differently,
an element is in relation with a relatively limited number of other elements, and this
relationship possesses a certain symmetry. It is reasonable to make the hypothesis
that it is possible to quantify the proximity between two elements. In such a case,
we can avoid complexity in O(n2) by sampling and recursion. We can limit the phe-
nomenon of sub-optimality due to the assembly of parts by stopping the recursion
at the first or the second level.

6.3.1 Proximity Graph Construction

There are relatively good automatic classification heuristics to partition a problem
of size n into k groups. The fast variant of Algorithm 2.7 (k-medoids) mentioned in
Section 2.7.2 achieves such a heuristic partition with complexity of O(k ·n+( n

k )
2).1

This complexity can be minimized by choosing k =
√

n. Thus, it is possible to
partition a problem of size n in

√
n parts, each comprising approximately

√
n ele-

ments. Performing the clustering on a random sample of the elements (e.g. Θ(
√

n))
can significantly speed up the procedure. This method is illustrated in Figure 6.1.

1 The notation O(·) cannot be used here because it is assumed that the k groups contain approxi-
mately the same number of elements. In the worst case, a few groups could contain Θ(n) elements,
and Θ(n) groups could contain O(1) elements, which would imply a theoretical complexity in
O(n2). To limit the complexity, the algorithm must be stopped prematurely, if needed, by repeating
a constant number of times the external loop.
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(a) Complete set (b) Sample set

(c) Centres (d) Clusters

Fig. 6.1: Illustration of the method for partitioning a problem instance : From a
complete set of n elements of the instance (a), a random sample is selected (b).
Algorithm 2.7 is run on the sample and k = Θ(

√
n) medoids are identified (c). All

the n elements are allocated to the closest medoid (d)

It is possible to get a decomposition with smaller clusters by applying a second
recursion level: the instance is first cut into a large parts of relatively similar size
as presented above. A proximity relationship is defined between large part, so that
each includes O(1) neighbours. A rudimentary proximity definition is as follows: if
an element has ci as its nearest centre and c j as its second nearest, then ci and c j are
considered as neighbours. Each large part is then partitioned into b small clusters.

Similarly, a proximity relationship is defined between small clusters. A small
cluster is related to all those belonging to the large part of which it belongs. By
choosing a = Θ(

√
n) and b = Θ(

√
n), we get a decomposition into a number of

small clusters proportional to n, whose size is approximately identical. The overall
algorithmic complexity is O(n3/2).
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For some problems, it can make sense. Indeed, for the vehicle routing problem,
the maximum number of customers that can be placed on a tour depends on the
application (home service, parcel distribution, rubbish collection) and not on the
total number of customers of the instance.

This decomposition technique is illustrated in Figure 6.2. Bold lines show prox-
imity relations between large parts. The small clusters obtained by decomposition
of large parts contain about 15 elements. The elements of large parts are represented
by points of the same colour. By exploiting such a decomposition and proximity
relationships, it becomes possible to efficiently generate a solution to a large prob-
lem instance. A computational time of about one second was enough to obtain the
structures of Figure 6.2, with more than 16,000 entities.

Fig. 6.2: Two-level decomposition of a problem instance. The elements are clus-
tered into Θ(

√
n) large parts of approximately identical size. Bold lines show the

proximity relationship between large parts. The latter are themselves decomposed
into Θ(

√
n) small clusters. The complexity of the process is in O(n3/2). It can be

applied to non-geometrical problems
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6.3.2 Linearithmic Heuristic for the TSP

It is possible to extend this decomposition principle to a number of levels depending
on the instance size and thus get an O(n logn) algorithm. This section illustrates
the principle on the Travelling Salesman Problem. Rather than reasoning on the
construction of a tour, we build paths passing through all the cities of a given subset.

It is actually straightforward to adapt Code 12.3 so that it is able to treat a path
rather than a tour. An algorithm to optimize a path can equally be used to provide a
tour. Indeed, a TSP tour can be seen as a path starting by city ci ∈C and ending by ci.
If we have a problem with n cities, the path P= (b= ci,c1, . . . ,ci−1,ci+1, . . . ,cn,ci =
e) defines a feasible (random) tour. The path P is either directly optimized if it does
not contain too many cities, or decomposed into r sub-paths, where r is a parameter
that does not depend on the problem size. To fix the ideas, the value of r is typically
between 10 and 20. If n ≤ r2, a very good path passing through all the cities of P,
starting in ci and ending in ci can be found, for example with an ejection chain or
even an exact method. This feasible tour is returned by the heuristic.

Else, if n > r2, the path P is reordered by considering r sub-paths. This is per-
formed by choosing a sample S of r cities by including:

• u ∈C \{b,e}, the city closest to b
• v ∈C \{b,e,u}, the city closest to e
• r−2 other cities of C \{b,e,u,v} randomly picked

A good path PS through all the cities of sample S, starting at city b and ending at
city e can be found with a local search or an exact method. Let us rename the cities
of S so that PS = b,s1,s2, . . . ,sr−1,sr,e. Path PS can be completed to contain all the
cities of C by inserting them, one after the others, just after the closest city of S. So,
the completed path PS = (b,s1, . . . ,s2, . . . , ,st , . . . ,e) improves the initial path P. The
left side of Figure 6.3 illustrates this construction using a sample of r = 5 cities. The
shaded areas highlights the first r sub-paths found.

At this step, the order of the cities in the completed path PS between two cities s j
and s j +1 is arbitrary (as it was for P at the beginning of the procedure). The sub-
paths P1 = (b = s′1, . . . ,s2),P2 = (s′2, . . . ,s3), . . . ,Pr = (s′r, . . . ,e = sr+1)⊂ PS can be
further improved with r recursive calls of the same procedure, where s′j is the city
just preceding the first one of the path Pj. The right side of Figure 6.3 illustrates the
solution returned by this recursive procedure.

It can be noted in this figure that only the sub-path P1 has been decomposed. The
others, not comprising more than r2 cities, were directly optimized by a procedure
similar to that given by Code 12.3. The solution finally obtained is not excellent,
but it was obtained very quickly and is suitable as an initial solution for partial
improvement techniques, like POPMUSIC, which will be detailed in Section 6.4.2.

6.4 Local Search for Large Instances

After reviewing some techniques for constructing solutions for large instances, let’s
now take a look at some techniques for improving them. LNS, POPMUSIC and Cor-
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Fig. 6.3: Recursive TSP tour construction. Left: path on a random sample (bold and
light line) and reordered path PS completed with all cities before recursive calls of
the procedure. Paths P1 to P5 are drawn with different colours and different back-
grounds highlight them. Right: the path P1 was recursively decomposed into r = 5
pieces. Final state with all sub-paths optimized

ridor assume that an initial solution to the problem is available. These techniques are
sometimes called fix-and-optimize [55] or, more recently, magnifying glass heuris-
tics [30]. The key idea is to fix a relatively large portion of the problem variables and
to solve a sub-problem with additional constraints on the remaining variables. When
a heuristic includes an exact optimization method, we now speak of matheuristic.

6.4.1 Large Neighbourhood Search

Large Neighbourhood Search (LNS) has been proposed by Shaw [56]. The general
idea is to gradually improve a solution by alternating destruction and repair phases.
To illustrate this principle, let’s consider the example of integer linear programming.
The destruction phase involves selecting a subset of variables while incorporating
some randomness into the process. In its simplest form, this consists in selecting
a constant number of variables, in a completely random fashion. A more elaborate
form is to randomly select a seed variable and a number of others, which are most
related to the seed variable. The repair phase consists in trying to improve the solu-
tion by solving a sub-problem on the variables that have been selected. The value of
the other variables being set to the one taken in the starting solution.

The name of this technique comes from the fact that a very large number of pos-
sibilities exist to reconstruct a solution. This number exponentially increases with
the size of the sub-problem, meaning that they could not reasonably be extensively
enumerated. Thus, the reconstruction phase consists in choosing a solution among a
large number of possibilities. As the significant part of the variables preserves their
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value from one solution to the next, it is conceptually a local search but with a large
neighbourhood size. The framework of LNS is provided by Algorithm 6.1.

Algorithm 6.1: LNS framework. The destroy, repair and acceptance func-
tions must be specified by the programmer, as well as the stopping criterion

Input: Solution s, destroy method d(·), repair method r(·), acceptance criterion a(·, ·)
Result: Improved solution s∗

1 s∗← s
2 repeat
3 s′← r(d(s))
4 if a(s,s′) then
5 s← s′

6 if s′ better than s∗ then
7 s∗← s′

8 until a stopping criterion is satisfied

This frame leaves considerable freedom for the programmer to select various
options:

Destroy method d(·) This method is supposed to destroy part of the current so-
lution. The authors recommend that it is not deterministic, so that two succes-
sive calls destroy various portions. Another vision of this method is to fix a cer-
tain number of variables of the problem and release the others, which can be
modified. This method additionally includes a parameter that allows modulat-
ing the amount of destruction. Indeed, if the number of independent variables is
too small, the repair method has too many constraints to be able to differently
reconstruct the solution, and the algorithm is not able to improve the current so-
lution. Conversely, if the number of independent variables is too large, the repair
method may encounter difficulties in improving the current solution. This is pe-
culiarly true if an exact method is used, implying a prohibitive computational
time.

Repair method r(·) This method is supposed to repair the part of a solution that
was destroyed. Another vision of this method is to re-optimize the portion of the
problem corresponding to the variables that were freed by the destroy method.
One possible option for the repair method is to use an exact method, for in-
stance, constraint programming. Another option is to use a heuristic method,
either a simple one, like a greedy algorithm, or a more advanced one, such as
taboo search, variable neighbourhood search, etc.

Acceptance criteria a(·, ·) The simplest acceptance criterion is to use the fitness
function value of both solutions provided as parameters:

a(s,s′) =
{

True If s′ better than s
False Otherwise

Other criteria have been proposed, for instance, those inspired by simulated an-
nealing (see Section 7.1).
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Stopping criterion The framework does not provide any suggestion for the stop-
ping criterion. Authors frequently use the limit of their patience, expressed in
seconds. Also, it can be the patience of other authors who have proposed a con-
current method! This kind of stopping criteria is hardly convincing. This point
is discussed further in Section 11.3.4.2. The quite close POPMUSIC framework,
presented in Section 6.4.2, incorporates a natural stopping criterion.

To illustrate a practical implementation of this method, let us consider those of
Shaw [56], originally adapted to the vehicle routing problem. The destroy method
selects a seed client at random. The remaining customers are sorted using a function
measuring the relationship with the seed customer. This function is inversely pro-
portional to the distance between customers and depends on whether the customers
are part of the same tour. The idea is to select a subset of customers who are close
to the seed one but from different routes. These clients are randomly selected, with
a bias to favour those most closely related to the seed client.

The repair method is based on integer linear programming. The method imple-
ments a branch & bound technique with constraint propagation. This method can
only modify the variables associated with the clients chosen by the destruction
method. In addition, to prevent the explosion of computational times, common with
exact methods, the enumeration tree is partially examined and heuristically pruned.
A destroy-repair cycle is illustrated in Figure 6.4.

(a) Initial solution (b) Destroyed solution (c) Repaired solution

Fig. 6.4: Illustration of LNS on a VRP instance. The initial solution (a) is destroyed
by removing a few customers (b). The destroyed solution is repaired by optimally
inserting the removed customers (c)

There are algorithms based on the LNS framework that have been proposed well
before it. Among these applications is the shifting bottleneck heuristic for the job-
shop scheduling problem [1]. In this article, the destroy method selects the bot-
tleneck machine and frees the variables associated with the operations processed
by this machine. The repair method reorders these operations, considering that the
sequences on other machines are not modified. Hence, each operation on the bot-
tleneck machine has a release time corresponding to the earliest finishing time of
the preceding operation on the same job. In addition, each operation has a due date,
corresponding to the latest starting time of the following operation on the same job.
In this heuristic, all choices are deterministic and all optimization are exact. So,
the current solution is modified only if it is strictly improved and the method has a
natural stopping criterion.
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The POPMUSIC method presented in the following section was developed inde-
pendently from LNS. It can be seen as a less flexible LNS method, in the sense that
it better suggests to the programmer the choice of options, particularly the stopping
criterion.

6.4.2 POPMUSIC

The primary idea of POPMUSIC is to locally optimize a part of an existing solution.
These improvements are repeated until no part that can be optimized are detected. It
is, therefore, a local search method. Originally, this method received the less attrac-
tive acronym of LOPT (for local optimizations) [62, 63].

For large problem instances, one can consider that a solution is composed of a
number of parts, which are themselves composed of a number of items. Taking the
example of clustering, each cluster can be a part. In addition, it is assumed that
one can define a proximity measure between the parts and that the latter are some-
what independent of each other in the solution. In the case of clustering, there are
closely related clusters, containing items that are not well separated, and indepen-
dent clusters, that are clearly well separated. If these hypotheses are satisfied, we
have the special conditions necessary to develop an algorithm based on the POP-
MUSIC framework. The name was proposed by S. Voß. It is the acronym of Partial
OPtimization Metaheuristic Under Special Intensification Condition.

First, let us assume that a solution s can be represented by a set of q parts
s1, . . . ,sq, and next that we have a method for measuring the proximity between
two parts. The germinal idea of POPMUSIC is to select a seed part sg and a number
r < q of the parts the nearest to sg to build a sub-problem R. With an appropriate
definition of the parts, improving the sub-problem, R can reveal an improvement for
the complete solution. Figures 6.5 and 6.6 illustrate what a part and a sub-problem
can be for various applications.

To prevent optimizing the same sub-problem several times, a set U stores the
seed parts that can define a sub-problem potentially not optimal. If the tentative
optimization of a sub-problem does not lead to an improvement, then the seed part
used to define it is removed from U . Once U is empty, the process stops. If a sub-
problem R has been successfully improved, a number of parts have been modified.
New improvements become possible in their neighbourhood. In this case, all parts
of U that no longer exist in the improved solution are removed before incorporating
all parts of R. Algorithm 6.2 formalizes the POPMUSIC method.

To transcribe this framework into a code for a given problem, there are several
options:

Obtaining the initial solution POPMUSIC requires a solution before starting. The
technique presented in Section 6.3 suggests how to get an appropriate initial so-
lution with limited computational effort. However, POPMUSIC may also work
for a limited instance size. In this case, an algorithm with a higher complexity
can generate a starting solution.
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Fig. 6.5 To apply the POP-
MUSIC framework to a clus-
tering problem, one can define
a part as all the items assigned
to the same centre. The parts
the nearest from the seed clus-
ter constitute a sub-problem
that is tentatively optimized
independently. The optimiza-
tion of well separated clusters
cannot improve the solution.
Hence, these parts are de facto
independent

Seed-part

Sub-problem

Independent parts

Fig. 6.6 For the VRP, the
definition of a part in POP-
MUSIC can be a tour. Here,
the proximity between tours is
the distance of their centre of
gravity. A sub-problem con-
sists of customers belonging
to six tours

Definition of a part The definition of a part is not unique for a given problem. In
the VRP case, we can consider that all customers on the same tour form a part, as
was done in [60, 2] (see Figure 6.6). For the same problem, it is equally possible
to define a part as a single client, as in [56].

Definition of the distance between parts For some problems, the definition of dis-
tance between two parts can be relatively easy and logical. For example, [63]
uses the Euclidean distance between centroids for a clustering problem. For map
labelling (Section 3.3.3), a graph is built whose vertices represent the objects to
be labelled and the edges represent potentially incompatible label positions. The
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Algorithm 6.2: POPMUSIC framework
Input: Initial solution s composed of q disjoint parts s1, . . . ,sq; sub-problem improvement

method
Result: Improved solution s

1 U = {s1, . . . ,sq}
2 while U ̸=∅ do
3 Select sg ∈U // sg: Seed part
4 Build a sub-problem R composed of the r parts of s the closest to sg
5 Tentatively optimize R
6 if R is improved then
7 Update s
8 From U , remove the part no longer belonging to s
9 In U , insert the parts composing R

10 else R not improved
11 Remove sg from U

distance is measured by the minimum number of edges of a path to the seed-label,
as shown in Figure 6.7.
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Fig. 6.7: For map labelling, a part can be an object to be labelled (circle with a num-
ber). Here, we consider 4 possible label positions (rectangles around each object).
Two objects are at a distance of 1 if their labels may overlap. The number inside
each disc represents the distance from the seed object, noted 0. A sub-problem has
up to r = 25 objects which are the closest to the seed object. Here, the distance is
at most 4. The objects whose labels could collide with these r objects are included
in the sub-problem. Only the positions of the labels of the r objects can be changed
when optimizing a sub-problem
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By cons, this definition can be quite unclear for some problems. For the VRP with
time window, two geometrically close clients can have incompatible opening
time windows. Therefore, they should be considered as distant.
It is possible to use several different proximity definitions simultaneously. If we
take the problem of school timetable design, one definition may aim to create
sub-problems focusing on groups of students following the same curriculum, an-
other on teachers and a third on room allocation. Of course, if several definitions
of proximity between parts are used simultaneously, the last line of Algorithm 6.2
has to be adapted: a seed part sg will only be removed from U if none of the sub-
problems that can be created with sg can improve the solution.

Selection of the seed part To our knowledge, there are no comprehensive studies
on the impact of the seed part selection process. In the literature, only very simple
methods are used to manage the set U : either stack or random selection.

Parameter r The size of the sub-problems depends on r, the only explicit param-
eter of POPMUSIC. It depends on the ability of the optimization method. A low
value only allows minor improvements but it requires a limited computational
effort. A high value implies a high computational effort but a better potential to
improve the solution.

Sub-problem optimization method The programmer is free to select any sub-
problem optimization method. Since the sub-problem size can be adjusted, the
implementation is facilitated: the method should be efficient for a limited span
of instance size. In case the optimization method is an exact one, POPMUSIC
framework is a matheuristic.

Looking at the stopping criterion — the set U is empty — the computational
effort could potentially be prohibitive for large instances. Indeed, for each sub-
problem improvement, several parts are introduced in U . In practice, the number
of sub-problems to solve grows almost linearly with the instance size. Figure 6.8
illustrates this for a location-routing problem [2] and Figure 6.10 for the TSP.

6.4.2.1 POPMUSIC for the TSP

An elementary implementation of the POPMUSIC technique for the travelling sales-
man problem is given by Code 6.1.
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Fig. 6.8: Computational time observed for creating an initial solution to a location-
routing problem with the technique presented in Section 6.3 and overall optimiza-
tion time for sub-problems with the POPMUSIC frame. We notice that the growth of
the computation time seems lower than the analysis of Θ(n3/2) done in Section 6.3
and that the time for the optimization of the sub-problems is almost linear

Code 6.1: tsp_3opt_limited.jl Basic POPMUSIC implementation for the TSP
1 # Local search based on 3-opt moves, limited to a subproblem of size r
2 function tsp_3opt_limited(d, r, succ, tour_length)
3 n = length(succ)
4 r = r > n ? n : r # Subpath cannot be larger than a whole tour
5 i = last_i = 1 # First subpath starts from city i = 1
6 while true
7 j = succ[i]
8 edges_ij, edges_jk = 1, 1 # Number of edges from i to j and from j to k
9 while edges_ij + edges_jk < r # Do not exceed subproblem size

10 k = succ[j]
11 while edges_ij + edges_jk < r
12 delta = d[i, succ[j]] + d[j, succ[k]] + d[k, succ[i]] -
13 d[i, succ[i]] - d[j, succ[j]] - d[k, succ[k]]
14 if delta < 0
15 tour_length += delta
16 succ[i], succ[j], succ[k] = succ[j], succ[k], succ[i]
17 j, k = k, j # j must be between i and k
18 edges_ij, edges_jk = edges_jk, edges_ij
19 last_i = i
20 end
21 edges_jk += 1
22 k = succ[k]
23 end
24 edges_jk = 1
25 edges_ij += 1
26 j = succ[j]
27 end
28 i = succ[i]
29 if i == last_i
30 break
31 end
32 end
33 return succ, tour_length
34 end
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In this adaptation, a part is a city. The distance between parts is measured by the
number of intermediate cities that there are along the current tour. This contrasts
with a measure using the distance matrix. A sub-problem is, therefore, a path of 2r
cities whose extremities are fixed. We seek to move a sub-path of at most r cities
in the sub-problems, using a 3-opt neighbourhood. The set U is not represented
explicitly because it is identified to the tour. Indeed, successive sub-problems are
just defined by a single city shift. To determine whether to continue to optimize,
the initial city of the last sub-path that was successfully optimized is stored. If all
starting cities are tried without improvement, the process stops.

In order to successfully adapt the POPMUSIC technique to the TSP, it is neces-
sary to pay attention to some issues:

• The initial solution must already possess an appropriate structure; for a Euclidean
problem, it should not include two intersecting edges belonging to portions of
routes that are separated by a long sequence of cities, because the optimization
procedure will be unable to uncross them.

• Rather than developing an ad hoc local search like the one in Code 6.1 to op-
timize sub-paths, it is easier to use a general TSP solving method, for instance,
Code 12.3.

• Ultimately, we must avoid optimizing a second time a sub-path that was already
optimized.

To start with a solution having an appropriate structure, without using an algo-
rithm of high complexity, we can go along the lines of the technique presented in
Section 6.3.2. As the empirical complexity of POPMUSIC is linear, one can obtain
a solution of satisfactory quality in n logn [65]. In practice, the time to build an ini-
tial solution is negligible compared to its improvement with POPMUSIC, even for
instances with billions of cities. We can speed up the process as follows, without
significantly degrading the final solution: the route over n cities is cut into ⌈n/r⌉
sub-paths of approximately r cities. These sub-paths are connected only by their
extremities. Therefore, they can be independently optimized.

Once all these paths have been optimized, the tour is shifted by r/2 cities. Finally,
⌈n/r⌉ sub-paths overlapping the previous ones are optimized. Thus, with 2 · ⌈n/r⌉
sub-paths optimizations, we get a relatively good tour. Figure 6.9 illustrates this
process on the small instance solution shown in Figure 6.3.

Figure 6.10 gives the evolution of the computational time as a function of the
number of cities. Figure 6.11 measures the quality of the solutions that can be ob-
tained with these techniques. Interestingly, the greedy nearest neighbour heuristic
(Code 4.3) would have provided, in a few 10 years or a few centuries for a billion
city instance, a solution deviating by about 22% from the optimum.

6.4.3 Comments

The chief difference between LNS and POPMUSIC is the latter unequivocally de-
fines the stopping criterion and the neighbour solution acceptance. Indeed, POP-
MUSIC accepts to modify the solution only if we have a strict improvement. For
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Fig. 6.9: On the right, independent optimizations of four sub-paths. The bold lines
highlight the tour after optimization. The thin lines are those of the initial tour. On
the left, the tour is shifted and the process is repeated
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Fig. 6.10: Computational times for building an initial TSP solution with the tech-
nique presented in Section 6.3.2. Optimizing it with a fast POPMUSIC (sub-paths
of 225 cities). Building a solution with the nearest neighbour heuristic. Building a
tour with one level recursion method (see problem 6.4). Optimizing a tour with a
standard POPMUSIC (sub-paths of 50 cities). The increase in time for building a
solution, in n logn, is higher than that of optimizing it with POPMUSIC. However,
the latter takes a higher time for an instance with more than 2 billion cities
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Fig. 6.11: Quality of the solutions obtained with the constructive method presented
in Section 6.3.2 and once improved with fast POPMUSIC. Quality of the nearest
neighbour heuristic and those of a standard POPMUSIC starting from an initial
solution obtained with a single recursion level. The problem instances are generated
uniformly in the unit square, with toroidal distances (as if the square was folded
so that opposite borders are contiguous). For such a distance measure, a statistical
approximation of the optimal solution length is known. The fluctuations for the
initial solution reflect the recursion levels

several problems, this framework seems sufficient to obtain good quality solutions,
the latter being strongly conditioned by the capacity of the optimization method
used. The philosophy of POPMUSIC is to keep a framework as simple as possi-
ble. If necessary, the optimization method is improved so that it can better address
larger sub-problems. So, the framework is kept simple, without adding complicated
stopping criteria.

Defining parts and their proximity in POPMUSIC is perhaps a more intuitive way
than in LNS to formalize a set of constraints that are added to the problem on the
basis of an existing solution. These constraints allow using an optimization method
that would be inapplicable to the complete instance. The Corridor Method [57] takes
the problem from the other end: given an optimization method that works well —
in their application, dynamic programming — how can we add constraints to the
problem so that we can continue to use this optimization method. The components
or options of a method are often all interdependent. Choosing one option affects the
others. It may explain why actually very similar methods are presented by different
names.
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Problems

6.1. Dichotomic Search Complexity
By applying the master recurrence theorem (section 5.2.1), determine the algorith-
mic complexity of searching for an element in a sorted array by means of a di-
chotomic search.

6.2. POPMUSIC for the Flowshop Sequencing Problem
For implementing a POPMUSIC-based method, how to define a part and a sub-
problem for the flowshop sequencing problem? How to take into account the inter-
action between the sub-problem and parts that should not be optimized?

6.3. Algorithmic Complexity of POPMUSIC
In a POPMUSIC application, the size of the sub-problem is independent of the size
of the problem instance. Hence, any sub-problem can be solved in a constant time.
Empirical observations, like those presented in Figure 6.8 show that the number of
times a portion is inserted in U is also independent of the instance size. In terms of
algorithmic complexity, what are the most complex steps of POPMUSIC?

6.4. Minimizing POPMUSIC Complexity for the TSP
A technique for creating an appropriate TSP tour is as follows: first, a random sam-
ple of k cities among n is selected. A good tour on the sample is obtained with a
heuristic method. Let us suppose that the complexity of this method is O(na), where
a is a constant larger than 1. Then, for each of the remaining n− k cities, we find
the nearest from the sample. In the partial tour, each remaining city is inserted (in
any order) just after the sample city identified as the nearest. Finally, sub-paths of
r cities of the tour thus obtained are optimized with POPMUSIC. The value of r is
supposed to be in O(n/k). Also, it is supposed that the total number of sub-paths
optimized with POPMUSIC is in O(n).

Figure 6.12 illustrates the process. The sample size k depends on the number
of cities. We suppose that k = Θ(nh), where h is to be determined. The sub-paths
optimized with POPMUSIC have a number of cities proportional to n/k. Determine
the value of h(a) that minimizes the global complexity of this method.
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Fig. 6.12: TSP tour partially optimized with POPMUSIC. The initial tour is obtained
with a one-level recursive method. The tour on a sample of the cities in bold



Part III
Popular Metaheuristics



This part reviews about 20 popular metaheuristics. They are grouped by the core
of the basic heuristic principle they exploit. The first group includes those relying
exclusively on random components. Second are methods that attempt to learn how to
build new solutions. This is followed by methods that learn how to modify solutions
with a local search. Finally, there are methods that exploit a population of solutions.
Table 6.1 lists the metaheuristics presented in this part.

Chapter Method Operating Principles

7. Randomized
Methods

Simulated Annealing

Biased Random Local Search
Threshold Accepting
Great Deluge
Demon Algorithm
Noising Methods
Late Acceptance Hill Climbing Local Search + History
Variable Neighbourhood Search Several Neighbourhoods
GRASP Biased Random Construction + Local Search

8. Construction
Learning

MINMAX Ant System Construction with learning + Local Search
FANT
Vocabulary Building Advanced Construction Learning

9. Local Search
Learning

Taboo Search Local Search + Memory
Strategic Oscillations Local Search + Various Memories

10. Population
Management

Genetic Algorithm Simple Population Evolution
Memetic Algorithm

Advanced Population Management + Local
Search

Scatter Search
BRKGA
Path Relinking
GRASP-PR
Fixed Set Search
Particle Swarm

Interactions between Continuous SolutionsElectromagnetic Method

Table 6.1: Metaheuristics that are addressed in the third part with a brief description
of their operating principles.

The last chapter provides tips for designing new heuristics.



Chapter 7
Randomized Methods

By applying the principles presented in the previous chapters, we can build a so-
lution and improve it to find a local optimum. In addition, if the problem is com-
plicated or large, we have seen how to decompose it into sub-problems easier to
solve.

What if, using these techniques, we obtain solutions whose quality is not good
enough? Let us suppose that we can devote more computational time to finding
better solutions. The first option coming to mind is to try to introduce a learning
process. That is the subject of subsequent chapters.

A second option — a priori simpler to implement — is to incorporate random
components into an “improvement" method where we allow the choice of lower
quality solutions than that of departure. Although we no longer have a strict im-
provement at each iteration, this is a local search since such methods are based
on locally modifying solutions. Very similar methods are based on this second op-
tion: simulated annealing (SA), threshold accepting (TA), great deluge, demon al-
gorithms and the noising method. Interestingly, the latter framework can be seen
as a generalization of the previous methods. The late acceptance hill climbing
shares similarities with these methods but incorporates a self-parameter tuning. The
variable neighbourhood search (VNS) alternates intensification and diversification
phases. It improves a solution with a basic neighbourhood and degrades it by ran-
domly selecting moves in other neighbourhoods.

A third option is to repeat constructions with random choices, possibly followed
by local improvements. This is the way followed by the greedy randomized adaptive
search procedure (GRASP).

7.1 Simulated Annealing

The simulated annealing method is one of the first local search techniques that does
not strictly improve the quality of the solution at each iteration. This method is in-
spired by a process of physics, the annealing, which minimizes the internal energy
of the molecules of a material. Some materials, like metals, have their internal struc-
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ture modified, depending on the temperature to which they are heated. By rapidly
cooling the material, the molecules do not have time to arrange to achieve the usual
structure at low temperatures, but forms grains which are small crystals whose ori-
entation is different for each grain. This is the quenching process, which is used in
particular to harden some steels.

On the contrary, if the cooling is slow, the molecules manage to form crystals
much larger, corresponding to their minimum energy state. By repeating the method,
one can further increase the size of the crystals or even obtain a monocrystal. This
is the annealing process. These two processes are illustrated in Figure 7.1.

Viscuous state

Fast coolingSlow cooling

Annealing Quenching

Polycristalline or amorphous stateCristalline state

Fig. 7.1: Annealing and quenching processes. The material is carried to such a tem-
perature that its molecules have enough energy to move. By cooling it slowly, the
molecules have time to reach a crystalline state, minimizing their energy. This is
the annealing process. If the cooling is faster, this is the quenching process and dis-
ordered crystals are formed. Under certain conditions, a very fast cooling does not
allow time to for crystals to form and the material remains in an amorphous state

Černý [7] and Kirkpatrick, Gelatt and Vecchi [39] independently had the idea to
simulate this process in combinatorial optimization, making the analogy between
the objective function to minimize and the energy of the molecules. At high temper-
atures, a molecule has enough energy to fill a gap in the crystal lattice or change its
configuration. However, at low temperatures, it has a significantly lower probability
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of doing so. Translating this in terms of combinatorial optimization means chang-
ing a solution locally and randomly and accepting its degradation with a certain
probability. The latter must be low if the degradation is significant.

Expressed in terms of local search, this corresponds to generating a random move
m ∈M and calculating the cost difference ∆ between the initial and modified solu-
tion: ∆ = f (s⊕m)− f (s). If ∆ < 0, the move m improves s, and it is accepted. The
new solution becomes s⊕m. Else, the move m can eventually be accepted, with a
probability proportional to e−∆/T , where T is a parameter simulating the tempera-
ture. At each step, the temperature T is diminished. Several formulas have been pro-
posed to adjust the temperature. Among the most frequently encountered, T ← α ·T
and T ← T

1+αT , where 0 < α < 1 is the parameter adjusting the decreasing speed
of the temperature. The method comprises at least two other parameters: Tinit and
Tend the initial and finishing temperatures. Algorithm 7.1 provides the framework
for basic simulated annealing.

Algorithm 7.1: Elementary simulated annealing. Countless variants of al-
gorithms based on this framework have been proposed. Practical implemen-
tations do not return the solution s of the last iteration, but the best solution
found throughout the search

Input: Initial solution s; fitness function f to minimize; neighbourhood structure M,
parameters Tinit , Tend < Tinit and 0 < α < 1

Result: Modified solution s
1 T ← Tinit
2 while T > Tend do
3 Randomly generate m ∈M
4 ∆ = f (s⊕m)− f (s)
5 Randomly generate 0 < u < 1
6 if ∆ < 0 or e−∆/T > u then m is accepted
7 s← s⊕m

8 T ← α ·T

This framework is generally modified. First, the parameters defining the initial
and final temperatures provide a very different effect according to the fitness func-
tion measure unit. Indeed, if f measures the length of the TSP tour, these parameters
should be adapted depending on whether the unit is meters or kilometres. To make
the algorithm more robust, we do not invite the user to directly provide temperatures.
For instance, the user specifies degrading moves acceptance rates τinit et τend , which
is much more intuitive. The temperatures are then calculated automatically accord-
ing to these rates. A random walk performing a few hundred or a few thousand steps
can record statistics on the average ∆ values.

Frequently, the temperature is not decreased at each iteration (Line 8). Another
parameter is introduced, defining the number of iterations performed with a given
temperature.

Figure 7.2 illustrates the evolution of the tour length for a TSP with 225 cities.
Code 7.1 was executed with an initial temperature of 5 · dmax/n, a final tempera-
ture of 20 · dmax/n2 and α = 0.99, where dmax is the largest distance between two
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cities. The algorithm was provided a relatively good initial tour. There is a signifi-
cant deterioration of the latter during the first iterations at high temperatures. This
degradation is necessary to alter the structure of the starting solution to discover bet-
ter solutions. About half of the iterations are carried out unnecessarily in this run, as
the value of the best solution found no longer evolves.

Fig. 7.2 Changes in TSP tour
length of and temperature
evolution during simulated
annealing

Tour length

Temperature (x100)

Solution improvements

Iterations

Code 7.1 implements a very basic simulated annealing for the TSP. It is based
on the 2-opt neighbourhood structure. The Algorithm 7.1 is adapted to decrease the
temperature only every n2 iterations and not at each iteration. Thus, a value of α

between 0.8 and 0.99 produces satisfactory results, regardless of the instance size.
Finally, the user must provide the absolute value of the initial and final temperatures.
As mentioned above, Tinit = 5 ·dmax/n and Tend = 20 ·dmax/n2 are values that can be
suitable for starting a parameter tuning.
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Code 7.1: tsp_SA.jl A basic simulated annealing implementation for the TSP
1 function tsp_SA(d, # Distance matrix, must be symmetrical
2 tour, # Sequence of cities of TSP tour
3 tour_length, # Length of the tour
4 initial_temperature, # SA basic parameters; for instance:
5 final_temperature, # tour_length/n, tour_length/n/n
6 alpha) # and 0.99
7 n = length(tour)
8 best_length = tour_length
9 best_tour = copy(tour)

10 T = initial_temperature
11 iteration = 0
12 while T > final_temperature
13 i = unif(1, n) # First city of a move randomly chosen
14 j = mod1(i + unif(2, n-2),n) # Second city is unif successors further
15 if j < i i, j = j, i end # j must be further on the tour
16

17 delta = d[tour[i], tour[j]] + d[tour[i + 1], tour[mod1(j + 1, n)]] -
18 d[tour[i], tour[i + 1]] - d[tour[j], tour[mod1(j + 1, n)]]
19 if delta < 0 || exp(-delta / T) > rando() # Move accepted
20 tour_length += delta
21 for k in 0:((j - i) ÷ 2 - 1) # Reverse sub-path between i and j
22 tour[k + i + 1], tour[j - k] = tour[j - k], tour[k + i + 1]
23 end
24 end
25 if best_length > tour_length # Store improved best solution
26 best_length = tour_length
27 best_tour = copy(tour)
28 println("SA iteration: $iteration, length: $tour_length")
29 end
30

31 iteration += 1
32 if iteration % (n * n) == 0
33 T *= alpha # Temperature decreases every n*n iteration
34 end
35 end
36 return best_tour, best_length
37 end # tsp_SA

7.2 Threshold Accepting

Threshold accepting, proposed by Dueck and Scheuer [16], is a pure local search.
It only moves from a solution to one of its neighbours. Like simulated annealing,
demon, and great deluge algorithms, the move are randomly chosen, but are not
systematically applied to the current solution. In the case of an improving move,
the neighbour solution is accepted. If the move deteriorates the solution, it is only
accepted if the deterioration is lower than a given threshold. The latter is gradually
decreased to reach zero, so that the method stops in a local optimum. Algorithm 7.2
provides the threshold accepting framework.

Gilli, Këllezi and Hysi [21] proposed an automated method for setting the thresh-
olds. First, random moves are performed, recording the fitness difference of neigh-
bour solutions. This allows determining the empirical distribution function F of the
amplitude of the moves. Then, the T thresholds are fixed using the inverse of this
function (see Figure 7.3): τt = F−1(0.8 · (T − t)/T ). Put differently, the first thresh-
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Algorithm 7.2: Threshold accepting. The values of the thresholds τ1, . . .τT
are not necessarily explicitly provided but calculated, for instance by pro-
viding only the initial threshold and multiplying it by another parameter, α ,
at each round of R iterations

Input: Initial solution s; fitness function f to minimize; neighbourhood structure M,
parameters T , R, τ1, . . .τT

Result: Solution s∗

1 s∗← s
2 for t from 1 to T do
3 for R iterations do
4 Randomly generate m ∈M
5 if f (s⊕m)− f (s)< τt then the move m is accepted
6 s← s⊕m
7 if f (s)< f (s∗) then
8 s∗← s

Proportion of |∆ |< x

1

0.8

∆max

x

τ1τT = 0 τ2

F

0

Fig. 7.3: Technique for determining the thresholds τ1, . . . ,τT . The empirical distribu-
tion function F is obtained by performing a number of random moves and recording
their amplitude in absolute value

old τ1 accepts about 80% of the degrading moves while the last, τT = 0, only allows
improvements.

7.3 Great Deluge Algorithm

The great deluge algorithm, proposed by Dueck [15], has similarities with the pre-
vious one. However, the absolute value of the fitness function limits the search pro-
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gression instead of the amplitude of the moves. The name of this method comes
from the legend that, as a result of incessant rain, all terrestrial beings eventually
drowned, except for those on Noah’s Ark. The animals on the ground panicked and
ran in all directions, everywhere except where there was water.

The analogy with a maximization process is made by considering random moves
that are accepted as long as they do not lead to a solution whose quality is less than
a threshold L. The latter is the water level which increases by a value of P at each
iteration. This parameter simulates the rain strength. The process stops when the
value of the current solution is less than L. Algorithm 7.3 provides the framework
of this method. Its operating principle is illustrated in Figure 7.4.

Algorithm 7.3: Great deluge algorithm. The algorithm can adapt to mini-
mization problems. Hence, simulating the behaviour of fish when the water
level drops!

Input: Solution s, fitness function f to maximize, neighbourhood structure M, parameters
L and P

Result: s∗

1 s∗← s
2 while f (s)> L do
3 Generate a random move m ∈M
4 if f (s⊕m)> L then
5 s← s⊕m
6 if f (s)< f (s∗) then
7 s∗← s

8 L← L+P

(a) (b) (c) (d)

Fig. 7.4: Illustration of the great deluge algorithm. State of the landscape at the
beginning of the rain (a). The water level increases, (b), (c), until only the highest
peaks emerge (d)
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7.4 Demon Algorithm

The demon algorithm simulates the behaviour of a compulsive gambler who always
bets larger amounts of money. The devil of playing pushes futilely to spend money
if the earnings exceed a certain threshold, Dmax. Once this threshold is reached, the
gambler continues to play. The gambler enters the casino with an sum of D in pocket
and stops playing when exhausted, after Imax bets. This last parameter is involved in
many iterative local searches for directly adjusting the computational effort. Trans-
lated in terms of local search, a bet is to allow a degrading move. But the loss
cannot exceed the available budget. If the move improves the solution, the budget
is increased accordingly, up to the maximum threshold. Algorithm 7.4 provides the
framework of this method.

Algorithm 7.4: Demon algorithm. This algorithm is relatively simple to
implement, but, as for threshold accepting, its parameters must be adjusted
according to the numerical value of the data

Input: Solution s, fitness function f to minimize, neighbourhood structure M, parameters
Imax,D,Dmax

Result: s∗

1 s∗← s
2 for Imax iterations do
3 Randomly generate a move m ∈M
4 ∆ = f (s⊕m)− f (s)
5 if ∆ ⩽ D then
6 D← D−∆

7 if D > Dmax then
8 D← Dmax

9 s← s⊕m
10 if f (s∗)> f (s) then
11 s∗← s

7.5 Noising Methods

The noising methods, proposed by Charon and Hudry [8], make the assumption that
the data of the problem are not known with infinite precision. Under these condi-
tions, even if the problem is convex and simple, an improvement method can be
trapped in local optima resulting from artifacts. To make the improvement method
more robust, a random noise is added, either to the data or to the move evaluation.
For instance, the coordinates of a Euclidean TSP can be slightly changed. Taking
into account these stochastic values, we obtain a fitness function where local optima
are smoothed out by random noise. The framework of noising methods is provided
by Algorithm 7.5.
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Algorithm 7.5: Noising method. At each move evaluation, random noise is
generated according to the probability distribution noise(i), whose variance
generally decreases with i

Input: Solution s, fitness function f to minimize, neighbourhood structure M, parameters
Imax,noise(i)

Result: s∗

1 s∗← s
2 forall i ∈ 1 . . . Imax do
3 Randomly generate a move m ∈M
4 if f (s⊕m)+noise(i)< f (s) then
5 s← s⊕m
6 if f (s)< f (s∗) then
7 s∗← s

A parameter of the method is a probability distribution, set up with the iteration
number. Each time a solution is evaluated, a random noise occurrence is generated.
Generally, its expectation is zero and its variance decreases with the iteration num-
ber (see Figure 7.5).

At the end of the algorithm, the method gets closer and closer to an improvement
method. The variance of the noise function must naturally depend on the numerical
data of the problem. To achieve this goal, one can incorporate the evaluation of
the objective function in the probability distribution. The choice of the latter can
transform a noising method into simulated annealing, threshold accepting or other
techniques described above. Code 7.2 implements a kind of noising method for the
TSP.
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Code 7.2: tsp_noising.jl Implantation of a noising method for the TSP. The noise
distribution is chosen to mimic the acceptance criterion of simulated annealing. To
benefit from the modification of a solution in constant time if a move is accepted, the
neighbourhood is systematically examined. Unlike a classical approach, the moves
are therefore not chosen independently

1 function tsp_noising(d, # Distance matrix
2 tour, # TSP tour (sequence)
3 tour_length, # Tour length
4 initial_noise, # Parameters
5 final_noise,
6 alpha)
7 n = length(tour)
8 t = build_2opt_data_structure(tour)
9 noise = initial_noise

10 best_length = tour_length
11 iteration = 0
12

13 while noise > final_noise
14 i = last_i = unif(2, 2n+1) # First city of a move randomly chosen
15 while t[t[i]] != last_i && t[i] != last_i # All moves with i tried
16 j = t[t[i]]
17 while j != last_i && (t[j] != last_i || i != last_i)
18 delta = d[i ÷ 2, j ÷ 2] + d[t[i] ÷ 2, t[j] ÷ 2] -
19 d[i ÷ 2, t[i] ÷ 2] - d[j ÷ 2, t[j] ÷ 2]
20 if delta + noise * log(rando()) < 0 # SA criterion
21 tour_length += delta # Move accepted
22 best_i, best_j = t[i], t[j]
23 t[i], t[j] = j ⊻ 1, i ⊻ 1 # New successors and predecessors
24 t[best_i ⊻ 1], t[best_j ⊻ 1] = best_j, best_i
25

26 i = t[i] # Avoid immediate reverse a degrading move
27 j = t[i]
28

29 if best_length > tour_length # New best tour found
30 best_length = tour_length
31 tour = tsp_2opt_data_structure_to_tour(t)
32 println("Noising $iteration $tour_length")
33 end
34 end
35 iteration += 1
36 if iteration % (n*n) == 0 # Decrease noise every n*n iteration
37 noise *= alpha
38 end
39 j = t[j]
40 end # Next j
41 i = t[i]
42 end # Next i
43 end # while noise > final_noise
44 return tour, best_length
45 end # tsp_noising

To evaluate and perform a move in constant time, the data structure introduced
in Section 5.1.3.3 has been used. However, this data structure does not allow evalu-
ating a random move (i, j) in constant time. Indeed, performing the tour in a given
direction, given a city i and its succeeding one si, we cannot immediately identify
the city s j that succeeds j.

The artifice used in this code is to systematically scan the whole neighbourhood
instead of randomly drawing the move. The noise added to the evaluation of a move
is such that the acceptance criterion is identical to that of a simulated annealing.
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Iterations

Noise level distribution

0

Fig. 7.5: Usual example of the evolution of the random noise distribution as a func-
tion of the number of iterations performed by a noising method. The colour density
represents the probability density

7.6 Late Acceptance Hill Climbing

Another technique is similar to the methods of simulated annealing, threshold ac-
cepting and great deluge. The core idea is to differ the acceptance criterion of a
neighbour solution. Instead of comparing the value of the latter with that of the cur-
rent solution, it is compared to that obtained h iterations before. Thus, a neighbour
solution is accepted either if it is at least as good as the current solution, or if it is
better than the solution visited h iterations previously. The derived method is called
Late Acceptance Hill Climbing (LAHC).

“Hill climbing" refers to an improvement method seeking to maximize an objec-
tive. Naturally, a descent method is obtained by changing the acceptance criterion
of a neighbour solution. LAHC implementation requires storing a list L of the h
values of the previous solution visited. This strategy allows a self-calibration of the
acceptance criterion of a worse solution. Unlike the methods viewed above, LAHC
is insensitive to the order of magnitude of the fitness values.

The framework of LAHC, given by Algorithm 7.6, does not specify a stopping
criterion. A possibility is to set the probability p of being in a local optimum relative
to the neighbourhood M. The stopping criterion corresponding to this probability is
to have performed |M|(ln |M|− ln(1− p)) iterations without improving the current
solution.
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Algorithm 7.6: Late Acceptance Hill Climbing
Input: Solution s, fitness function f to minimize, neighbourhood structure M, parameters

h, stopping criterion
Result: Improved solution s

1 for k ∈ 0 . . .h−1 do
2 Lk← f (s)

3 i← 0
4 repeat
5 Randomly select a move m ∈M
6 if f (s⊕m)< Li or f (s⊕m)⩽ f (s) then
7 s← s⊕m

8 if f (s)< Li then
9 Li← f (s)

10 i← (i+1) mod h
11 until The stopping criterion is satisfied

7.7 Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) [47] implements an idea called strategic os-
cillations. The search alternates intensification and diversification phases. The chief
idea of this method is to rely on several neighbourhoods M1 . . .Mp. A first Neigh-
bourhood, M1, is exploited as usual to find local optima. This is one of the most
elementary ways to intensify the search. The other neighbourhoods allow escap-
ing from these optima by performing random moves. The latter ones increasingly
destroy the local optima structure. Performing random moves is also one of the sim-
plest ways to diversify the search for exploring other portions of the solution space.
The framework of a basic VNS is provided by Algorithm 7.7.

Algorithm 7.7: Variable Neighbourhood Search. When a limited number p
of neighbourhoods are available, the algorithm is repeated several times

Input: Solution s, fitness function f to minimize, neighbourhood structures M1 . . .Mp
Result: s∗

1 s∗← s
2 k← 1
3 while k ⩽ p do
4 Randomly generate a move m ∈Mk
5 s← s⊕m
6 Find the local optimum s′ associated with s in neighbourhood M1
7 if f (s′)< f (s∗) then
8 s∗← s′

9 k← 1
10 else
11 s← s∗

12 k← k+1
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A very limited number of neighbourhoods are generally used. In this case, the
method is repeated several times (see Problem 7.4). Several variants of this frame-
work have been proposed: VNS descent, VNS decomposition, skewed VNS and
reduced VNS. Code 7.3 provides a very simple VNS implementation for the TSP.

Code 7.3: tsp_VNS.jl VNS implementation for the TSP. The neighbourhood Mk
consists in swapping two cities k times. The repair method is an ejection chain. In
addition to its extreme simplicity, this implementation requires no parameters

1 ######### Variable Neighborhood Search for the TSP
2 function tsp_VNS(d, # Distance matrix, must be symmetrical
3 best_tour, # Sequence of cities of TSP tour
4 best_length) # Length of the tour
5 n = length(best_tour)
6 iteration, k = 0, 1 # Number of LK calls, current neighbourhood number
7

8 while k < n
9 tour = copy(best_tour)

10 for _ in 1:k # Perturbate solution
11 u = unif(1, n)
12 v = unif(1, n)
13 tour[u], tour[v] = tour[v], tour[u]
14 end
15 tour_length = tsp_length(d, tour)
16 tour, tour_length = tsp_LK(d, tour, tour_length)
17 iteration += 1
18 if tour_length < best_length # Store improved best tour
19 best_tour = copy(tour)
20 best_length = tour_length
21 println("VNS iteration: $iteration, k: $k, length: $tour_length")
22 k = 1
23 else
24 k += 1 # Neighbourhood change
25 end
26 end
27 return best_tour, best_length
28 end

7.8 GRASP

The Greedy Randomized Adaptive Search Procedure(GRASP) was proposed by Feo
and Resende [18]. It repeatedly improves, with a local search, a solution obtained
with a greedy constructive method. The latter incorporates a random component so
that it produces various solutions. This method comprises two parameters, Imax, the
number of repetitions of the outer loop of the algorithm and α , to adjust the degree
of randomization. The framework of the method is provided by Algorithm 7.8.

Code 7.4 implements the construction of a solution using GRASP. In practice,
this code is repeated several times, and the best solution produced is retained.
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Algorithm 7.8: GRASP. The programmer must initially design a method,
local_search, for improving a solution. The user must provide two parame-
ters, Imax which sets the computational effort, and α which sets the random
choice level. The difference with the greedy constructive Algorithm 4.2 are
highlighted

Input: Set E of elements constituting a solution; incremental cost function c(s,e); fitness
function f to minimize, parameters Imax and 0⩽ α ⩽ 1, improvement method
local_search

Result: Complete solution s∗

1 f ∗← ∞

2 for Imax iterations do
3 Initialize s to a trivial partial solution
4 R← E // Elements that can be added to s
5 while R ̸=∅ do
6 Find cmin = mine∈R c(s,e) and cmax = maxe∈R c(s,e)
7 Choose randomly, uniformly e′ ∈ R such that

cmin ⩽ c(s,e′)⩽ cmin +α(cmax− cmin)
8 s← s∪ e′ // Include e′ in the partial solution s
9 Remove from R the elements that cannot be added any more to s

10 s′← local_search(s) // Find the local optimum associated with s
11 if f ∗ > f (s′) then
12 f ∗← f (s′)
13 s∗← s′

Code 7.4: tsp_GRASP.jl GRASP Implementation for the TSP. The randomized
greedy construction is based on the nearest neighbour criterion. The improvement
procedure is the ejection chain Code 12.3

1 include("random_generators.jl") # Code 12.1
2 include("tsp_utilities.jl") # Code 12.2
3 include("tsp_LK.jl") # Code 12.3
4

5 ######### Procedure for producing one TSP tour using GRASP principles
6 function tsp_GRASP(d, # Distance matrix
7 alpha)
8 n = size(d, 1)
9 tour = rand_permutation(n)

10 for i in 1:(n - 1)
11 # determine c_min and c_max incremental costs
12 c_min, c_max = Inf, -Inf
13 for j in (i + 1):n
14 if c_min > d[tour[i], tour[j]]
15 c_min = d[tour[i], tour[j]]
16 end
17 if c_max < d[tour[i], tour[j]]
18 c_max = d[tour[i], tour[j]]
19 end
20 end
21 next = i + 1 # Find the next city to insert, based on lower cost
22 while d[tour[i], tour[next]] > c_min + alpha * (c_max - c_min)
23 next += 1
24 end
25 tour[i + 1], tour[next] = tour[next], tour[i + 1]
26 end
27 tour_length = tsp_length(d, tour)
28 return tsp_LK(d, tour, tour_length)
29 end
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Setting parameter α = 0 leads to a purely greedy constructive method. Unless
many elements have the same incremental cost, the repetition of constructions does
not make sense. Setting α = 1 leads to a purely random construction. The method
represents then an iterative local search starting with random solutions. This tech-
nique is often used because it produces better solutions than a single local search run
and requires negligible coding effort. To benefit from the advantages of the GRASP
method, it is necessary to tune the α parameter. Usually, it will produce its full po-
tential for values close to 0. It should additionally be noted that the initialization of
the partial solution may include a random component. For the TSP, it can be the de-
parture city. The incremental cost function may correspond to the nearest neighbour
criterion.
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Problems

7.1. SA Duration
How many iterations does a simulated annealing run if it starts with an initial tem-
perature T0 and ends at temperature Tf , knowing that the temperature is multiplied
by α at each iteration?

7.2. Tuning GRASP
Try to tune the α parameter of the GRASP code. Take the TSPLIB problem instance
tsp225. Are good values depending on the number of iterations Imax the method
performs?

7.3. VNS with a Single Neighbourhood
VNS requires to have p different neighbourhoods and to use a particular neigh-
bourhood M1 to find local optima. If we only have M1, how can we build the other
neighbourhoods?

7.4. Record to Record
In tsp_VNS, n different neighbourhoods are used, leading to a method without
parameters. Could a more efficient algorithm be obtained by limiting the number of
neighbourhoods and repeating the search several times? How many neighbourhoods
and how many times should we repeat the search?



Chapter 8
Construction Learning

After having studied the four basic principles — modelling, decomposition, con-
struction and improvement — this chapter introduces the fifth principle of meta-
heuristics: learning mechanisms. The algorithms seen in the previous chapter rely
solely on chance to try to obtain better solutions than would be provided by greedy
constructive methods or local searches. This is probably not very satisfactory from
the intellectual point of view. Without solely relying upon chance, this chapter stud-
ies how to implement learning techniques to build new solutions. Learning processes
require three ingredients:

• Repeating experiences and analysing successes and failures: we only learn by
making mistakes!

• Memorizing what has been made.
• Forgetting the details. This gives the ability to generalize when in a similar but

different situation.

8.1 Artificial Ants

The artificial ant technique provides simple mechanisms to implement these learn-
ing ingredients in the context of constructing new solutions.

The social behaviour of some animals has always fascinated, especially when a
population comes to realizations completely out of reach of an isolated individual.
This is the case with bees, termites or ants: although each individual follows an
extremely simple behaviour, a colony is able to build complex nests or efficiently
supply its population with food.
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8.1.1 Real Ants Behaviour

Following the work of Deneubourg et al. [13] who described the almost algorithmic
behaviour of ants, researchers had the idea of simulating this behaviour to solve
difficult problems.

The typical behaviour of an ant is illustrated in Figure 8.1 with an experience
made with a real colony that has been isolated. The latter can only look for food by
going out from a single orifice. This one is connected to a tube separated into two
branches joining further. The left branch is shorter than the one on the right. As ants
initially have no information on this fact, the ants equally distribute in both branches
(Figure 8.1 (a)).

Nest

Source of food

(a) Initial situation (b) Final situation

Fig. 8.1: Behaviour of an ant colony separated from a food source by a path that is
divided. Initially, ants are evenly distributed in both branches (a). The ants having
selected the shortest path arrive earlier at the food source. Therefore, they faster lay
additional pheromones on the way back. The quantity of pheromones deposited on
the shortest path grows faster. After a while, virtually all ants will use the shortest
branch (b)

While exploring, each ant drops a chemical substance that it is apt to detect with
its antennas, which will assist it when returning to the anthill. Such a chemical sub-
stance carrying information is called pheromones. On the way back, an ant deposits
a quantity of pheromones depending on the quality of the food source. Naturally, an
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ant that has discovered a short path is able to return earlier than that which used the
bad branch.

Therefore, the quantity of pheromones deposited on the shortest path grows
faster. Consequently, a new arriving ant has information on the way to take and
bias its choice in favour of the shortest branch. After a while, it is observed that vir-
tually all ants use the shortest branch (Figure 8.1(b)). Thus, the colony collectively
determines an optimal path, while each individual does not see beyond the end of
its antennas.

8.1.2 Transcription of Ants Behaviour to Optimization

If an ant colony manages to optimize the length of a path, even in a dynamic context,
we should be able to transcribe the behaviour of each individual in a simple process
for optimizing intractable problems. This transcript may be obtained as follows:

• An ant represents a process performing a procedure that constructs a solution
with a random component. Many of these processes may run in parallel.

• Pheromone trails are τe values associated with each element e constituting a so-
lution.

• Traces play the role of a collective memory. After constructing a solution, the
values of the elements constituting the latter will be increased by a quantity de-
pending on the solution quality.

• The oblivion phenomenon is simulated by the evaporation of pheromone trails
over time.

Next is to clarify how these components can be put in place. The construction
process can use a randomized construction technique, almost similar to the GRASP
method. However, the random component must be biased not only by the incremen-
tal cost function c(s,e), which represents the a priori interest of including element
e in the partial solution, but also by the value τe which is the a posteriori interest
of this element. The latter is solely known after having constructed a multitude of
solutions.

The marriage of these two forms of interest is achieved by selecting the next item
e to include in the partial solution s with a probability proportional to τα

e · c(s,e)β ,
where α > 0 and β < 0 are two parameters balancing the respective importance
accorded to memory and incremental cost. The update of artificial pheromones
is performed in two steps, each requiring a parameter. First, the evaporation of
pheromones is simulated by multiplying all the values by 1−ρ , where 0 ⩽ ρ ⩽ 1
represents the evaporation rate. Then, each element e constituting a newly con-
structed solution has its τe value increased by a quantity 1/ f (s), where f (s) is the
solution cost, which is assumed to be minimized and greater than zero.
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8.1.3 MAX-MIN Ant System

The first artificial ant colony applications contained only the components described
above. The trail update is a positive feedback process. There is a bifurcation point
between a completely random process (learning-free) and an almost deterministic
one, repeatedly constructing the same solution (too fast learning). Therefore, it is
difficult to tune a progressive learning process with the three parameters α,β and
ρ .

To remedy this, Stützle and Hoos [59] suggested limiting the trails between two
values τmin and τmax. Hence, selecting an element is bounded between a minimum
and a maximum probability. This avoids elements possessing an extremely high
trail value, implying that all solutions would contain these elements. This leads to
the MAX-MIN ant system, which proved much more effective than many other
previously proposed frameworks. It is given in Algorithm 8.1.

Algorithm 8.1: MAX-MIN ant system framework
Input: Set E of elements constituting a solution; incremental cost function c(s,e)> 0;

fitness function f to minimize, parameters Imax,m,α,β ,τmin,τmax,ρ and
improvement method a(·)

Result: Solution s∗

1 f ∗← ∞

2 for ∀e ∈ E do
3 τe← τmax

4 for Imax iterations do
5 for k = 1 . . .m do
6 Initialize s as a trivial, partial solution
7 R← E // Elements that can be added to s
8 while R ̸=∅ do Build a new solution
9 Randomly choose e ∈ R with a probability proportional to τα

e · c(s,e)β // Ant
colony formula

10 s← s∪ e
11 From R, remove the elements that cannot be added any more to s

12 sk← a(s) // Find the local optimum sk associated with s
13 if f ∗ > f (sk) then Update the best solution found
14 f ∗← f (sk)
15 s∗← sk

16 for ∀e ∈ E do Pheromone trail evaporation
17 τe← (1−ρ) · τe

18 sb← best solution from {s1, . . . ,sm}
19 for ∀e ∈ sb do Update trail, maintaining it between the bounds
20 τe← max(τmin,min(τmax,τe +1/ f (sb)))

This framework comprises an improvement method. Indeed, implementations of
“pure" artificial ants colonies, based solely on building solutions, have proven inef-
ficient and difficult to tune. There may be exceptions, especially for the treatment
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of highly dynamic problems where an optimal situation at a given time is no longer
optimum at another one.

Algorithm 8.1 has a theoretical advantage: it can be proved that, if the number
of iterations Imax→ ∞ and if τmin > 0, then it finds a globally optimal solution with
probability tending to one. The demonstration is based on the fact that τmin > 0
implies that the probability of building a globally optimal solution is not zero. In
practice, however, this theoretical result is not tremendously useful.

8.1.4 Fast Ant System

One of the disadvantages of numerous frameworks based on artificial ants is their
large number of parameters and the difficulty of tuning them. This is the reason why
we have not presented Ant systems (AS [9]) or Ant Colony System (ACO [14]) in
detail. In addition, it can be challenging to design an incremental cost function pro-
viding pertinent results. An example is the quadratic assignment problem. Since any
pair of elements contributes to the fitness function, the ultimate element to include
can contribute significantly to the quality of the solution. Conversely, the first item
placed does not incur any cost. This is why a simplified framework called FANT (for
Fast Ant System) has been proposed.

In addition to the number of iterations, Imax, the user of this framework must
only specify another parameter, τb. It corresponds to the reinforcement of the artifi-
cial pheromone trails. This reinforcement is systematically applied to the elements
of the best solution found so far at each iteration. The reinforcement of the traces
associated with the elements of the solution constructed at the current iteration, τc,
is a self-adaptive parameter. Initially, this parameter is set to 1. When over-learning
is detected (the best solution is again generated), τc is incremented and all trails are
reset to τc. This implements the oblivion process and increases the diversity of the
solutions generated.

If the best solution has been improved, then τc is reset to 1 to give more weight
to the elements constituting this improved solution. Ultimately, FANT incorporates
a local search method. As mentioned above, it has indeed been noticed that the
sole construction mechanism often produces bad quality solutions. Algorithm 8.2
provides the FANT framework.

Figure 8.2 illustrates the FANT behaviour on a TSP instance with 225 cities. In
this experiment, the value of τb was fixed to 50. This figure provides the number
of edges different from the best solution found so far, before and after calling the
improvement procedure.

A natural implementation of the trails for the TSP is to use a matrix τ rather
than a vector. Indeed, an element e of a solution is an edge [i, j], defined by its two
incidents vertices. Therefore the value τi j is the a posteriori interest to have the edge
[i, j] in a solution. The initialization of this trail matrix and its update may therefore
be implemented with the procedures described by Code 8.2.

The core of an ant heuristic is the construction of a new solution exploiting arti-
ficial pheromones. Code 8.1 provides a procedure not exploiting the a priori interest
(an incremental cost function) of the elements constituting a solution. In this imple-
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Algorithm 8.2: FANT framework. Most of the lines of code are about auto-
matically adjusting the weight τc assigned to the newly built solution against
the τb weight of the best solution achieved so far. If the latter is improved or
if over-learning is detected, the trails are reset

Input: Set E of elements constituting a solution; fitness function f to minimize,
parameters Imax,τb and improvement method a(·)

Result: Solution s∗

1 f ∗← ∞

2 τc← 1
3 for ∀e ∈ E do
4 τe← τc

5 for Imax iterations do
6 Initialize s to a partial, trivial solution
7 R← E // Elements that can be added to s
8 while R ̸=∅ do
9 Randomly choose e ∈ R with a probability proportionnal to τe

10 s← s∪ e
11 From R, remove the elements that cannot be added any more to s

12 s′← a(s) // Find the local optimum s′ associated with s
13 if s′ = s∗ then manage over-learning
14 τc← τc +1 // More weight to the newly constructed solutions
15 for ∀e ∈ E do Erase all trails
16 τe← τc

17 if f ∗ > f (s′) then manage best solution improvement
18 f ∗← f (s′)
19 s∗← s′ // Update best solution
20 τc← 1 // Give minimum weight to the newly constructed solutions
21 for ∀e ∈ E do Erase all trails
22 τe← τc

23 for ∀e ∈ s′ do reinforce the trails associated with the current solution
24 τe← τe + τc

25 for ∀e ∈ s∗ do reinforce the trails associated with the best solution
26 τe← τe + τb

mentation, the departure city is the first of a random permutation p. At iteration i,
the i first cities are definitively chosen. At that time, the next city is selected with a
probability proportional to the trail values of the remaining elements.
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Fig. 8.2: FANT behaviour on a TSP instance with 225 cities. For each iteration,
the diagram provides the number of edges different from the best solution found
by the algorithm, before and after calling the ejection chain local search. Vertical
lines indicate improvements in the best solution found. In this experiment, the last
of these improvements corresponds to the optimal solution

Code 8.1: generate_solution_trail.jl Implantation of the generation of a permuta-
tion only exploiting the information contained in the pheromone trails

1 include("tsp_utilities.jl") # Code 12.2
2

3 ######### Building a solution using artificial pheromone trails
4 function generate_solution_trail(d, # Distance matrix
5 tour, # Tour produced by the ant
6 trail) # Pheromone trails
7 n = length(tour)
8 for i in 2:(n - 1)
9 total = sum(trail[tour[i - 1],tour[j]] for j in (i + 1):n)

10 target = unif(0, total - 1)
11 j = i
12 total = trail[tour[i - 1],tour[j]]
13 while total < target
14 total += trail[tour[i - 1],tour[j + 1]]
15 j += 1
16 end
17 tour[j], tour[i] = tour[i], tour[j]
18 end
19 return tour, tsp_length(d, tour)
20 end

Once the three procedures given by the codes 8.1 and 8.2 as well as an improve-
ment procedure are available, the implementation of FANT is very simple. Such an
implantation, using an ejection chain local search is given by Code 8.3
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Code 8.2: init_update_trail.jl Implementation of the trail matrix initialization and
update for the FANT method applied to a permutation problem. If the solution just
generated is the best previously found, trails are reset. Otherwise, the trails are rein-
forced both with the current solution and the best one

1 ######## (Re-)initialize all trails
2 function init_trail(initial_value, # Initial value for all trails
3 trail) # Pheromone trails
4 n = size(trail, 1)
5 trail = fill(initial_value, n, n)
6 for i in 1:n
7 trail[i, i] = 0
8 end
9 return trail

10 end
11

12 ######### Updating trail values
13 function update_trail(tour, # Last solution generated by an ant
14 global_best, # Global best solution
15 exploration, # Reinforcement of last solution
16 exploitation, # Reinforcement of global best solution
17 trail) # Pheromone trails
18

19 if tour == global_best
20 exploration += 1 # Give more weight to exploration
21 trail = init_trail(exploration, trail)
22 else
23 n = length(tour)
24 for i in tour
25 trail[tour[i],tour[mod1(i + 1, n)]] += exploration
26 trail[global_best[i],global_best[mod1(i + 1, n)]] += exploitation
27 end
28 end
29 return trail, exploration
30 end
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Code 8.3: tsp_FANT.jl FANT for the TSP. The improvement procedure is given by
Code 12.3

1 include("random_generators.jl") # Code 12.1
2 include("tsp_LK.jl") # Code 12.3
3 include("generate_solution_trail.jl") # Code 8.1
4 include("init_update_trail.jl") # Code 8.2
5

6 ######### Fast Ant System for the TSP
7 function tsp_FANT(d, # Distance matrix
8 exploitation, # FANT Parameters: global reinforcement
9 iterations) # number of solution to generate

10 n = size(d, 1)
11 best_cost = typemax(Int)
12 exploration = 1
13 trail = init_trail(exploration, Matrix{Int}(undef, n, n))
14 tour = rand_permutation(n)
15 best_sol = copy(tour)
16 for i in 1:iterations
17 # build solution
18 tour, cost = generate_solution_trail(d, tour, trail)
19 # improve built solution with a local search
20 tour, cost = tsp_LK(d, tour, cost)
21 if cost < best_cost
22 best_cost = cost
23 println("FANT $(i) $(cost)")
24 best_sol = copy(tour)
25 exploration = 1 # Reset exploration to lowest value
26 trail = init_trail(exploration, trail)
27 else
28 # Pheromone trace reinforcement - increase memory
29 trail, exploration =
30 update_trail(tour, best_sol, exploration, exploitation, trail)
31 end
32 end
33 return best_sol, best_cost
34 end

8.2 Vocabulary Building

Vocabulary building is a more global learning method than artificial ant colonies.
The idea is to memorize fragments of solutions, which are called words, and to
construct new solutions from these fragments. Put differently, one has a dictionary
used to build a sentence attempt in a randomized way. A repair/improvement proce-
dure makes this solution attempt feasible and increases its quality. Finally, this new
solution-sentence is fragmented into new words that enrich the dictionary.

This method has been proposed in [27] and is not yet widely used in practice,
although it has proved efficient for a number of problems. For instance, the method
can be naturally adapted to the vehicle routing problem. Indeed, it is relatively
easy to construct solutions with tours similar to those of the most efficient solution
known. This is illustrated in Figure 8.3.

By building numerous solutions using randomized methods, the first dictionary
of solution fragments can be acquired. This is illustrated in Figure 8.4.

Once an initial dictionary has been constructed, solution attempts are built, for
instance by selecting a subset of tours that do not contain common customers. This
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(a) (b)

Fig. 8.3: (a) The optimal solution to a VRP instance. (b) A few tours quickly ob-
tained with a taboo search. We notice great similarities between the latter and those
of the optimal solution

Fig. 8.4 Fragments of solu-
tions (vehicle routing tours)
constituting the dictionary.
A partial solution is built by
randomly selecting a few of
these fragments (indicated in
colour)

solution is not necessarily feasible. Indeed, during the construction process, the dic-
tionary might not include tours only containing customers not yet covered. There-
fore, it is necessary to repair this solution attempt, for instance by means of a method
similar to that used to produce the first dictionary but starting with the solution at-
tempt. This phase of the method is illustrated in Figure 8.5. The improved solution
is likely to contain tours that are not yet in the dictionary. These are included to
enrich it for subsequent iterations.
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(a) (b)

Fig. 8.5: (a) A sentence attempt is constructed by randomly selecting a few words
from dictionary (b). This attempt is completed and improved

The technique can be adapted to other problems, like the TSP. In this case, the
dictionary words can be edges appearing in a tour. Figure 8.6 shows all the edges
present in more than two-thirds of 100 tours obtained by applying a local search
starting with a random solution. The optimal solution to this problem is known.
Hence, it is possible to highlight the few edges frequently obtained that are not
part of the optimal solution. Interestingly, nearly 80% of the edges of the optimal
solution have been identified by initializing the dictionary with a basic improvement
method.
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Fig. 8.6: An optimal solution (light colour) and fragments of tours constituting an
initial dictionary for the TSP instance pr2392. The fragments are obtained by repeat-
ing 100 local searches starting with random solutions and only retaining the edges
appearing in more than 2/3 of the local optima. Interestingly, almost all these edges
belong to an optimal solution. The few edges that are not part of it are highlighted
(darkest colour)

Problems

8.1. Artificial Ants for Steiner Tree
For the Steiner tree problem, how to define the trails of an artificial ant colony?
Describe how these trails are exploited.

8.2. Tuning the FANT Parameter
Determine good values for the parameter τb of the tsp_FANT method provided
by Code 8.3 when the latter performs 300 iterations. Consider the TSPLIB instance
tsp225.

8.3. Vocabulary Building for Graph Colouring Describe how vocabulary con-
struction can be adapted to the problem of colouring the vertices of a graph.



Chapter 9
Local Search Learning

Local searches play an essential role in metaheuristics. Virtually, all efficient heuris-
tic methods incorporate a local search. Moreover, metaheuristics are sometimes de-
fined as a master process guiding a local search. In Chapter 5, we have already seen
some basic neighbourhood adaptation techniques, in particular its limitation by the
list of candidate moves, granular search and its extension by filter-and-fan search,
and ejection chains.

Most randomized methods reviewed in Chapter 7 are dedicated to local search
extensions. They are not implementing a learning process. They only memorize the
best solution found so far or statistics for self-calibrating the parameters. This allows
taking the unit of measurement of the fitness function into account. The following
step in the sophistication of metaheuristics is to learn to locally modify solutions to
a problem. Among the popular techniques, taboo search (also written tabu search)
offers many strategies and various local search learning mechanisms. This chapter
reviews the basic mechanisms. Other strategies are proposed in the book of Glover
and Laguna [29] and take a more natural place in other chapters of the present book.

9.1 Taboo Search

Proposed by Fred Glover in 1986, the key idea of taboo search is to explore the
solution space with a local search beyond local optima [23, 24, 25]. This implies
designing a mechanism to prevent the cycling phenomenon, the fact of entering a
cycle where a limited subset of solutions is repeatedly visited. The simplest concept
to imagine is to memorize all the solutions which have been successively encoun-
tered during a local search, but preventing the latter from choosing a neighbour
solution that has already been visited. The visited solutions thus become taboo.

This concept is simple but cumbersome to implement: imagine that a local search
can require millions of iterations, which means memorizing the same number of
solutions. Each neighbour solution must be checked to ensure that it has not already
been explored. Knowing that a neighbourhood can contain thousands of solutions,
we quickly realize the hopelessness of this way of doing things, either because of the
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memory space needed to store the visited solutions, or because of the computational
effort to compare neighbour solutions.

9.1.1 Hash Table Memory

A simple technique to implement an approximation of this principle of prohibiting
previously visited solutions is to use a hash table. An integer value h(s) is associated
with each solution s of the problem. If we visit the solution si at iteration i of the
search, we store the value i in the entry h(si) mod m of an array T of m integers.
Thus, the value tk of the kth entry of the table T indicates at which iteration a solution
whose hash value k (modulo m) has been visited.

The h function is generally not bijective over the set of solutions to the problem,
so various solutions can have the same hash value. Indeed, the size m of the array T
must be limited due to the available memory. This technique is, therefore, an approx-
imation of the concept of prohibiting solutions already visited. Indeed, not only the
latter is prohibited, but also all those that have the same hash value. Moreover, since
the value of m is limited, we cannot forever forbid returning to a solution of a given
hash value. After m iterations at the latest, all the solutions would be prohibited.

It is therefore necessary to implement a key feature of the learning process: obliv-
ion. These considerations lead us to introduce the key parameter of a taboo search:
the taboo duration, sometimes referred to as the taboo list length.

9.1.1.1 Hash Functions

The choice of a hash function to implement a taboo search is not very difficult. In
some cases, the value of the fitness function is perfect, especially when the neigh-
bourhood includes many moves at zero cost (plateaus). Indeed, taboo search chooses
the best move allowed at each iteration. Hence, neutral changes make learning diffi-
cult. Being on a plateau, the choice of one or the other neighbour is problematic and
cycling can occur. In case the fitness function admits an extensive range of values,
prohibiting during a number of iterations to return to a given fitness value allows, in
many cases, to break the local optimum structure and discover another one.

A general hash function is as follows. Let us use the notation introduced in Chap-
ter 4 devoted to constructive methods. A solution is composed of elements e ∈ E.
Each of them is associated with an integer value ze. These values are randomly gen-
erated at the beginning of the algorithm. The hash value of a solution s is provided
by h(s) = ∑e∈s ze. A more sophisticated hash technique using multiple tables is dis-
cussed in [61]. It makes it possible to obtain the equivalent of a very large table,
while limiting the memory space.
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9.1.2 Taboo Moves

Prohibition based on a hash function is uncommon in taboo search implementa-
tions. Frequently, one prohibits some moves or solutions with certain features. To
be concrete, consider the example of the symmetric TSP.

A 2-opt move can be characterized by the pair [i, j] which consists in replacing
the edges [i,si] and [ j,s j] of the current solution s by the edges [i, j] and [si,s j]. One
assumes here that the solution is provided by the “successor" of each city and that
the city j comes “after" the city i when travelling in the order given by s. If the move
[i, j] is carried out at an iteration, one can prohibit the reverse move [i,si] during the
following iterations. This is a direct prohibition based on the opposite of a move.

After performing the move [i, j], another possibility is to indirectly prohibit the
moves leading to a solution containing both edges [i,si] and [ j,s j].

By abuse of language, let m−1 denote the inverse of a move, or a feature of a
solution that is forbidden after performing the move m of a neighbourhood char-
acterized by a set M of moves. Although (s⊕m)⊕m−1 = s, there may be various
ways to define m−1. Since the size of the neighbourhood is limited, it is necessary to
relax the taboo status of a move after relatively few iterations. Therefore, the taboo
list is frequently presented as a short-term memory. The most basic taboo search
framework is given by Algorithm 9.1.

Algorithm 9.1: Elementary taboo search framework
Input: Solution s, set M of moves, fitness function f (·) to minimize, parameters Imax,d
Result: Improved solution s∗

1 s∗← s
2 for Imax iterations do
3 best_neighbour_value← ∞

4 forall m ∈M (such that m (or s⊕m) is not marked as taboo) do
5 if f (s⊕m)< best_neighbour_value then
6 best_neighbour_value← f (s⊕m)
7 m∗← m

8 if best_neighbour_value < ∞ then
9 Mark (m∗)−1 (or s) as taboo for the next d iterations

10 s← s⊕m∗

11 if f (s)< f (s∗) then
12 s∗← s

13 else
14 Error message: d too large: no move allowed!
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9.1.2.1 Implementation of Taboo Status

If the neighbourhood size is not too large, it can be stored, for each move, the iter-
ation from which it can be used again. Let us immediately illustrate such an imple-
mentation for the following knapsack instance with nine variables.

maxr = 12s1 +10s2 +9s3 +7s4 +4s5 +8s6 +11s7 +6s8 +13s9
Subject 10s1 +12s2 +8s3 +7s4 +5s5 +13s6 +9s7 +6s8 +14s9 ⩽ 45

to: si ∈ {0,1} (i = 1, . . . ,9)
(9.1)

A solution s of this problem is a 0–1 vector, with si = 1 if the object i is chosen
and si = 0 otherwise. Each object occupies a certain volume in the knapsack and
the latter possesses a global volume of 45. An elementary neighbourhood for this
problem is to alter the value of a unique variable of s.

The taboo conditions can be stored as a vector t of integers with ti giving the
iteration number at which the variable si can revert to a previous value. Initially,
t = 0: at the first iteration, all variables can be modified. For this small instance, let
us assume a taboo duration of d = 3. The initial solution can be set to s = 0, which
represents the worst feasible solution to the problem. Table 9.1 gives the evolution
of a taboo search for this small instance.

Iteration Variable Modified Fitness Volume Taboo Status
number modified solution value used

1 s9 (0, 0, 0, 0, 0, 0, 0, 0, 1) 13 14 (0, 0, 0, 0, 0, 0, 0, 0, 4)
2 s7 (1, 0, 0, 0, 0, 0, 0, 0, 1) 25 24 (0, 0, 0, 0, 0, 0, 5, 0, 4)
3 s7 (1, 0, 0, 0, 0, 0, 1, 0, 1) 36 33 (5, 0, 0, 0, 0, 0, 6, 0, 4)
4 s2 (1, 1, 0, 0, 0, 0, 1, 0, 1) 46 45 (5, 7, 0, 0, 0, 0, 6, 0, 4)
5 s9 (1, 1, 0, 0, 0, 0, 1, 0, 0) 33 31 (5, 7, 0, 0, 0, 0, 6, 0, 8)
6 s3 (1, 1, 1, 0, 0, 0, 1, 0, 0) 42 39 (5, 7, 9, 0, 0, 0, 6, 0, 8)
7 s8 (1, 1, 1, 0, 0, 0, 1, 1, 0) 48 45 (5, 7, 9, 0, 0, 0, 6, 10, 8)
8 s2 (1, 0, 1, 0, 0, 0, 1, 1, 0) 38 33 (5, 11, 9, 0, 0, 0, 6, 10, 8)
9 s4 (1, 0, 1, 1, 0, 0, 1, 1, 0) 45 40 (5, 11, 9, 12, 0, 0, 6, 10, 8)
10 s5 (1, 0, 1, 1, 1, 0, 1, 1, 0) 49 45 (5, 11, 9, 12, 13, 0, 6, 10, 8)

Table 9.1: Evolution of an elementary taboo search for 10 iterations for the knapsack
instance 9.1. This search forbids changing again a given variable for d = 3 iterations

Unsurprisingly, object 9 is put in the knapsack at the first iteration. Indeed, this
object has the largest value. At the end of iteration 1, it is forbidden to set s9 = 0
again up to the iteration t9 = 4 = 1+ 3. As long as there is room in the knapsack,
taboo search behaves like a greedy constructive algorithm. At iteration 4, it reaches
the first local optimum s = (1,1,0,0,0,0,1,0,1) of value r = 46.

At iteration 5, an object is removed, because the knapsack is dead full. Only
object 9 can be removed due to taboo conditions. As a result, the fitness function
decreases from r = 46 to r = 33, but space is freed up in the knapsack. At iteration 6,
the best move would be to add object 9, but this move is taboo. It would correspond
to return to the solution visited at iteration 4.
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The best authorized move is therefore to add object 3. Then, at the subsequent it-
eration the object 8 is added, leading to a new local optimum s=(1,1,1,0,0,0,1,1,0)
of value r = 48. The knapsack is again completely full. At iteration 8, it is necessary
to remove an object, setting s2 = 0. The place thus released makes it possible to add
the objects 4 and 5, discovering a solution s = (1,0,1,1,1,0,1,1,0) even better than
both local optima previously found.

For the TSP, the type of restrictions described above may be implemented using
a matrix T whose entry ti j provides the iteration from which we can again perform
a move where the edge [i, j] belongs to the tour. This principle extends to any com-
binatorial problem for which we search for an optimal permutation.

9.1.2.2 Taboo Duration

In the previous example, the taboo duration was set to three iterations. This value
may seem arbitrary. If the taboo conditions are removed (duration set to zero), the
search enters a cycle. Once a local optimum is reached, an object is removed and
added again in the next iteration. The maximum taboo duration is clearly limited by
the neighbourhood size: indeed, the search performs all the moves of the neighbour-
hood and then remains blocked. At that time, they are all prohibited.

These two extreme cases lead to inefficient searches — a zero taboo duration is
equivalent to learning nothing; a very high duration implies poor learning. Conse-
quently, we have to achieve a sensible compromise for the taboo duration. Therefore,
this duration must be learned for the problem instance treated. Figure 9.1 illustrates
this phenomenon for Euclidean TSP instances of size n = 100 randomly, uniformly
distributed in a square. The taboo search performs Imax = 1000 iterations.

Battiti and Tecchiolli [4] proposed a learning mechanism called Reactive Taboo
Search. All the solutions visited by the search are memorized. They can be stored
in an approximate way, employing the hash technique presented in Section 9.1.1.1.
The search starts with a restricted taboo duration. If the search visits a solution
again, then the duration is increased. If the search does not revisit any of the solu-
tions during a relatively significant number of iterations, then the taboo duration is
diminished.

This last condition seems strange. Why should we force the search to return to
previously explored solutions? The explanation is as follows: if the taboo duration is
sufficient to avoid the cycling phenomenon, it also means we are forbidden to visit
some good solutions because of the taboo status. We are therefore likely to ignore
high-quality solutions.

It is therefore necessary to find a taboo duration long enough to avoid cycling but
as short as possible so as not to prohibit good moves. This is precisely the purpose
of reactive taboo search.

However, this learning technique only repels the problem. Indeed, the user must
determine another parameter which is the number of iterations without revisiting a
solution, triggering the taboo duration decrease. In addition, it requires the imple-
mentation of a storage mechanism for all visited solutions, which can be cumber-
some to implement.
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Fig. 9.1: Influence of the taboo duration for Euclidean TSP with 100 cities. A short
duration allows visiting better quality solutions, on average. But the search cannot
escape from local optima. Hence, the quality of the best solutions found is not ex-
cellent. Conversely, if the taboo duration is too high, the average solution quality
decreases, as well as that of the best solutions discovered. In this case, a reasonable
compromise seems to be a taboo duration around the instance size. More generally,
the square root of the neighbourhood size seems appropriate

Another technique for choosing low taboo durations while strongly preventing
the cycling phenomenon is to randomly set it at each iteration. A classic method
is to select the taboo duration at random between a minimum duration dmin and a
maximum value dmax = dmin +∆ .

To create Figure 9.2, 500 QAP instances of size n = 12 with known optimal
solution have been generated. For each instance, we have performed a taboo search
with a considerable number of iterations (for instances that small) with all possible
parameters (dmin,∆ ). The number of optimal solutions found for each couple was
then counted. If the search succeeds in finding all the 500 optimal solutions, the
average number of iterations needed to reach the optimum is recorded.

With a deterministic taboo duration (∆ = 0), it was never possible to achieve
all the optimal solutions, even with a relatively large duration. Conversely, with
low minimum durations and a random variation equals to the size of the problem,
the optimum is systematically obtained. Moreover, the optimum is reached with
relatively few iterations.

Figure 9.3 reproduces a similar experiment for the TSP. It provides the solution
quality obtained for a small instance for any couple (dmin,∆ ). We observe similari-
ties with Figure 9.2. A random taboo duration proportional to half the instance size
is a reasonable compromise.
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Fig. 9.2: Taboo duration randomly generated between dmin and dmin +∆ . An empty
circle indicates that taboo search has been unable to systematically find the optimum
of 500 QAP instances. The circle size is proportional to the number of optimum
found (the larger, the better). A filled disc indicates that the optimum has been sys-
tematically found. The disk size is proportional to the average number of iterations
required for obtaining the optimum (the smaller, the better)

Fig. 9.3 Quality of the solu-
tions obtained with a taboo
search where the taboo du-
ration is randomly chosen
between dmin and dmin +∆

for a classical instance with
n = 127 cities. The method
performs 10n iterations start-
ing from a deterministic
greedy nearest neighbour
tour. For all values of dmin
between 0 and 1.5n and ∆ be-
tween 0 and 2n, we launched
a search and represented the
solution quality by a colour
(% above optimum)
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9.1.2.3 Aspiration Criterion

The unconditional prohibition of a move can cause unwanted situations. For in-
stance, one can skip an improvement of the best solution found. Thus, Line 4 of
the Algorithm 9.1 is modified and if the move m allows achieving a solution better
than s∗, it is retained. In the literature, this is referred to as an aspiration criterion.
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Other less trivial aspiration criteria can be imagined, in particular to implement a
long-term memory.

9.2 Strategic Oscillations

Forbidding the inverse of moves recently performed implements a short-term mem-
ory. This mechanism can be very efficient for instances of moderate size. By cons, if
we address more complex problems, this sole mechanism is not sufficient. A search
strategy that has been proposed in the context of taboo search is to alternate intensi-
fication and diversification phases.

The goal of intensification is to thoroughly examine a limited portion of the
search space, maintaining solutions that possess a globally similar structure. Once
all the attractive solutions of this portion are supposedly discovered, the search has
to go elsewhere. Put differently, the search is diversified by altering the structure of
the solution. The search intensification can be implemented with a short duration
taboo list.

9.2.1 Long-Term Memory

Implementing a diversification mechanism supposes to include a long-term memory.
Several techniques have been proposed to achieve that.

9.2.1.1 Forced Moves

The most certain and convenient way to break the structure of a solution is to per-
form moves that have never been selected during many iterations. With a basic taboo
search memorizing the iteration from which each move can again be performed, the
implementation of this form of long-term memory is virtually free. Indeed, if the it-
eration number stored for a move is considerably smaller than the current iteration,
then this move has not been selected for a long time.

It is thus possible to force the use of this modification, regardless of the qual-
ity of the solution to which it leads. This mechanism requires a new parameter, K,
representing the number of iterations from which a never chosen move is forced.
Naturally, this parameter must be larger than the size of the neighbourhood, other-
wise the search degenerates, performing only forced moves. If several moves are to
be forced at a given iteration, one is chosen arbitrarily. The others will be forced in
subsequent iterations. This type of long-term memory represents a kind of aspiration
criterion, introduced in the previous section.
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9.2.1.2 Penalized Moves

A weakness of taboo search with very short-term memory is that it only makes small
changes. To illustrate this on the TSP, such a search will “knit" a small knot on a tour
that was locally optimal, then another elsewhere and so on until the taboo condition
drops. At that point, the search unknits the first knot. This situation is illustrated in
Figure 9.4.

Fig. 9.4 A basic taboo search
with a short-term memory
can enter cycling with this
2-optimal tour. Indeed, this
solution belongs to a plateau.
There are eight moves not
changing the tour length
(dotted lines). With a taboo
duration shorter than eight,
the search repeatedly chooses
one of these moves

To avoid this behaviour, an idea is to store the number of times fm a move m was
chosen and limit its use. During the move evaluation, a penalty F · fm is added. The
proportionality factor F is a new parameter of the technique that must be tuned. Nat-
urally, an aspiration criterion must be used in conjunction with this mechanism. In-
deed, the search should nevertheless be allowed choosing a heavily penalized move
leading to an improvement of the best solution known.

Code 9.1 provides a taboo search implementation for the TSP, based on the 2-opt
neighbourhood. Two types of memories are employed: a short-term conventional
memory that prevents moves from reintroducing both edges that have been recently
removed and a long-term memory that counts the number of times each edge has
been inserted in the solution. A move is penalized proportionally to the number of
times the concerned edges have been introduced in the solution. A move is forbidden
if both edges have recently been removed from the solution (eventually at different
iterations). Ultimately, a move is aspired if it improves on the best solution achieved
so far.
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Code 9.1: tsp_TS.jl Taboo search implementation for the TSP
1 ######### Taboo Search for the TSP, based on 2-opt moves
2 function tsp_TS(d, # Distance matrix
3 tour, # Intital tour provided
4 tour_length, # Length of initial tour
5 iterations, # Number of tabu search iterations
6 min_tabu_duration, # Minimal tabu duration
7 max_tabu_duration,
8 F) # Factor for penalizing moves repeatedly performed
9 n = length(tour)

10 tabu = zeros(Int, n, n) # Tabu list
11 count = zeros(Int, n, n) # Move count
12 best_tour = copy(tour)
13 best_length = tour_length
14 for iteration in 1:iterations
15 delta_penalty = Inf
16 ir, jr = -1, -1 # Cities retained for performing a move
17 # Find best move allowed or aspired
18 for i in 1:n-2
19 j = i + 2
20 while j < n + (i > 1 ? 1 : 0)
21 delta = d[tour[i], tour[j]] + d[tour[i+1], tour[mod1(j+1,n)]]-
22 d[tour[i], tour[i+1]] - d[tour[j], tour[mod1(j+1, n)]]
23 penalty = F * (count[tour[i], tour[j]] +
24 count[tour[i+1], tour[mod1(j+1, n)]])
25 # Conditions for accepting a candidate move
26 better = delta + penalty < delta_penalty
27 allowed = tabu[tour[i], tour[j]] <= iteration ||
28 tabu[tour[i+1], tour[mod1(j+1, n)]] <= iteration
29 aspirated = tour_length + delta < best_length
30 if better && (allowed || aspirated)
31 delta_penalty, ir, jr = delta + penalty, i, j
32 end
33 j += 1 # Next neighbour
34 end
35 end
36

37 # Perform retained move
38 if delta_penalty < Inf
39 tabu[tour[ir], tour[ir+1]] = tabu[tour[jr], tour[mod1(jr+1, n)]] =
40 tabu[tour[ir+1], tour[ir]] = tabu[tour[mod1(jr+1, n)], tour[jr]] =
41 unif(min_tabu_duration, max_tabu_duration) + iteration
42

43 count[tour[ir], tour[ir+1]] += 1
44 count[tour[jr], tour[mod1(jr+1, n)]] += 1
45 count[tour[ir+1], tour[ir]] += 1
46 count[tour[mod1(jr+1, n)], tour[jr]] += 1
47

48 tour_length += d[tour[ir], tour[jr]] +
49 d[tour[ir+1], tour[mod1(jr+1, n)]] - d[tour[ir], tour[ir+1]] -
50 d[tour[jr], tour[mod1(jr+1, n)]]
51

52 for k in 0:div(jr-ir, 2)-1
53 tour[k + ir + 1], tour[jr - k] = tour[jr - k], tour[k + ir + 1]
54 end
55 else
56 println("All moves are forbidden, tabu list too long")
57 end
58 if best_length > tour_length # Is there an improvement?
59 best_length, best_tour = tour_length, copy(tour)
60 println("TS $iteration $best_length")
61 end
62 end
63 return best_tour, best_length
64 end
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Figure 9.5 illustrates the quality of this taboo search performing 10n iterations
on a TSP instance with n = 127 cities. The search implements the penalty mech-
anism based on the frequency of moves. Compared to a taboo search not employ-
ing this mechanism (Figure 9.3), the taboo duration can be reduced and the search
achieves good solutions more frequently. This mechanism could even be operated
alone, without a taboo list. Indeed, an excellent solution is obtained with a mini-
mum and maximum taboo duration of 0. A taboo list can be implemented by means
of a matrix whose entry (i, j) gives the iteration number from which one can again
use the edge [i, j] in a move. Counting the frequency of moves is implemented in a
similar way.

Fig. 9.5 Same diagram as
Figure 9.3 but with a taboo
search managing a long-term
memory. Frequently per-
formed moves are penalized.
The value of the penalty is
F ·ne, where ne is the number
of times the edge e has been
included in or removed from
the tour and the value of F is
the average length of an edge
divided by the instance size
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9.2.1.3 Restarts

A frequently used technique to intensify a taboo search is to restart with the best
solution achieved so far. This is done if the search seems to stagnate, for instance
if there has been no improvement in the best solution during a relatively significant
number of iterations. When restarting, the information collected during the previous
iterations by the taboo list is kept, as well as other statistics, if any. Hence, the work
achieved during these iterations is exploited.

Thus, the data structures guiding the search being in an altered state after restart-
ing, the trajectory followed by the search will also be. This mechanism can be identi-
fied as the opposite of the one presented above where we force the use of neglected
attributes for many iterations. Its purpose is to achieve search intensification, not
diversification. Naturally, the implementation of this mechanism implies the intro-
duction of new parameters that must be adjusted, like the number of iterations to
be carried out before a restart and a possible adaptation of the value of other pa-
rameters (taboo duration, frequency penalty) to guide the search toward diversified
trajectories.
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Problems

9.1. Taboo Search for an Explicit Function
An integer function of integer variables f (x,y) is explicitly given in Table 5.1. We
seek the minimum of this function by applying a taboo search. The neighbourhood
consists in modifying by a unit the value of one variable. The taboo conditions
consist in forbidding to increment (respectively: to decrement) a variable that has
been decremented (respectively: incremented). First, consider a taboo duration of
d = 3 and (−7,−6) as the starting solution. Next, start from (−7,7) and use d = 1.
The search stops if there is no more move allowed or if 25 iterations have been
performed.

9.2. Taboo Search for the VRP
For the VRP, the neighbourhood consists in either moving a customer from one
route to another, or swapping two customers from different routes. Suggest taboo
criteria for this neighbourhood.

9.3. Taboo Search for the QAP
Consider the QAP instance given by the flow F and distance D matrices:

F =


0 5 2 4 1
5 0 3 0 2
2 3 0 0 0
4 0 0 0 5
1 2 0 5 0

 D =


0 1 1 2 3
1 0 2 1 2
1 2 0 1 2
2 1 1 0 1
3 2 2 1 0


Starting with the solution p = (1,2,3,4,5), perform six iterations of a taboo search.
The moves are defined by pairs (i, j) that swap the elements pi and p j. If the move
(i, j) is performed, then, it is forbidden for d = 5 iterations to place the element pi
in position i and, simultaneously, the element p j in position j. For each iteration,
provide: the solution, its value, that of all the moves and their taboo status.



Chapter 10
Population Management

By abuse of language, all the methods previously presented can be classified as
single-solution metaheuristics. Although most of these methods are building or
modifying a lot of different solutions, they only consider one current solution at
an iteration and, eventually, the best solution found so far. This classification could
be disputed, especially for the ant system. Indeed, several solutions are built at a
given iteration. However, an ant constructs a solution without taking care of the
work done in parallel by the other ants and all the solutions built in one iteration
are forgotten once the trails are updated. Similarly, there are taboo searches storing
several solutions, but they are used for determining the taboo status of a current
solution neighbour. This chapter considers methods where several solutions are ex-
plicitly stored and iteratively used for generating or modifying other ones.

With a proper modelling of an optimization problem, it is very easy to construct
many different solutions, especially by means of a randomized method. Therefore,
one can try to learn how to create new solutions from those previously constructed.
This chapter studies how to exploit a population of solutions and how to combine
the various basic metaheuristic components studied above.

Let us illustrate this by the tour merging technique for the TSP. Figure 10.1
shows five tours obtained with a randomized method in O(n logn) presented in Sec-
tion 6.3.2. None of these solutions looks really nice. However, superimposing these
solutions on the optimal solution reveals that all the edges of the latter are part of
these tours. Therefore, we believe that intelligent exploitation of various solutions
can help to discover better ones.

10.1 Evolutionary Algorithms Framework

The intuition at the source of evolutionary algorithms comes from biologist works
of the nineteenth century, like Darwin and Mendel who founded the theory of the
evolution of living species. Indeed, over the course of generations, living beings
are able to adapt to constantly changing external conditions. They can optimize
their survival probability, thus resolving extremely complex problems. Therefore,

185
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Fig. 10.1: Optimal tour of the TSP instance tsp225 on which is superimposed five
tours obtained by the fast method presented in Section 6.3.2

why not attempt to artificially reproduce this evolution to solve hard combinatorial
optimization problems?

In the 1960s and 1970s, various ways of exploiting these ideas emerged. The
general framework of the evolutionary algorithms is provided by Algorithm 10.1.
One begins by generating a set of µ solutions to the problem, usually in a purely
random fashion. This set of solutions is called a population by analogy with a group
of living beings. In the same way, a solution to the problem is an individual. Evolu-
tionary algorithms repeat the next loop (called a generational loop) until a stopping
criterion is met. This is either set in advance, for example the number of times the
generational loop is repeated, or decided on the basis of the diversity of individuals
present in the population.

Algorithm 10.1: Framework of evolutionary algorithms
Input: Parameters µ and λ , selection for reproduction, crossover, mutation and selection

for survival operators
Result: Population of solutions P

1 Generate a population P of µ solutions
2 repeat
3 Select individuals from P with the selection for reproduction operator
4 Combine the selected individuals with the crossover operator and apply the mutation

operator to get λ new solutions
5 Among the µ +λ solutions, select µ individuals with the selection for survival

operator; these µ individuals constitute the population P for the next generation
6 until a stopping criterion is satisfied
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First, a number of solutions from the population are selected to be used for breed-
ing. This is achieved by a selection operator for reproduction. The purpose of this
operator is to favour the individuals that are well adapted to their environment (those
with the best fitness function) at the expense of those that are weaker, sick, ill-
adapted similar to what happens in nature.

The selected individuals are then mixed together (e.g., in pairs) using a crossover
operator to form λ new solutions called offspring which undergo random modifi-
cations by means of a mutation operator. These two operators simulate the sexual
reproduction of living species, assuming that, with a little luck, the favourable char-
acteristics (the desirable genes contained in the DNA) of the parent solutions will
be transmitted to their children and that fortuitous mutations will result in the ap-
pearance new favourable genes.

Finally, the new solutions are evaluated, and a selection operator for survival
eliminates λ solutions from the µ +λ available to reduce to a new population of µ

individuals. Figure 10.2 illustrates the process of a generational loop.

Population

Selection for survival Selection for reproduction

CrossoverMutation

Fitness evaluation

ParentsOffspring

Fig. 10.2: Generational loop in an evolutionary algorithm. From a population of so-
lutions, symbolized here by coloured sticks, one selects individuals who reproduce
by crossover and mutation. The offspring thus generated is evaluated and incor-
porated into the population. Ultimately, individuals are eliminated by a selection
operator for survival to bring the population back to its initial size

The framework of evolutionary algorithms leaves considerable freedom in the
choices to be made for the implementation of the various operators and parameters.
For instance, the “evolution strategy" of Rechengerg [52] does not use a crossover
operator between two solutions. In this technique, the solutions of the population are
modified with a mutation operator and compete with each other, much like partheno-
genetic reproduction.
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10.2 Genetic Algorithms

Among evolutionary algorithms, it is undoubtedly the genetic algorithms (GA) pro-
posed by Holland [33] that have received the most attention. This is paradoxical,
since the purpose of his study was to understand the convergence mechanisms of
these algorithms, not their ability to optimize difficult problems. For a long time,
the community in this field continued to work on the genetic algorithm convergence
theory, studying “orthodox" versions of the various operators mentioned above, in
conjunction with a standard representation of solutions under the form of Boolean
vectors with a specified size.

Unfortunately, not all optimization problems have solutions that can be naturally
represented by binary vectors. Using only standard operators and knowing their
theoretical properties, considerable efforts have been made to discover appropriate
encodings of solutions in the form of binary vectors and to decode them into feasible
solutions.

For the problems whose solutions are naturally represented by a permutation, the
random key coding technique allows exploiting the standard crossover and mutation
operators. A permutation of the elements of 1 . . .n are represented by an array t
of n real numbers. The permutation p allowing the sorting of t corresponds to the
solution coded by the array (see Figure 10.12).

The next sections review the main genetic algorithm operators, discussing how
they can be generalized so that they equally apply to a natural representation of
solutions and not only to binary vectors.

10.2.1 Selection for Reproduction

The selection for reproduction aims to favour the most efficient solutions so that
they can transmit their beneficial properties to their offspring. Each solution i must
therefore be assigned a fitness measure fi; the higher the quality, the higher the
selection probability must be. If the objective of the problem to be solved is to
maximize a function admitting positive values, this function can be directly used as
fitness function. Otherwise, a transformation of the objective function is required to
assign a fitness to each individual.

10.2.1.1 Rank-Based Selection

A traditional transformation is to sort the individuals. This does not require the
computation of an objective function but only the possibility to compare the solution
quality. The fittest individual in a population has a rank of 1 and the worst of µ .

The individual i of rank ri has a quality measure fi = (1− ri−1
µ

)p, where p⩾ 0 is
a parameter to modulate the selection pressure. A pressure p = 0 implies a uniform
draw among the population (no selective pressure) while p = 2 represents a fairly
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high pressure. Code 10.1 provides an implementation of this operator for a selection
pressure of p = 1.

Code 10.1: rank_based_selection.jl Implementation of a rank-based selection op-
erator for reproduction, with selective pressure p = 1. The best of µ individuals has
a probability of 2µ

µ·(µ+1) to be selected, while the worst has a probability of 2
µ·(µ+1)

1 ######### Selection operator for reproduction based on the rank
2 function rank_based_selection(size)
3 return Int(size - ceil(sqrt(0.25 + 2unif(1, size*(size + 1)÷2)) - 0.5)) + 1
4 end

10.2.1.2 Proportional Selection

The simplest selection operator is to randomly draw an individual proportionally
to its fitness. The individual i has thus a probability fi/∑ fi of being selected. In
principle, we do not select just one individual at each generational loop but several.
The selection is ordinarily performed with replacement, so that a (good) individual
can be selected several times in one generation.

Genetic algorithms are inherently parallel: the generational loop can be applied
both to the production of a unique individual in each generation, as shown in Fig-
ure 10.2, and to the generation of a multitude of offspring. A frequently used tech-
nique is to select an even number λ of parent solutions in a generation and pair
them up, and each pair produces two offspring per crossover. Table 10.1 compares
the selection probabilities of the operators presented above for a small population.

10.2.1.3 Natural Selection

It is also possible to perform a purely random and uniform selection for reproduc-
tion, just like what happens to many living species. The convergence of the algo-
rithm must then be guided by the selection operator for survival, which ensures a
bias toward the fittest individuals.

10.2.1.4 Complete Selection

If one does not choose too large a population size, it is also possible to involve
all individuals in a systematic way for reproduction. As with natural selection, the
evolution of the population toward good solutions then depends on the selection
operator for survival, which should favour the best solutions.
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Objective Probability
function Rank Rank-based (p = 2) Rank-based (p = 1) Natural Proportional
220 1 0.260 0.182 0.1 0.220
162 2 0.210 0.164 0.1 0.162
157 3 0.166 0.146 0.1 0.157
93 4 0.127 0.127 0.1 0.093
85 5 0.094 0.109 0.1 0.085
74 6 0.065 0.091 0.1 0.074
61 7 0.042 0.073 0.1 0.061
55 8 0.023 0.054 0.1 0.055
49 9 0.010 0.036 0.1 0.049
44 10 0.003 0.018 0.1 0.044

Table 10.1: Selection probability for different operators for reproduction. The ob-
jective function is to be maximized and is directly used as a fitness function for the
proportional selection. The sum of the values of the objective function is 1000

10.2.2 Crossover Operator

A crossover operator aims to simulate the sexual reproduction of living species.
Schematically, the process of meiosis in sexual reproduction separates the DNA of
each parent into two genetic sequences. This produces gametes (egg cell, sperm
or pollen grains). During the fertilization of the egg cell, genetic shuffling occurs,
during which the sequence of genes of the offspring is produced by sequentially
adding the genes of either parent in an arbitrary fashion.

The purpose of this operator is to produce a new offspring, different from its
parents, but having inherited some of their features. With a little luck, the offspring
receives good features from its parents and is better adapted to its environment. With
a little less luck, the offspring does not receive those good features. Nevertheless, it
perpetuates valuable genes and provides a source of diversity within the population,
which means potential for innovation.

Figure 10.3 metaphorically illustrates this with the mating of different ladybird
beetles. The couples at the top are likely to produce children very similar to them-
selves, while the couples at the bottom of the figure might produce genetically richer
children.

There are evolutionary strategies where the crossover operator is absent. These
strategies mimic asexual reproduction, where an individual produces an offspring
practically identical to itself, where only spontaneous mutations cause the popula-
tion gene pool to evolve.

10.2.2.1 Uniform Crossover

Uniform crossover involves taking two parent solutions, represented as vectors of n
items and creating a third one by choosing its items from either parent with equal
probability. Figure 10.4 illustrates the production of two “anti-twin" offspring from
two parents. This crossover operator is appropriate if it is straightforward and logical
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Fig. 10.3: Ladybird beetles mating. One can imagine the top couples will produce
children very similar to themselves, while the lower ones will keep some genetic
diversity in the population, and hopefully, produce some children better adapted to
their environment

to represent any solution of the problem by a vector of n components, and if any
vector of that size can match a feasible solution.

Fig. 10.4 Uniform crossover.
Production of two comple-
mentary offspring from the
genes of two parents. Each
item of the first offspring is
chosen at random from either
parent by flipping a coin. The
second offspring receives the
complementary item

AC G T TT G GA AC G

TA G C GT A GC CT G

T C T T GCA G T G G A

AC A G T T G A G C C G

Parent 1

Parent 2

Offspring 1

Offspring 2

This is not the case for a problem where a permutation of n items is sought. One
technique for adapting the uniform crossover for this situation is to proceed in two
phases: in the first phase, the items of the permutation are randomly selected from
either parent, provided that the item has not yet been chosen. If both parents possess
items already selected at the position to be filled, the latter remains temporarily
empty in the offspring. The second phase consists in filling in at random the vacant
positions with the items that were not selected during the first phase. This operator
is illustrated in Figure 10.5.
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Fig. 10.5 Uniform crossover
on a permutation. An off-
spring is produced in two
phases. We first successively
choose the items of one or
the other of the parents, as
long as they are not part of the
offspring. Otherwise, either
we leave the position empty
if both items are already in
the offspring, or we select the
unique item available. The
second phase randomly com-
pletes the offspring using the
remaining items

113 12 8 2 6 1 10 9 7
Step 1

Offspring
113 12 8 2 6 1 10 9 75 4

125 8 2 16 11 39 410 7

411 8 12 15 2 103 96 7

Parent 1

Parent 2

10.2.2.2 Single-Point Crossover

The single-point crossover first randomly picks a point within the solution vector.
Then it copies all the items of the first parent up to that point. Finally, it copies
the items of the second parent from there. In practice, for a vector of n items, we
randomly draw a number c between 1 and n−1; we copy the items 1 to c from the
first parent and the items c+1 to n from the second parent. We can produce a second
complementary offspring in parallel. Figure 10.6 illustrates this operator.

Fig. 10.6 Single-point
crossover. Production of two
“anti-twins" by randomly
drawing a crossover point
(here, the 8). The items of the
first parent are copied up to
the crossover point, and those
of the second from there on

AC G T TT GA G AC G
Parent 1

Parent 2

Offspring 1

Offspring 2

TA G C GT AC G CT G

AC G T TT GA G CT G

TA G C GT AC G AC G

10.2.2.3 Two-Point Crossover

The two-point crossover consists in randomly selecting two different points. The
offspring is created by copying the items before the first point and after the second
point from one parent and copying the portion between the points from the other
parent. This operator is illustrated in Figure 10.7. The strategy can be generalized
by choosing k crossover points.
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Fig. 10.7 Two-point
crossover. Production of two
“anti-twins" by randomly
drawing two crossover points
(here, the 4 and 8). The items
of the first parent are copied
up to the first and from the
second crossover point. The
intermediate items come from
the second parent

AC G T TT GA G AC G

TA G C GT AC G CT G

Parent 1

Parent 2

Offspring 1

Offspring 2

AC GA C GT A G AC G

TA GC T TT G G CT G

10.2.2.4 OX Crossover

For each problem, we can invent a specific crossover operator. For instance, for the
TSP, one can advance the argument that portions of the paths should be copied from
the parents into the offspring. If a solution is a permutation of the cities, we realize
that the uniform crossover seen previously (adapted to the case of permutations)
does not really make sense: the starting city is not decisive. The cities that precede
and succeed a given city are important, not the absolute position of the city in the
tour. The two-point crossover operator can be adapted for the problems where the
sequences are significant.

125 8 2 16 11 39 410 7
Parent 1

Parent 2

Offspring
32 16 11 4 8 12 5 10 9 7

411 8 12 15 2 10 96 73

Fig. 10.8: OX crossover, specifically developed for the TSP. We start by randomly
drawing two crossover points. The intermediate portion of the first parent is copied
to the offspring. In this example, this portion ends in city 11. We locate this city
in the second parent and complete the offspring from there, in this case with city
4. The cities already appearing in the offspring (1, 2, and 6) are skipped. When we
arrive at the last city of the second parent (7), we return to the first (3) one
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Code 10.2: OX_crossover.jl Implementation of the OX crossover operator, preserv-
ing a sub-path

1 ######### Crossover operator preserving successive values in a permutation
2 function OX_crossover(parent1, parent2) # Parent solutions
3 n = length(parent1)
4 # Randomly generate the portion of parent1 that is copied in child
5 point2, point1 = unif(1, n - 2), unif(1, n - 3)
6 if point1 >= point2
7 temp = point2
8 point2 = point1 + 1
9 point1 = temp

10 end
11 # Copy the portion of parent1 at the beginning of child
12 child = fill(-1, n)
13 inserted = fill(false, n) # Elements already inserted in child
14 for i in 1:(point2 - point1+1)
15 child[i] = parent1[i + point1]
16 inserted[child[i]] = true
17 end
18

19 # Last element of parent2 inserted in child
20 i = findfirst(==(child[point2 - point1 + 1]), parent2)
21 nr_inserted = point2 - point1 + 1
22

23 # Insert remaining elements in child, in order of appearance in parent2
24 while nr_inserted < n
25 i += 1
26 if !inserted[parent2[mod1(i, n)]]
27 nr_inserted += 1
28 child[nr_inserted] = parent2[mod1(i, n)]
29 inserted[parent2[mod1(i, n)]] = true
30 end
31 end
32 return child
33 end

The OX crossover operator devised for the TSP begins by copying the interme-
diate portion of one parent, like the two-point crossover. The last city of this portion
is located in the other parent and the offspring is completed by cyclically scanning
the cities of this parent and inserting those not yet included. The OX crossover op-
erator is illustrated in Figure 10.8. An implementation of this operator is given in
Code 10.2.

10.2.3 Mutation Operator

The mutation operators can be described in a simple way in the context of this
book: it consists in randomly applying one or more local moves to the solution, as
described in Chapter 5 devoted to local searches.

The mutation operator has two roles: firstly, the local modification can improve
the solution, and secondly, even if the solution is not improved, it slows down the
global convergence of the algorithm by strengthening the genetic diversity of the
population. Indeed, without this operator, the population can only lose diversity. For
instance, the crossover operators presented above systematically copy the identi-
cal parts of the parents in the offspring. Thus, some genes take over compared to
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others that disappear with the elimination of solutions by the selection operator for
survival.

Figure 10.9 illustrates the influence of the mutation rate for a problem where a
permutation of n elements is sought. In this figure, a mutation rate of 5% means
that there is such a proportion of elements that are randomly swapped in the permu-
tation. Code 10.3 gives an implementation of a mutation operator for problems on
permutations.

C
os

t 135

130

125

120

115

110

105

100
100 1,000 10,000 100,000

Generations

Mutation rate 1%

Mutation rate 2%

Mutation rate 5%

No mutation

Fig. 10.9: Influence of the mutation rate on the quality of the solutions produced
as a function of the number of generational loops performed. Only the value of the
best solution in the population is indicated. The algorithm favours the best solutions
in the population by means of selection operators for reproduction and survival.
Without mutation, the population converges relatively rapidly to individuals that
are all similar and of poor quality. The higher the mutation rate, the slower the
convergence, resulting in better solutions

Code 10.3: mutate.jl Implementing a mutation operator for problems on permuta-
tions

1 ######### Random mutation of a permutation
2 function mutate(mutation_rate, p)
3 n = length(p)
4 mutations = Int(mutation_rate * n / 2.0)
5 for _ in 1:mutations
6 i, j = unif(1, n), unif(1, n)
7 p[i], p[j] = p[j], p[i]
8 end
9 return p

10 end
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10.2.4 Selection for Survival

The last key operator in genetic algorithms is selection for survival, which aims to
bring the population back to its initial size of µ individuals, after λ new solutions
have been generated. Several selection policies have been devised, depending on the
values chosen for the parameters µ and λ .

10.2.4.1 Generational Replacement

The simplest policy for selecting the individuals who will survive is to generate the
same number of offspring as there are individuals in the population (λ = µ). The
population at the beginning of the new generational loop is made up only of the
offspring, the initial population disappearing. With such a choice, it is necessary
to have a selection operator for reproduction that favours the best solutions. This
means the best individuals are able to participate in the creation of several offspring,
while some of the worst are excluded from the reproduction process.

10.2.4.2 Evolutionary Strategy

The evolutionary strategy (µ,λ ) consists in generating numerous offspring (λ > µ)
and in only keeping the µ best offspring for the next generation. The population
is therefore completely changed from one iteration of the generational loop to the
next. This strategy leads to a bias in the choice of the fittest individuals from one
generation to the next. So, it is compatible with a uniform selection operator for
reproduction.

10.2.4.3 Stationary Replacement

Another commonly used technique is to gradually evolve the population, with the
generation of few offspring at each generational loop. A strategy is to generate λ = 2
children in each generation, which will replace their parents.

10.2.4.4 Elitist Replacement

Another more aggressive strategy is to consider all the µ +λ solutions available at
the end of the generational loop and to keep only the best µ for the next generation.
This strategy was adopted to produce Figure 10.10 illustrating the evolution of the
fittest solution of the populations for various values of µ .

Code 10.4 implements an elitist replacement when λ = 1, which means that only
one offspring is produced at each generation. It replaces the worst solution in the
population (if it is not even worse). In this code, we have included a basic population
management that must contain exclusively different individuals. To simplify the test
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Fig. 10.10: Influence of the population size on the solution quality. When the popu-
lation is too limited, it converges very rapidly with a low probability of discovering
good solutions. Conversely, a large population converges very gradually, but better
solutions are obtained

of equality between two solutions, they are discriminated only on the basis of their
fitness: two solutions of the same length are considered identical.
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Code 10.4: insert_child.jl Implementation of elitist replacement where each gen-
eration produces only one child. This procedure implements basic population man-
agement where all individuals must have different fitness

1 ######### Inserting a child in a population of solutions
2 function insert_child(child, # Individual to insert in population
3 child_fitness, # Cost of child (the smaller, the better)
4 population_size,
5 population,
6 fitness, # Fitness of each individual
7 order) # order[i] : individual number with rank i
8 rank = fill(-1, population_size) # Rank of individuals
9 for i in 1:population_size

10 rank[order[i]] = i
11 end
12 child_rank = 1 # Find the rank of the child
13 for i in 1:population_size
14 if fitness[i] < child_fitness
15 child_rank += 1
16 end
17 end
18 if child_rank < population_size # The child is not dead-born
19 if fitness[order[child_rank]] != child_fitness &&
20 (child_rank == 1 || fitness[order[child_rank]] != child_fitness)
21 population[order[population_size]] = copy(child)
22 fitness[order[population_size]] = child_fitness
23 for i in 1:population_size
24 if rank[i] >= child_rank
25 rank[i] += 1
26 end
27 end
28 rank[order[population_size]] = child_rank
29 for i in 1:population_size
30 order[rank[i]] = i
31 end
32 else
33 child_rank = population_size
34 end
35 end
36 return child_rank, population, fitness, order
37 end

10.3 Memetic Algorithms

Genetic algorithms have two major drawbacks: first, nothing ensures that the best
solution found cannot be improved by a simple local modification, as seen in Chap-
ter 5. Second, the diversity of the population declines with each iteration of the
generational loop, eventually consisting only of clones of the same individual.
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Code 10.5: tsp_GA.jl Implementation of a memetic algorithm for the TSP. This
algorithm uses a selection operator for reproduction based on rank. After its gen-
eration, the offspring is improved by a local search (ejection chain method) and
immediately replaces the worst solution in the population. This algorithm has three
parameters: the number µ of solutions in the population, the number of generational
loops to be performed and the mutation rate

1 include("rank_based_selection.jl") # Code 10.1
2 include("OX_crossover.jl") # Code 10.2
3 include("mutate.jl") # Code 10.3
4 include("insert_child.jl") # Code 10.4
5 include("tsp_LK.jl") # Code 12.3
6

7 ######### Basic Memetic Algorithm for the TSP
8 function tsp_GA(d, # Distance matrix (must be symmetrical)
9 population_size, # Size of the population

10 generations, # Number of generations
11 mutation_rate)
12 n = size(d, 1)
13 population = [rand_permutation(n) for _ in 1:population_size]
14 lengths = [tsp_length(d, population[i]) for i in 1:population_size]
15

16 order = collect(1:population_size) # Population sorted by increasing cost
17 for i in 1:(population_size - 1)
18 for j in (i + 1):population_size
19 if lengths[order[i]] > lengths[order[j]]
20 order[i], order[j] = order[j], order[i]
21 end
22 end
23 end
24 println("GA initial best individual $(lengths[order[1]])")
25

26 for gen in 1:generations
27 parent1 = rank_based_selection(population_size)
28 parent2 = rank_based_selection(population_size)
29 child = OX_crossover(population[order[parent1]],
30 population[order[parent2]])
31 child = mutate(mutation_rate, child)
32 child_length = tsp_length(d, child)
33 child, child_length = tsp_LK(d, child, child_length)
34 child_rank, population, lengths, order =
35 insert_child(child, child_length,
36 population_size, population, lengths, order)
37 if child_rank == 1
38 println("GA improved tour $(gen) $(child_length)")
39 end
40 end
41 return population[order[1]], lengths[order[1]]
42 end

To overcome these two drawbacks, Moscato [48] designed what he called memetic
algorithms. The first of these shortcomings is solved by applying a local search after
producing an offspring. The simplest way to avoid duplication of individuals in the
population is to eliminate them immediately, as implemented in Code 10.4.

Code 10.5 illustrates a straightforward implementation of a memetic algorithm
for the TSP where the offspring are improved using a local search based on ejection
chains and only replace the worst solution in the population if they are of better
quality than the latter and their evaluation is different from all those in the popula-
tion, thus ensuring that no duplicates are created. This algorithm implements only
an elementary version of a memetic algorithm.
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Sörensen and Seveaux [58] proposed a more advanced population management.
These authors suggest evaluating, for each solution produced, a similarity measure
with the solutions contained in the population. Solutions that are too similar are
discarded to maintain sufficient diversity so that the algorithm does not converge
prematurely.

10.4 Scatter Search

Scatter search is almost as old as genetic algorithms. Glover [22] proposed this
technique in the context of integer linear programming. At the time, it broke certain
taboos, such as being able to represent a solution in a natural form and not coded by
a binary vector or to mix more than two solutions between them, as metaphorically
illustrated in Figure 10.11.

Fig. 10.11 Scatter research
breaks the taboo of breeding
limited to two solutions

The chief ideas of scatter search comprise the following characteristics, presented
in contrast to traditional genetic algorithms:

Dispersed initial population Rather than randomly generating a large initial pop-
ulation, the latter is generated deterministically and as scattered as possible in the
space of potential solutions. They are not necessarily feasible, but are rendered
so by a repair/improvement operator.

Natural representation of solutions Solutions are represented in a natural way and
not necessarily with binary vectors of a given size.

Combination of several solutions More than two solutions may contribute to the
production of a new potential solution. Rather than relying on a large population
and a selection operator for reproduction, scatter search tries all possible combi-
nations of individuals in the population, which must therefore be limited to a few
dozen solutions.

Repair/improvement operator Because of the natural representation of solutions,
the simultaneous combination of several individuals does not necessarily produce
a feasible solution. A repair operator projecting a potential infeasible solution
into the space of feasible solutions is therefore expected. This operator can also
improve a feasible solution, especially by means of a local search.
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Population management A reference population, of small size, is decomposed
into a subset of elite solutions (the best ones) and other solutions as different
as possible from the elites. The goal is to increase the diversity of the population
while keeping the best solutions.

The framework of scatter search is given by Algorithm 10.2. The advantage of
this framework is its limited number of parameters: µ for the size of the reference
population and E < µ for the set of elite solutions. Moreover, the value of µ must
be limited to about twenty, since it is necessary to combine a number of potential
solutions increasing exponentially with µ; this also means that the number E of elite
solutions should be from a few units to about ten.

Algorithm 10.2: Scatter search framework
Input: Size µ of the complete population, E size of the subset of elite solutions
Result: Population of solutions

1 Systematically generate a (large) population P of potential solutions as dispersed as
possible

2 repeat
3 Repair and improve the solutions from P to make them feasible using the

repair/improvement operator
4 Eliminate identical solutions from P
5 Identify the E best solutions from the population; they are retained in the reference set

as elites
6 Identify from P the µ−E solutions which are the most different from the elite

solutions, they are kept and complete the reference set
7 Combine in all possible ways the µ solutions of the reference set to obtain 2µ −µ−1

new potential solutions
8 Join the potential solutions to the reference set to obtain the new population P of the

next iteration
9 until the population remains stable

10.4.1 Illustration of Scatter Search for the Knapsack Problem

To illustrate how the various options in the scatter search framework can be adapted
to a particular problem, let us consider a knapsack instance:

maxr = 11s1 +10s2 + 9s3 +12s4 +10s5 + 6s6 + 7s7 + 5s8 + 3s9 + 8s10
Subject 33s1 +27s2 +16s3 +14s4 +29s5 +30s6 +31s7 +33s8 +14s9 +18s10 ⩽ 100

to: si ∈ {0,1}(i = 1, . . . ,10)
(10.1)
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Initial Population

The solutions to this problem are, therefore, ten-component binary vectors. To gen-
erate a set of potential solutions as scattered as possible, one can choose to put either
all the objects in the knapsack, or one out of two, or one out of three, etc. For each
potential solution thus generated, the complementary solution can also be added
to the population. Naturally, not all the solutions from the population are feasible.
To be specific, the solution with all objects does not satisfy the knapsack volume
constraint; its complementary solution, with an objective value of zero, is the worst
possible.

A repair/improvement operator must therefore be applied to these potential so-
lutions. This can be performed as follows: as long as the solution is not feasible,
remove the object with the worst value/volume ratio. A feasible solution can be im-
proved greedily, by including the object with the best value/volume ratio as long as
the capacity of the knapsack permits it. This produces the population of solutions
given in Table 10.2.

Potential Value Repaired/improved Value
solution solution

1 (1,1,1,1,1,1,1,1,1,1) 81 (0,1,1,1,0,0,0,0,1,1) 42
2 (1,0,1,0,1,0,1,0,1,0) 40 (1,0,1,1,1,0,0,0,0,0) 42
3 (1,0,0,1,0,0,1,0,0,1) 38 (1,0,0,1,0,0,1,0,0,1) 38
4 (1,0,0,0,1,0,0,0,1,0) 24 (1,0,0,1,1,0,0,0,1,0) 36
5 (1,0,0,0,0,1,0,0,0,0) 17 (1,0,1,1,0,1,0,0,0,0) 38
6 (0,0,0,0,0,0,0,0,0,0) 0 (0,1,1,1,0,0,0,0,0,1) 39
7 (0,1,0,1,0,1,0,1,0,1) 41 (0,1,0,1,0,1,0,0,0,1) 36
8 (0,1,1,0,1,1,0,1,1,0) 43 (0,1,1,1,1,0,0,0,1,0) 44
9 (0,1,1,1,0,1,1,1,0,1) 57 (0,1,1,1,0,0,0,0,1,1) 42 = solution 1

10 (0,1,1,1,1,0,1,1,1,1) 64 (0,1,1,1,0,0,0,0,1,1) 42 = solution 1

Table 10.2: Initial scattered population P for the knapsack instance 10.1 and the
result of applying the repair/improvement operator on the potential solutions. Those
which are not feasible are highlighted, as well as the E = 3 elite solutions

Creation of the Reference Set

Solutions 9 and 10 are identical to the first solution and are therefore eliminated. If
we choose a set of E = 3 elite solutions, these are solutions 1, 2 and 8. Assuming that
one wishes a reference set of µ = 5 solutions, two solutions must be added to the
three elites, among solutions 3 to 7. The two solutions to complete the reference set
are determined by evaluating a measure of dissimilarity with the elites. An approach
is to consider the solutions maximizing the smallest Hamming distance to one of the
elites, which is illustrated in Table 10.3.



10.5 Bias Random Key Genetic Algorithm 203

Candidate Hamming Distance Minimal
solution Elite 1 Elite 2 Elite 8 distance

3 (1,0,0,1,0,0,1,0,0,1) 5 4 7 4
4 (1,0,0,1,1,0,0,0,1,0) 5 2 3 2
5 (1,0,1,1,0,1,0,0,0,0) 5 2 5 2
6 (0,1,1,1,0,0,0,0,0,1) 1 4 3 1
7 (0,1,0,1,0,1,0,0,0,1) 3 6 5 3

Table 10.3: Determining the solutions from the population that are as different as
possible from the elites. If we want a reference set of µ = 5 solutions, we retain
solutions 3 and 7 in addition to the 3 elites because they are those maximizing the
smallest distance to one of the elites

Combining solutions

Finally, we need to implement an operator that allows us to create a potential solu-
tion by combining several of them from the reference set. Let us suppose we want
to combine solutions 3, 7 and 8, of values 38, 36 and 44 respectively. One possibil-
ity is to consider the solutions as numerical vectors and make a linear combination
of them. It is tempting to assign a weight according to the solution’s fitness. One
idea is to give a weight of 38

38+36+44 to solution 3, of 36
38+36+44 to solution 7, and of

44
38+36+44 to solution 8. The vector thus obtained is rounded to project it to binary
values:

0.322·(1,0,0,1,0,0,1,0,0,1)+
0.305·(0,1,0,1,0,1,0,0,0,1)+
0.373·(0,1,1,1,1,0,0,0,1,0)

=(0.322,0.678,0.373,1.000,0.373,0.305,0.322,0.000,0.373,0.627)
Rounded :(0,1,0,1,0,0,0,0,0,1)

10.5 Bias Random Key Genetic Algorithm

Biased Random Key Genetic Algorithms (BRKGA) also provide population man-
agement with a subset of E elite solutions that are copied to the next generation. The
main ingredients of this technique are:

• An array of real numbers (keys) encodes a solution. If a natural representation
of a solution is a permutation, then the permutation is one that sorts the keys in
increasing order.

• The E best solutions from the population are kept for the next generation.
• The selection operator for reproduction always chooses a solution among the E

best.
• An offspring is generated with a uniform crossover operator, but the components

of the best parent-solution are chosen with probability > 1/2.
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• At each generation, λ < µ −E children are generated. These offspring replace
non-elite solutions for the next iteration.

• The genetic diversity of the population is ensured by the introduction of µ−E−
λ new randomly drawn arrays (mutants); this replaces the mutation operator.

Figure 10.12 illustrates how this method operates to generate a new solution.

λ offsprings

Mutants

0.12 0.45 0.67 0.01 0.17 0.98 0.33

0.54 0.78 0.18 0.92 0.83 0.21 0.42

0.12 0.78 0.67 0.92 0.17 0.98 0.33

Biased crossover

1 2 3 4 5 6 7

1 5 7 3 2 4 6

Decoding

Permutation

E elite solutions

Fig. 10.12: BRKGA: elite solutions are copied from one generation to the next one;
a parent always comes from the elite; the crossover operator is biased and chooses
more elements from the best parent; the offspring is decoded by sorting the keys in
increasing order; the order provides the permutation associated with a solution

10.6 Path Relinking

Path relinking (PR) was proposed by Glover [27] in the context of taboo search. The
idea is to memorize a number of good solutions found by a taboo search. We select
two of these solutions, which have been linked by a path with the taboo search.
We link these two solutions again by a new, shorter path, going from neighbouring
solution to neighbouring solution.

This technique can be implemented independently of a taboo search since all
that is needed to implement it is a population of solutions and a neighbourhood
structure. A starting solution and an ending (target) solution are chosen from the
population. We evaluate all the neighbours of the starting solution that are closer to
the target solution than the starting one. Among these neighbours, the one with the
best evaluation is identified, and the process is repeated from there until we arrive at
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the target solution. With a bit of luck, one of the intermediate solutions improves the
best solution discovered. The path relinking technique is illustrated in Figure 10.13.

Fig. 10.13 Path relinking.
A starting solution — here,
the permutation of seven ele-
ments (1,2,3,4,5,6,7) —
is progressively trans-
formed into a target solution
(4,6,3,2,5,1,7) with a neigh-
bourhood structure. At each
step, the neighbour solutions
that are closer to the target
solution are evaluated, and
the one with the best fitness is
chosen

Starting solution

Target solution

There are different versions of path relinking: the path can be traversed in both
directions by reversing the role of the starting and target solutions; an improvement
method can be applied to each intermediate solution; ultimately, the starting and
target solutions can be alternately modified and the process stops when meeting in
an intermediate solution. Code 10.6 provides an implementation of path relinking
for the TSP. It is based on 3-opt moves.
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Code 10.6: tsp_path_relinking.jl Path relinking implementation for the TSP. At
each iteration, we identify a 3-opt move that incorporates at least one arc from the
target solution to the current solution

1 include("tsp_utilities.jl") # Code 12.2
2

3 ######### Path relinking for the TSP, based on 3-opt neighbourhood
4 function tsp_path_relinking(d, # Distance matrix
5 target, # Target solution (successors)
6 tour_length, # Length of current solution
7 succ) # Starting solution
8 best_succ, best_length = copy(succ), tour_length
9 pred = tsp_succ_to_pred(succ)

10 best_delta = -1
11 while best_delta < Inf
12 best_delta = Inf
13 i = best_i = best_j = best_k = pred[1]
14 while best_delta >= 0 && i != 1
15 i = succ[i]
16 if succ[i] != target[i]
17 j = pred[target[i]]
18 k = target[i]
19 while k != i
20 if succ[k] != target[k]
21 delta = d[i, succ[j]] + d[j, succ[k]] + d[k, succ[i]] -
22 d[i, succ[i]] - d[j, succ[j]] - d[k, succ[k]]
23 if delta < best_delta
24 best_delta, best_i, best_j, best_k = delta, i, j, k
25 end
26 end
27 k = succ[k]
28 end
29 end
30 end
31 if best_delta < Inf
32 i, j, k = best_i, best_j, best_k
33 tour_length += best_delta
34 pred[succ[i]], pred[succ[j]], pred[succ[k]] = k, i, j
35 succ[j], succ[k], succ[i] = succ[k], succ[i], target[i]
36 if tour_length < best_length
37 best_length, best_succ = tour_length, copy(succ)
38 end
39 end
40 end
41 return best_succ, best_length
42 end

10.6.1 GRASP with Path Relinking

A method using the core components of metaheuristics (construction, local search
and management of a population of solutions) while remaining relatively simple
and with few parameters is the GRASP-PR method (Greedy Adaptive Search Pro-
cedure with Path Relinking) by Laguna and Marti [40]. The idea is to generate a
population P of different solutions by means of a GRASP with a parameter α (see
Algorithm 7.8). These solutions are improved by means of a local search.

Then, we repeat Imax times a loop where we build a new solution, greedily and
with a bias. This solution is also improved with a local search. We then randomly
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draw another solution of P and apply a path relinking procedure between both solu-
tions.

The best solution of the path is added to P if it is both strictly better than one of
P and is not already present in P. The new solution replaces the solution of P which
is the most different from itself while being worse.

Algorithm 10.3 provides the GRASP-PR framework. Code 10.7 implements a
GRASP-PR method for the TSP. The reader interested in recent GRASP-based op-
timization tools can find extensive information in the recent book of Resende and
Ribeiro [54].

Algorithm 10.3: GRASP-PR framework
Input: GRASP procedure (with local search LS and parameter 0⩽ α ⩽ 1), parameters

Imax and µ

Result: Population P of solutions
1 P←∅
2 while |P|< µ do
3 s← GRASP(α,LS)
4 if s /∈ P then
5 P← P∪ s

6 for Imax iterations do
7 s← GRASP(α,LS)
8 Randomly draw s′ ∈ P
9 Apply a path relinking method between s and s′; identifying the best solution s′′ of the

path
10 if s′′ /∈ P and s′′ is strictly better than a solution of P then
11 s′′ replaces the most different solution of P which is worse than s′′
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Code 10.7: tsp_GRASP_PR.jl TSP implementation of GRASP with path relinking

1 include("tsp_GRASP.jl") # Code 7.4
2 include("tsp_path_relinking.jl") # Code 10.6
3

4 ######### GRASP with path relinking for the TSP
5 function tsp_GRASP_PR(d, # Distance matrix
6 iterations, # Number of calls to GRASP
7 population_size, # Size of the population
8 alpha) # GRASP parameter
9 n = size(d, 1)

10 population = fill([-1], population_size)
11 pop_size = iteration = 0
12 lengths = fill(-1, population_size)
13 while pop_size < population_size && iteration < iterations
14 tour, tour_length = tsp_GRASP(d, alpha)
15 iteration += 1
16 succ = tsp_tour_to_succ(tour)
17 different = true
18 for i in 1:pop_size
19 if tsp_compare(population[i], succ) == 0
20 different = false
21 break # The tour is already in population
22 end
23 end
24 if different
25 pop_size += 1
26 population[pop_size], lengths[pop_size] = copy(succ), tour_length
27 end
28 end
29 if iteration == iterations # Unable to generate enough different solutions
30 population_size = pop_size
31 end
32 for it in iteration:iterations
33 tour, tour_length = tsp_GRASP(d, alpha)
34 iteration += 1
35 succ = tsp_tour_to_succ(tour)
36 successors, tour_length =
37 tsp_path_relinking(d, population[unif(1,population_size)],
38 tour_length, succ)
39 max_difference, replacing = -1, -1
40 for i in 1:population_size
41 if tour_length <= lengths[i]
42 difference = tsp_compare(population[i], successors)
43 if difference == 0
44 max_difference = 0
45 break
46 end
47 if difference > max_difference && tour_length < lengths[i]
48 max_difference = difference
49 replacing = i
50 end
51 end
52 end
53 if max_difference > 0
54 lengths[replacing] = tour_length
55 population[replacing] = copy(successors)
56 println("GRASP_PR population updated: $it $tour_length")
57 end
58 end
59 best = 1
60 for i in 2:population_size
61 if lengths[i] < lengths[best]
62 best = i
63 end
64 end
65 return tsp_succ_to_tour(population[best]), lengths[best]
66 end



10.8 Particle Swarm 209

10.7 Fixed Set Search

The Fixed Set Search method [36] (FSS) also incorporates several mechanisms that
are discussed in this book. First, a population of solutions is generated using a stan-
dard GRASP procedure. Then, this population is gradually improved by applying
a GRASP procedure guided by a learning mechanism. The latter can be seen as a
vocabulary building: one randomly selects a few solutions from the population and
calculates the frequency of occurrence of the elements constituting these solutions.
Then, another solution is randomly selected from the population. Among the ele-
ments constituting this solution, a fixed number are retained, determined by those
which have the highest frequency of occurrence previously calculated. The random-
ized greedy construction is modified so that it produces a solution containing all the
fixed elements.

In the case of the TSP, these elements form sub-paths. A step in the randomized
construction adds either an edge connecting a city not in the selected sub-paths or
all the edges of a fixed sub-path. The tour thus constructed is improved by a local
search and enriches the population of solutions.

The FSS method has several parameters: a stopping criterion (e.g. a number of it-
erations without improvement of the best solution), the number of solutions selected
to determine the fixed set, the number of elements of the fixed set (which can vary
from one iteration to another) and the α parameter of the randomized construction.

Another way of looking at FSS is to see it as an LNS-type method (Section 6.4.1)
with learning mechanisms: the acceptance method manages a population of solu-
tions. The destruction method chooses a random solution from the population and
relaxes the elements that do not appear frequently in a random sample of solutions
from the population.

10.8 Particle Swarm

Particle swarms are a bit special because they were first designed for continuous op-
timization. The idea is to evolve a population of particles. Their position represents
a solution to the problem expressed as a vector of real numbers. The particles inter-
act with each other. Each has a velocity in addition to its position and is attracted or
repelled by the other particles.

This type of method, proposed by Kennedy and Eberhart [38], simulates the be-
haviour of animals living in swarms, such as birds, insects or fish, which adopt a be-
haviour that favours their survival, whether it be to feed, defend themselves against
predators or undertake a migration. Each individual in the swarm is influenced by
those nearby and possibly by a leader.

Translated into optimization terms, each particle represents a solution to the prob-
lem whose quality is measured by a fitness function. A particle moves at a certain
speed in a given direction, but it is deflected by its environment: if there is another
particle-solution of better quality in the vicinity, it is attracted in its direction. In
that manner, each solution enumerated by the algorithm can be associated with the
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vertex of a graph. The edges of this graph correspond to particles that influence each
other.

There are various variants of particle swarm methods, differing in the influence
graph and the formulae used to calculate the deviations in particle velocity −→vp . In
its most classic version, a particle p is influenced by only two solutions: the global
best solution −→g found by the set of particles and the best solution −→mp it has found
itself. The new velocity of the particle is a vector. Each component is modified with
weights randomly drawn between 0 and φ1 in the direction of−→mp and drawn between
0 and φ2 in the direction of −→g , where φ1 and φ2 are parameters of the method. In
addition, a particle is given an inertia ω as a parameter. Figure 10.14 illustrates
the update of the velocity and the position of a particle. Algorithm 10.4 provides a
simple particle swarm framework.

Old −→vp

Global best −→g

Own best −→mp

φ1
−→u1

⊗
(−→mp−−→sp )

Old −→sp

New −→vp

φ2
−→u2

⊗
(−→g −−→sp )

New −→sp

ω
−→vp

Fig. 10.14: Swarm particles velocity and position update

Various modifications have been proposed to this basic version. For instance,
instead of being influenced by the best solution it has found itself, a particle is influ-
enced by the best solution found by particles in its neighbourhood. It is then neces-
sary to define according to which topology the latter is chosen. A common variant
is to constrain the velocity of the particles to remain between two bounds, vmin and
vmax. This adds two parameters to the framework. Another proposed modification is
to apply a small random shift to some particles to simulate turbulence.

10.8.1 Electromagnetic Method

In the electromagnetic method, a particle induces a force of attraction or repulsion
on all the others. This force depends on the inverse of the square of the distance
between the particles, like electrical forces. The direction of the force depends on
the quality of the solutions. A particle is attracted by a solution that is better than
itself and repelled by a worse solution.
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Algorithm 10.4: Swarm particle framework.
⊗

is component-wise multi-
plication

Input: Function f : [−→x min,
−→x max] ∈ Rn→ R to minimize, parameters µ,ω,φ1,φ2, Imax

Result: −→g
1 f ∗ = ∞

2 for p = 1 . . .µ do
3 −→vp ←

−−→
uni f (−→x min−−→x max,

−→x max−−→x min) // Initial particle velocity

4 −→sp ←
−−→
uni f (−→x min,

−→x max) // Initial particle position (solution)
5 −→mp←−→sp // Best own position
6 if f ∗ > f (−→sp ) then Update gloal best
7 f ∗← f (−→sp )
8 −→g ←−→sp

9 for Imax iterations do
10 for p = 1 . . .µ do
11 −→u1 ←

−−→
uni f (

−→
0 ,
−→
1 )

12 −→u2 ←
−−→
uni f (

−→
0 ,
−→
1 )

13 −→vp ← ω
−→vp +φ1

−→u1
⊗
(−→mp−−→sp )+φ2

−→u2
⊗
(−→g −−→sp ) // Update velocity

14 −→sp ←−−→max(
−→
min(−→sp +

−→vp ,
−→x max),

−→x min) // Update position
15 if f (−→mp)> f (−→sp ) then Update own best
16 −→mp←−→sp
17 if f ∗ > f (−→sp ) then Update gloal best
18 f ∗← f (−→sp )
19 −→g ←−→sp

10.8.2 Bestiary

In previous sections, we have only mentioned the basic algorithms, inspired by the
behaviour of social animals, and a variant, inspired by a process of physics. Different
authors have proposed many metaheuristics whose framework is similar to that of
Algorithm 10.4.

What distinguishes them is essentially the way of initializing the speed and the
position of the particles (lines 3 and 4) as well as the “magic formulas" for their
updates (lines 13 and 14).

These various magical formulas are inspired by the behaviour of various animal
species or in the processes of physics. To name just a few, there are amoeba, bacteria,
bat, bee, butterfly, cockroaches, cuckoo, electromagnetism, firefly and mosquito.
There are various variants of these frameworks, obtained by hybridizing them with
the key components of the metaheuristics discussed in this book. There are hundreds
of proposals in the literature suggesting “new" metaheuristics inspired by various
metaphors, sometimes even referring to the behaviour of mythic creatures!

Very schematically, it is a matter of applying the intensification and diversifica-
tion principles: elimination of certain solutions from the population; concentration
toward the best discovered solutions, random walk, etc.

A number of these frameworks have been proposed in the context of continuous
optimization. To adapt these methods to discrete optimization, one can implement a
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coding scheme, for example the random keys seen in Section 10.5. Another solution
is to consider the notion of neighbourhood and path relinking. The reader who is a
friend of animals and other creatures may consult [43] for a bestiary overview.

Rather than trying to devise a new heuristic based on an exotic metaphor using
obscure terminology, we encourage the reader to use a standardized description,
following the basic principles presented in this book. Indeed, during the last quarter
century, there have been few truly innovative new concepts. It is a matter of adopting
a more scientific posture, of justifying the choices of problem modelling, of estab-
lishing test protocols, etc., even if the development of a theory of metaheuristics still
seems very far away and the heuristic solution of real-world optimization problems
remains the only option.
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Problems

10.1. Genetic Algorithm for a One-Dimensional Function
We need to optimize a function f of an integer variable x, 0⩽ x < 2n. In the context
of a genetic algorithm with a standard crossover operator, how to encode x in the
form of a binary vector?

10.2. Inversion Sequence
A permutation p of elements from 1 to n can be represented by an inversion se-
quence s, where si counts the number of elements of p1, . . . , pk = i that are greater
than i. For example, the permutation p = (2,4,6,1,5,3) has the inversion sequence
s = (3,0,3,0,1,0): there are three elements greater than 1 before 1, 0 elements
greater than 2 before 2, etc. To which permutations do the inversion sequences
(4,2,3,0,1,0) and (0,0,3,1,2,0) correspond? Provide necessary and sufficient con-
ditions for a vector s to be an inversion sequence corresponding to a permutation.
Can the standard 1-point, 2-point and uniform crossover operators be applied to in-
version sequences? How can inversion sequences be used in the context of scatter
search?

10.3. Rank Based Selection
What is the probability of the function rank_based_selection(m), given in
Algorithm 10.1, to return a given value v?

10.4. Tuning a Genetic Algorithm
Adjust the population size and mutation rate of the procedure tsp_GA given by
Code 10.5, if it generates a total of 5n children.

10.5. Scatter Search for the Knapsack Problem
Consider the knapsack instance 10.1 of Section 10.4. Perform the first iteration of
a scatter search for this instance: generate the new population, repair/improve the
solutions, update the reference set consisting of five solutions with three elites.





Chapter 11
Heuristics Design

This chapter gives some tips for developing heuristics. It goes back to the modelling
of the problem and gives an example of decomposing the problem into a chain of
sub-problems that are easier to treat. It then proposes an approach to designing a
specific heuristic. Finally, techniques for parameter tuning and comparison of algo-
rithms are discussed.

11.1 Problem Modelling

Now that we have reviewed the key ingredients of heuristics, let us try to propose an
approach to design one. The first thing to determine is whether a heuristic approach
is absolutely necessary. Indeed, the “no free lunch" theorem [69] informs us that no
optimization heuristics outperforms all others! This result follows from the fact that
in the infinite variety of instance data, most of them have no exploitable structure.
Any heuristic, no matter how sophisticated, selects therefore an unfortunate choice
for a given data set. Among the infinite number of imaginable heuristics, there is at
least one that does not include this inappropriate choice.

If one has to solve a concrete optimization problem, it is therefore necessary to
“cheat". Examples are the set bipartition and the knapsack problems discussed in
Section 1.2.3.5. If we know that the data do not contain large values, it is useless
to design a heuristic because we can solve this type of problem exactly by dynamic
programming.

The way in which the problem is modelled is crucial to its successful resolution.
Especially when dealing with a concrete logistics problem, it can be time-consuming
and tedious to capture all the wishes of a manager who is not used to the narrow view
of a optimization engineer, who thinks in terms of variables, objective function and
constraints.

To do this, one must first identify the variables of the problem. One must deter-
mine what can be modified and what is intangible and part of the data. Then, the
constraints must be discussed, specifying those that are hard and must be respected
for a solution to be operational. Often, constraints presented as indispensable corre-
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spond rather to good practices, from which it is possible to depart from time to time.
These soft constraints are generally integrated into an objective with a penalty fac-
tor. As we have seen with the Lagrangian relaxation technique, hard constraints can
also be introduced into an objective, but probably with a higher penalty weighting.
Finally, in practice, there are several objectives to be optimized. However, a man-
ager may not be very happy if provided with a huge set of Pareto optimal solutions
(see Problem 11.1) and has to examine all of them before choosing one. On the other
hand, it will be easier to prioritize the objectives. It remains to be seen whether these
objectives should be treated in a hierarchical manner (the optimum of the highest
priority objective is sought before optimizing the next one) or by scalarization (all
the objectives are aggregated into one, with weights in relation to their priority).

Once the problem has been properly identified, the designer of a heuristic algo-
rithm must choose a model that is appropriate for the solution method. The follow-
ing section illustrates two remarkably similar models of the same problem that can
lead to the design of very different algorithms.

11.1.1 Model Choice

To reconstruct an unknown genetic sequence, a DNA microarray chip, able to re-
act to all k-nucleotide sequences, is exposed to the gene to be discovered. Once
revealed, this chip allows knowing all subsequences of k-nucleotides present in the
gene to be analysed.

The data can be modelled using de Bruijn graphs. These graphs represent the
superposition of symbol chains.

A first model associates an arc with each k-nucleotide detected. So, the 3-
nucleotide AAC is represented by an arc connecting the vertices AA→ AC, due to
the middle A superposition. If m is the number of k nucleotides detected, we have a
graph with m edges. The reconstruction problem is to find an Eulerian path (passing
through all the arcs) in this graph. This problem is easy, it can be solved in linear
time.

The other model associates a vertex with each k-nucleotide detected. An arc con-
nects two vertices if the associated k-nucleotides have a common subsequence of
k− 1 nucleotides. For instance, if the 3-nucleotides AAC, ACA and ACG are de-
tected, then both arcs AAC→ ACA and AAC→ ACG are present in the graph due
to the common AC superposition. The graph is a directed version of the line graph
of the previous representation. The reconstruction problem is to discover a Hamil-
tonian path (passing once through all the vertices). This second modelling thus re-
quires the resolution of an NP-complete problem.

That said, this second model is not necessarily to be discarded in practice. Indeed,
a concrete sequencing problem is likely to possess peculiarities and constraints that
might be more difficult to deal with using the first model. For example, a genetic
sequence may include repeated subsequences, a more or less reliable quantification
of the number of times a k-nucleotide appears, etc.
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Figure 11.1 shows the graphs that can be constructed with these two models for
a gene that has activated 11 subsequences of 3-nucleotides. In this example, it is not
possible to unambiguously reconstruct the gene.

ACACGCAAACTTA

CTT

AAA

CAA AAC

GCA

CGC

ACG

CACACA

ACT

TTA

ACGCAAACACTTA

CG AC CT TT TA

GC CA AA

11109

687

5

43

2

1

Fig. 11.1: Two de Bruijn graph models for the reconstruction of a genetic sequence.
Top right, a graph in which an arc connecting two k− 1-nucleotides represents a
detected k-nucleotide (with k = 3). With this model, we have to find a Euclidean path
in the graph. The numbering of the arcs corresponds to one of the shortest possible
sequences. Bottom left is a graph in which the vertices represent the detected k-
nucleotides. An arc represents a k + 1-nucleotide that could be in the sequence.
With this model, we have to discover a Hamiltonian path. The coloured arcs provide
the path of the other shortest sequence

The choice of a model is often sensitive and depends on the techniques to be
implemented. During the design of a heuristic, it is frequent to realize that another
model is more appropriate. In any case, it is noteworthy to keep in mind that good
solutions are located at the boundary between feasible and unfeasible ones. To high-
light the point, the 2-opt neighbourhood for the TSP is restricted to examining fea-
sible solutions. Despite constituting the primary operations of the Lin-Kernighan
neighbourhood, it is much less efficient. The success of the latter is undoubtedly
due to the fact that one examines reference structures that are not tours. In a way,
feasible solutions are approached from outside the domain of definition.

When a few constraints are numerical, the possibility of implementing the La-
grangian relaxation technique discussed in Section 2.8 should be studied. By adjust-
ing the value of the penalties associated with the violation of the relaxed constraints,
the heuristic focuses its search in the vicinity of the boundary of feasible solutions.

Conversely, artificial constraints can also be added to implement the diversifi-
cation technique outlined in Section 9.2. For example, the quality of the solutions
generated by the Algorithms 2.7 and 2.8 for clustering can be significantly improved
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by adding a soft constraint imposing that the groups must contain the same number
of elements. This constraint is relaxed and introduced in the fitness function with a
penalty parameter that decreases during the iterations, just like the temperature of
a simulated annealing. Thus, by performing a few more iterations than the original
method, the solution is perturbed by making the largest groups smaller and the very
small groups larger. At the end of the algorithm, the penalties being very low, we
return to the initial objective, but the centres have managed to better relocate. The
local optimum thus obtained is considerably better than that of the original method
which does not move significantly enough from the initial random solution.

11.1.2 Decomposition into a Series of Sub-problems

Another step in modelling is to assess whether it is possible to apply the divide
and conquer principle. Rather than trying to design a complex problem model with
multiple interrelationships, one can try breaking it down into a series of more easily
addressed sub-problems.

An example is the vehicle routing problem and its extension to several ware-
houses that need to be positioned. Rather than solving the positioning of the ware-
houses and the construction of the routes simultaneously, one can initially only deal
with the customers constituting natural groups. The creation of the routes can be
done in a second step, and then finally the positioning of the warehouses. Figure 11.2
illustrates the process of this decomposition into a succession of sub-problems. With
this approach, it was possible to handle examples with millions of elements with a
reasonable computational effort. At the time these results were obtained, the in-
stances in the literature were 1000 or 10,000 times smaller.

11.2 Algorithmic Construction

Once the problem has been modelled and a fitness function has been chosen, the
construction of an algorithm can start. The first step is to construct a solution. Chap-
ter 4 suggests diverse ideas to realize this step. Beforehand, if the instance size is
significant, it is necessary to consider another problem partitioning, by the data.

11.2.1 Data Slicing

A partition of the problem items should be considered if the volume of data is very
large or if a procedure of high algorithmic complexity is to be implemented. For
the location-routing problem discussed in the previous section, a proximity graph
presented in Section 6.3.1 was used. The size of the clusters created was chosen
according to the problem data, so that their volume was close to a (small) multiple
of the volume of the vehicles. The routing heuristic has also been designed in antic-
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(a) (b) (c)

Fig. 11.2: Decomposition of the location-routing problem into a sequence of sub-
problems. (a) Generation of customer clusters with a rapid clustering method. (b)
Generation of routes for each customer cluster. (c) Positioning of warehouses and
re-optimization of routes

ipation of optimizing a few tours at a time. It may therefore be appropriate to slice
the data even for relatively small instances.

11.2.2 Local Search Design

Purely constructive heuristic algorithms rarely produce solutions of acceptable qual-
ity for difficult optimization problems. Even when combined with learning methods
such as pheromone trails in artificial ant colonies or population management with
genetic algorithms, convergence can be slow and the resulting solutions of insuffi-
cient quality. However, some software libraries can automatically generate a genetic
algorithm with only the decoding of a solution from a binary vector and the calcu-
lation of the fitness function. In certain situations, the coding phase of the algorithm
can be significantly reduced.

Generally, it is essential to move on to the subsequent phase and devise a neigh-
bourhood for the problem to be solved. The success of a heuristic algorithm fre-
quently depends on the design of the envisaged neighbourhood(s). Metaheuristics
are sometimes described as processes guiding a local search. This explains the rel-
ative length of Chapter 5 and the richness of the various techniques allowing their
limitation or extension. However, we are consciously aware that not everyone pos-
sesses the genius of Lin and Kernighan to design such an efficient ejection chain for
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the travelling salesman problem. Perhaps the latter is an exception, as it does not
need to rely on other concepts to achieve excellent quality solutions.

As it is usually not possible to find a neighbourhood with all the appropriate
characteristics (connectivity, small diameter, fast evaluation, etc.), a local search
often uses several different neighbourhoods. Each of them corrects a weakness of
the others.

This implies thinking about strategies for their use: one has to decide whether the
local search should evaluate all these neighbourhoods at each iteration or whether
one should alternate phases of intensification, using one neighbourhood, and diver-
sification of the search, using other neighbourhoods.

11.3 Heuristics Tuning

Theoretically, a programmer who is not an expert on the problem to be solved should
be able to design a heuristic based on the key principles of metaheuristics discussed
in the previous chapters. In practice, during the algorithm development, the pro-
grammer is going to gain some experience on how to achieve good solutions for the
specific type of data to be processed.

Indeed, the most time-consuming work in the design of a heuristic algorithm con-
sists in trying to understand why the constructive method goes wrong and produces
outliers, why the “genial" neighbourhood does not give the predicted results or why
the “infallible" learning method fails. . .

11.3.1 Instance Selection

The design of a heuristic algorithm begins with the selection of the problem in-
stances that it should be able to successfully tackle. Indeed, the “no free lunch"
theorem tells us it is an illusion to try to design a universally successful method.

When addressing an industrial problem, once we have managed to translate the
customer’s wishes into a model that seems reasonable, we still need to obtain con-
crete numerical data. This sometimes problematic phase can require a dispropor-
tionate investment, especially if the model developed is too complex, with poor
decomposition and not sufficiently focused on the core of the problem. In practice,
it frequently occurs that constraints described as essential are not imperative, but
result from a fear of altering too drastically the current operating mode and habits.
Conversely, the first feedback from solutions provided by a heuristic algorithm may
also reveal constraints that have not been explicitly stated. In this case, it is neces-
sary to go back to the modelling stage and repeat an iteration. . .

For an academic problem, there are usually libraries with many numerical data.
In this case, a selection of the instances must be considered so as not to invest an
infinite amount of time tuning the algorithm. To evaluate the proper implementation
of the developed heuristic, a first selection should consider moderate size instances
for which an optimal or a very good solution is identified.
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The instance selection should also be able to highlight the pathological cases for
the developed heuristic. This choice must also be governed by the interest of these
examples for practical cases. One example is the case of the satisfiability problems
with 3 literals per clause (3SAT). If the number of randomly generated clauses is
significant compared to the number of variables, then the instances are easy: the
probability that there is a feasible assignment of the variables tends very quickly
to 0. Conversely, if the number of clauses is limited compared to the number of
variables, then the examples are equally easy: there is a probability tending very
quickly toward 1 that there is a feasible assignment. It was determined that the tran-
sition between intractable and simple instances occurs when the number of clauses
is 4.24 times higher than the number of variables. This result is interesting in itself,
and while an efficient heuristic is developed for this type of instances, it does not
guarantee it will be efficient for practical applications.

Finally, results for problem instances with very diverse characteristics should be
separately reported. Indeed, multiplying the number of favourable (e.g. very small)
or unfavourable instances would lead to biased results.

11.3.2 Graphical Representation

When possible, a graphical representation of the solutions helps to perceive how a
heuristic works and to correct its flaws. Indeed, it is frequent to imagine bad causes
explaining poor results. By visualizing the output of the method as something other
than a series of numbers, it is sometimes very simple to explain this poor perfor-
mance.

For some problems, a graphical representation is natural, as for the Euclidean
TSP. This certainly explains the excellent efficiency of the heuristic and exact meth-
ods that have been developed for this problem.

11.3.3 Parameter and Option Tuning

The most time-consuming step in the design of a heuristic is the selection of its
ingredients and parameter tuning. When developing a heuristic, one desires it to
provide results of the highest possible quality on as wide an instance range as pos-
sible.

Initially, the programmer can proceed intuitively to find parameter values that
fulfil this purpose. Typically, a small instance is chosen and the heuristic is executed
by varying parameter values or changing options. The most promising evolutions
are favoured. Put differently, the tuning consists in applying a heuristic to another
problem whose variables are the parameter values and whose objective function is
the result of the run of the program implementing the algorithm under development.

In principle, the search space for tuning variables is considerably smaller than
that of the instance to be solved. If not, the question arises as to the relevance of a
heuristic whose design could be more complicated than the problem to be solved.
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Several illustrations in this book provide the results of extensive experiments on
the influence of the value of one or two parameters for some heuristics. For example,
Figure 9.3 shows that for a TSP instance with n = 127 cities, the appropriate combi-
nations of the parameters dmin and ∆ seem to be such that ∆ +2dmin = n, provided
that one performs 10n iterations of the taboo search.

These results are not intended to provide definitive values. They are presented so
that the reader can get an idea of the appropriate values, but they are not necessarily
generalizable. The production of such a figure requires a disproportionate effort
(more than 10,000 executions of the heuristic and then production of the diagram)
compared to the information that can be obtained. However, it does allow us to
observe significant random fluctuations in the results obtained.

If the heuristic has more than half a dozen parameters and options, a rough intu-
itive tuning is likely to be biased:

• Given the effort involved, few alternatives are tested.
• The instance set is limited.
• The heuristic only works well on a limited instance set.
• Outstanding or bad results focus attention.
• Results are neither reproducible nor statistically supported.

It is therefore recommended to use automated methods to calibrate the param-
eters, providing these methods with a sufficiently representative instance set. They
have the advantage of not being subjective, focusing on a set that is very favourable
or leaving out a very unfavourable instance. As a parameter adjustment software,
we can quote, among others, iRace proposed by [45].

11.3.4 Measure Criterion

The design of heuristics is habitually a multi-objective process. Indeed, the vast
majority of the framework algorithms discussed in Part III of this book include
a parameter that directly influences the number of repetitions of a general loop.
Consequently, one can choose the computational effort to solve a problem quite
freely. Furthermore, the quality of the solution produced depends directly on this
effort. An extreme case is given by simulated annealing, which almost certainly
produces the best possible solution, provided that one accepts an infinite effort!

A compromise must therefore be achieved between the computational time and
the quality of the solutions produced.

11.3.4.1 Success Rate

A first measure of the quality of a heuristic is its success rate in producing target
solutions. These may be the optimum, if known, or solutions of a given quality. If
the value of the optimum is unknown, a bound can be derived using a relaxation,
from which a certain deviation can be accepted.
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The simplest case for comparing success rates occurs when the heuristics have no
parameters, or when the parameters have been fixed. In this case, we want to answer
the question: does heuristic A find more target solutions than heuristic B? The
answer to this question is univocal: we run A and B on the same set of instances
and we count the number of respective successes. Obviously, for this to make sense,
the instances must be chosen prior to the experiment, and not according to the results
obtained by one or the other method.

As in any experiment of this type, a subsidiary question must be answered: is the
observed difference in success rates significant? Indeed, if the heuristics include a
random component, or if the instance set is randomly selected, the difference could
be due to chance and not to a distinct solving performance between the heuristics.

In this case, a statistical test can be carried out, with the null hypothesis that both
methods have exactly the same probability p of success [66]. To conduct such a test,
the independence of the experiments should be guaranteed. Under these conditions,
relatively few numerical experiments can reveal a significant difference.

Table 11.1 provides the values for which it can be stated with 99% confidence
that one proportion is significantly higher than another. This table can be used as
follows: suppose we want to compare the A and B methods on instances drawn at
random (e.g., TSPs with 100 cities uniformly generated in the unit square). Suppose
that the B method was able to find a solution of given quality only twice on nb = 5
runs. Suppose that, out of na = 10 runs of the method A , 9 were able to achieve
such quality. In the corresponding row and column of Table 11.1, we find the couple
(10,2). In other words, a proportion of at least 10/10 should have been reached to
conclude that the A method is superior to the B method.

Put differently, there is a probability p of success such that in more than 1% of
cases we can observe nine successes out of ten or two successes out of five. This
result is counterintuitive, as the observed success rates vary by a factor larger than
two.

The situation becomes more complex if the success rate depends on the computa-
tional effort involved to reach a target solution. One possibility is to plot the results
as a proportion of success versus effort (time-to-target plot or TTT-plot). Figure 11.3
illustrates this for three different heuristics with a small TSP instance. For this fig-
ure, the reference for an iteration represents a call to Code 12.3. The generation time
of the starting solution has been neglected here. The latter is generated either in a
purely random way, or with an artificial pheromone matrix or with a randomized
greedy algorithm. We also ignore that the local search may take more or less time
to complete, depending on the starting solution.

The success rate curve for the method repeating local searches from randomly
generated solutions was obtained by estimating the probability of a successful run.
This estimation required 100,000 executions of the method, with only 14 achieving
the target.

The success rate of x executions was therefore estimated to be 1−(1−0.00014)x.
However, this mode of representation is questionable, as the target value and the
instance chosen can greatly influence the results. Moreover, the compared methods
should require an approximately identical computational effort for each iteration.
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Table 11.1: Pairs (a,b) for which a success rate ≥ a/na is significantly higher than
a rate ≤ b/nb, for a confidence level of 99%

na
2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 (7,0) (8,0) (9,0) (10,0) (11,0) (12,0) (12,0) (13,0) (14,0)
3 (4,0) (5,0) (6,0) (7,0) (7,0) (8,0) (9,0) (9,0) (10,0) (11,0) (11,0) (12,0)

(12,1) (13,1) (14,1) (15,1)
4 (3,0) (4,0) (5,0) (5,0) (6,0) (6,0) (7,0) (8,0) (8,0) (9,0) (9,0) (10,0) (11,0)

(6,1) (7,1) (8,1) (9,1) (10,1) (11,1) (11,1) (12,1) (13,1) (14,1)
(3,0) (4,0) (4,0) (5,0) (5,0) (6,0) (6,0) (7,0) (7,0) (8,0) (8,0) (9,0) (9,0)

5 (5,1) (6,1) (7,1) (7,1) (8,1) (9,1) (10,1) (10,1) (11,1) (12,1) (12,1)
(9,2) (10,2) (11,2) (12,2) (13,2) (14,2) (14,2)

(3,0) (3,0) (4,0) (4,0) (5,0) (5,0) (6,0) (6,0) (7,0) (7,0) (8,0) (8,0) (9,0)
6 (4,1) (5,1) (6,1) (6,1) (7,1) (8,1) (8,1) (9,1) (9,1) (10,1) (11,1) (11,1)

(6,2) (7,2) (8,2) (9,2) (10,2) (10,2) (11,2) (12,2) (13,2) (13,2)
(11,3) (12,3) (13,3) (14,3) (15,3)

(2,0) (3,0) (3,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0) (7,0) (7,0) (7,0) (8,0)
(4,1) (5,1) (5,1) (6,1) (6,1) (7,1) (8,1) (8,1) (9,1) (9,1) (10,1) (10,1)

7 (5,2) (6,2) (7,2) (8,2) (8,2) (9,2) (10,2) (10,2) (11,2) (12,2) (12,2)
(8,3) (9,3) (10,3) (11,3) (12,3) (12,3) (13,3) (14,3)

(13,4) (14,4) (15,4)
(2,0) (3,0) (3,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0) (6,0) (7,0) (7,0)

(3,1) (4,1) (4,1) (5,1) (6,1) (6,1) (7,1) (7,1) (8,1) (8,1) (9,1) (9,1) (10,1)
8 (4,2) (5,2) (6,2) (6,2) (7,2) (8,2) (8,2) (9,2) (10,2) (10,2) (11,2) (12,2)

(6,3) (7,3) (8,3) (9,3) (9,3) (10,3) (11,3) (12,3) (12,3) (13,3)
(9,4) (10,4) (11,4) (12,4) (13,4) (14,4) (14,4)

nb (15,5)
(2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0) (6,0) (7,0)

(3,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1) (7,1) (7,1) (8,1) (8,1) (9,1) (9,1)
(4,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (9,2) (9,2) (10,2) (10,2) (11,2)

9 (5,3) (6,3) (7,3) (8,3) (8,3) (9,3) (10,3) (10,3) (11,3) (12,3) (12,3)
(7,4) (8,4) (9,4) (10,4) (11,4) (11,4) (12,4) (13,4) (14,4)

(10,5) (11,5) (12,5) (13,5) (14,5) (15,5)
(2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0) (6,0)

(3,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1) (7,1) (7,1) (8,1) (8,1) (9,1)
(4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (8,2) (8,2) (9,2) (9,2) (10,2) (10,2)

10 (5,3) (6,3) (7,3) (7,3) (8,3) (9,3) (9,3) (10,3) (10,3) (11,3) (12,3)
(6,4) (7,4) (8,4) (9,4) (9,4) (10,4) (11,4) (12,4) (12,4) (13,4)

(8,5) (9,5) (10,5) (11,5) (12,5) (13,5) (13,5) (14,5)
(12,6) (13,6) (14,6) (15,6)

(2,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (5,0) (6,0) (6,0)
(3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1) (6,1) (7,1) (7,1) (8,1) (8,1)
(3,2) (4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (8,2) (9,2) (9,2) (10,2)

(4,3) (5,3) (6,3) (6,3) (7,3) (8,3) (8,3) (9,3) (9,3) (10,3) (11,3) (11,3)
11 (5,4) (6,4) (7,4) (8,4) (8,4) (9,4) (10,4) (10,4) (11,4) (12,4) (12,4)

(7,5) (8,5) (9,5) (10,5) (10,5) (11,5) (12,5) (13,5) (13,5)
(9,6) (10,6) (11,6) (12,6) (13,6) (14,6) (14,6)

(13,7) (14,7) (15,7)
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Fig. 11.3: Success rate for the optimal resolution of the TSP instance tsp225 by three
iterative methods. The learning processes of the FANT (Code 8.3) and GRASP-PR
(Code 10.7) methods demonstrate a reasonable efficiency. Indeed, independent runs
of Code 12.3, starting from randomly generated solutions, present a much lower
success rate

11.3.4.2 Computational Time Measure

Whenever possible, one should always favour an absolute measure of the computa-
tional effort, for example by counting a number of iterations. Obviously, one must
specify what can influence the computational effort, typically the size of the data to
be processed. The algorithmic complexity of an iteration should therefore be indi-
cated.

This complexity is sometimes not clearly identifiable, or its theoretical expres-
sion has nothing to do with practical observations. The simplex algorithm for linear
programming has already been mentioned, which can theoretically perform an ex-
ponential number of pivots, but in practice stops after an almost linear number of
steps.

To compare the speed of heuristics, one is sometimes forced to use a relative
measure, the computational time. For the same algorithm using the same data struc-
tures with the same algorithmic complexity, the computation time depends on many
factors, among which:

• The programming language used for its implementation.
• The hardware (processor, memory, etc.)
• The programming style.
• The interpreter or compiler.
• The interpretation or compilation options.
• The operating system.
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• Running the system is in energy saving mode.
• Other independent processes running in parallel.
• The BIOS configuration.

Achieving reliable computing times can represent a challenge. For example, the
motherboards of personal computers are often configured from the factory to run
in “turbo" mode. In practice, when the processor is not heavily used, the clock fre-
quency drops, which reduces energy consumption. When starting intensive compu-
tations, the first iterations can therefore take much longer than the following ones,
although they perform the same number of operations. The maximum clock fre-
quency may depend on the fact that a laptop works on battery or with an external
power supply.

Thus, a factor of 2 can indeed be observed for the execution of a procedure on
two machines with the same hardware (or even on the same machine). The factor
can rise to more than 100 if we compare two similar implementations but not using
the same programming language.

To obtain meaningful results, it is frequently necessary to repeat runs for the
same set of parameters if the measured times are less than one second. In all cases,
it should be kept in mind that the computational time remains a relative measure.
What is important is the evolution of time according to the characteristics of the
problems being solved. One essential characteristic is the data size.

In Figure 11.4, we have plotted the running time of some codes proposed in this
book as a function of the number of cities in the problem. This figure uses two
logarithmic scales. In this way, a polynomial growth of the computational time is
represented, asymptotically, by a straight line. The slope of this line indicates the
degree of the polynomial. It can be noted that all methods behave polynomially.

The reader who wishes to reproduce this figure should be able to do so without
too much difficulty using the codes provided. The degree of the polynomials ob-
served is likely to be close to that presented, but the time scale may be very differ-
ent depending on the programming language and the configuration of the computer
used.

11.3.4.3 Solution Quality Measure

Comparing the quality of solutions produced by fully determined heuristics (with no
free parameters) is relatively simple. Each heuristic is run on one or more instance
sets with similar characteristics and the value of the objective functions produced
is recorded. The most standard measure is certainly the average. However, to know
if the average of the values produced by two heuristics is significantly different
requires a statistical test. If we can reasonably assume that the values produced are
normally distributed, there are standard tests that are relatively simple to implement,
such as Student’s t test. If there are more than two methods to be compared, a more
elaborate test, typically an analysis of variance (ANOVA), must be conducted.

If the values produced do not follow a normal distribution, particular caution
should be observed, as a single measure can significantly alter an average. In this
case, it is more reliable to use another measure, for example, the median, with Fried-
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Fig. 11.4: Evolution of the computational time as a function of the number of TSP
cities for some codes presented in this book

man’s analysis of variance. With this test, a rank is assigned for each run of a method
and the null hypothesis states that all samples are from a population with the same
median.

Bootstrapping is a very general statistical technique that is fairly simple to imple-
ment and is particularly suitable for comparing methods for which it is not reason-
able to obtain a large number of runs. The estimation of a quantity such as the mean,
median or their confidence interval is done by drawing a large number of samples
from the small number of observations made. The quantity to be estimated for each
of these samples is calculated, and the mean of the samples provides an estimator of
this quantity. To obtain a confidence interval, it is sufficient to identify the quantiles
of the resampling distribution.

When the heuristics are not completely determined, for example if one wishes to
provide a more complete picture of the evolution of the results as a function of the
computational effort, the statistical tests mentioned above must be repeated for each
computational effort. There are convenient tools to perform this automatically and
provide diagrams with confidence intervals.

Figure 11.5 illustrates the evolution of the objective function for the same meth-
ods as in Figure 11.3. As all three methods were run on the same machine, it is
possible to compare them on the basis of computational time. This figure gives a
double scale for the abscissa — Computational time, number of calls to the descent
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to a local optimum. For this diagram, the reference scale is time. The iteration scale
refers to the first method, GRASP-PR.
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Fig. 11.5: Evolution of the average tour length as a function of the number of itera-
tions for some codes presented in this book. Each method was run 20 times indepen-
dently on the tsp225 instance. The shaded areas give the 95% confidence interval of
the mean, obtained by exploiting a resampling technique

This allows observing an increase in time of a few percent for the execution of
the path relinking method and a decrease for the fast ant system, because the solu-
tions generated with the pheromone trails are closer to local optima, which speed
up the descent method. This diagram presents a significantly different insight into
the behaviour of these methods. Indeed, a misinterpretation of Figure 11.3 would
suggest that up to 1000 iterations, the FANT method is better than GRASP-PR and,
beyond that, the latter is the best. Repeating the improvement methods from random
solutions is much worse.

Figure 11.5 shows that up to about 50 iterations, the three methods do not produce
solutions of statistically different value. Only from 300 iterations onward can we
clearly state that multiple descents are less efficient than GRASP-PR. The curves
of the latter two methods cross at several points, but it is not possible to state that
one produces solutions with a significantly lower average value than the other for a
number of iterations less than 300. For more details on the generation of this type
of diagrams, the reader can refer to [64] and to [5] for bootstrapping techniques.
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Problems

11.1. Data Structure Options for Multi-objective Optimization
It is argued in Section 5.5.3 that using a simple linked list to store the Pareto set may
be inefficient. Is the more complicated KD-tree implementation really justified? To
answer this question, evaluate the number of solutions produced by the Pareto local
search Code 12.8, as well as the number of times one has to compare a neighbour
solution to one of the solutions stored in this set. Deleting an element from a KD-
tree can also be costly as a whole subtree has to be examined and this can lead to
cascading deletions. With a linked list, deleting a given element is done in constant
time. Also assess the extra work involved.

11.2. Comparison of a True Simulated Annealing and a kind of SA with Sys-
tematic Neighbourhood Evaluation
Compare the simulated annealing Code 7.1 and the noising method Code 7.2 when
executed under the following conditions: instance with 50 cities and random dis-
tances generated uniformly between 1 and 99 (call to rand_sym_matrix func-
tion); start with a random solution (rand_permutation function); initial tem-
perature: tour length/50; final temperature: tour length/2500; α = 0.999.





Chapter 12
Codes

This appendix provides the codes of utility procedures (random number genera-
tion, TSP data structures, KD-tree) appearing in various algorithms discussed in
this book. Then, several codes are provided for testing complete metaheuristics.

These codes have been simplified in such a way that a user who is not famil-
iar with coding or the use of program libraries can quickly execute them. Their
programming style is therefore not so exemplary! As most metaheuristics include
random choices, we also provide a pseudo-random number generator so that the
result of the provided codes do not depend on the platform on which they are run.

231
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12.1 Random Numbers

Code 12.1: random_generators.jl Implementation of a pseudo-random generator
due to l’Ecuyer [41] as well as utility functions to generate integers between two
bounds, random permutations and random symmetric matrices

1 # Lecuyer’s random generator; initial seeds
2 global x10::Int32, x11::Int32, x12::Int32, x20::Int32, x21::Int32, x22::Int32
3 x10, x11, x12, x20, x21, x22 = 12345, 67890, 13579, 24680, 98765, 43210
4 function rando()
5 global x10, x11, x12, x20, x21, x22
6 m, m2 = 2147483647, 2145483479
7 a12, q12, r12, a13, q13, r13 = 63308, 33921, 12979, -183326, 11714, 2883
8 a21, q21, r21, a23, q23, r23 = 86098, 24919, 7417, -539608, 3976, 2071
9 invm = 4.656612873077393e-10

10

11 h = x10 ÷ q13
12 p13 = -a13 * (x10 - h * q13) - h * r13
13 h = x11 ÷ q12
14 p12 = a12 * (x11 - h * q12) - h * r12
15 if p13 < 0 p13 += m end
16 if p12 < 0 p12 += m end
17 x10, x11, x12 = x11, x12, p12 - p13
18 if x12 < 0 x12 += m end
19

20 h = x20 ÷ q23
21 p23 = -a23 * (x20 - h * q23) - h * r23
22 h = x22 ÷ q21
23 p21 = a21 * (x22 - h * q21) - h * r21
24 if p23 < 0 p23 += m2 end
25 if p21 < 0 p21 += m2 end
26 x20, x21, x22 = x21, x22, p21 - p23
27 if x22 < 0 x22 += m2 end
28

29 h = x12 < x22 ? x12 - x22 + m : x12 - x22
30 h == 0 ? 0.5 : h * invm
31 end
32

33 # Returns a random integer between low and high (included)
34 function unif(low, high)
35 return Int(low + trunc((high - low + 1) * rando()))
36 end
37

38 # Generate a random array of n Int with all elements of [1, n]
39 # Platform-independent equivalent of randperm(n)
40 function rand_permutation(n)
41 p = collect(1:n)
42 for i in 1:n-1
43 v = unif(i, n)
44 p[i], p[v] = p[v], p[i]
45 end
46 return p
47 end
48

49 # Generate a nxn symmetric matrix with random values, 0 diagonal
50 function rand_sym_matrix(n, low, high)
51 matrix = [0 for i in 1:n, j in 1:n]
52 for i in 1:n-1
53 for j in i+1:n
54 matrix[i, j] = matrix[j, i] = unif(low, high)
55 end
56 end
57 return matrix
58 end
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12.2 TSP Utilities

Code 12.2: tsp_utilities.jl Utility functions for the travelling salesman: computation
of the length of a tour when a solution is provided in the form of an array giving the
order in which the cities are visited; transformation of a solution from one form to
another (order, successors, predecessors); comparison of tours

1 # Compute the length of a TSP tour
2 function tsp_length(d, tour)
3 n = length(tour)
4 return sum(d[tour[i], tour[mod1(i+1,n)]] for i = 1:n)
5 end
6

7 # Build solution representation by successors
8 function tsp_tour_to_succ(tour)
9 n = length(tour)

10 succ = Vector{Int}(undef, n)
11 for i in 1:n
12 succ[tour[i]] = tour[mod1(i + 1, n)]
13 end
14 return succ
15 end
16

17 # Build solution representation by predecessors
18 function tsp_succ_to_pred(succ)
19 n = length(succ)
20 pred = Vector{Int}(undef, n)
21 for i in 1:n
22 pred[succ[i]] = i
23 end
24 return pred
25 end
26

27 # Convert solution from successor of each city to city sequence
28 function tsp_succ_to_tour(succ)
29 n = length(succ)
30 tour = Vector{Int}(undef, n)
31 j = 1
32 for i in 1:n
33 tour[i] = j
34 j = succ[j]
35 end
36 return tour
37 end
38

39 # Convert a solution given by 2-opt data structure to a standard tour
40 function tsp_2opt_data_structure_to_tour(t)
41 n = length(t) ÷ 2
42 tour = Vector{Int}(undef, n)
43 j = t[2]
44 for i in 1:n
45 tour[i] = j ÷ 2
46 j = t[j]
47 end
48 return tour
49 end
50

51 # Compare 2 directed tours; returns the number of different arcs
52 function tsp_compare(succ_a, succ_b)
53 count = 0
54 for i = eachindex(succ_a)
55 count += ifelse(succ_a[i] != succ_b[i], 1, 0)
56 end
57 return count
58 end
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12.3 TSP Lin & Kernighan Improvement Procedure

Code 12.3: tsp_ LK.jl Ejection chain for the TSP
1 include("tsp_utilities.jl") # Code 12.2
2 ######### Basic Lin & Kernighan improvement procedure for the TSP
3 function tsp_LK(D, # Distance matrix
4 tour, # Solution
5 cost) # Tour length
6 n = length(tour)
7 succ = tsp_tour_to_succ(tour)
8 for i in 1:n
9 succ[tour[i]] = tour[mod(i, n) + 1]

10 end
11 tabu = [zeros(Int, n) for _ in 1:n] # Can edge i-j be removed?
12 iteration = 0 # Outermost loop counter to identify tabu condition
13 last_a, a = 1, 1 # Initiate ejection chain from city a = 1
14 improved = true
15 while a != last_a || improved
16 improved = false
17 iteration += 1
18 b = succ[a]
19 path_length = cost - D[a, b]
20 path_modified = true
21 while path_modified # Identify best ref. struct. with edge a-b removed
22 path_modified = false
23 ref_struct_cost = cost # Cost of reference structure retained
24 c = best_c = succ[b]
25 while succ[c] != a # Ejection can be propagated
26 d = succ[c]
27 if path_length - D[c, d] + D[c, a] + D[b, d] < cost
28 best_c = c # An improving solution is identified
29 ref_struct_cost = path_length - D[c, d] + D[c, a] + D[b, d]
30 break # Change improving solution immediately
31 end
32 if tabu[c][d] != iteration &&
33 path_length + D[b, d] < ref_struct_cost
34 ref_struct_cost = path_length + D[b, d]
35 best_c = c
36 end
37 c = d # Next value for c and d
38 end
39 if ref_struct_cost < cost # Admissible reference structure found
40 path_modified = true
41 c, d = best_c, succ[best_c] # Update reference structure
42 tabu[c][d] =tabu[d][c] =iteration # Don’t remove again edge c-d
43 path_length += (D[b, d] - D[c, d])
44 i, si, succ[b] = b, succ[b], d # Reverse path b -> c
45 while i != c
46 succ[si], i, si = i, si, succ[si]
47 end
48 b = c
49 if path_length + D[a, b] < cost # A better solution is found
50 cost = path_length + D[a, b]
51 succ[a], last_a = b, b
52 improved = true
53 tour = tsp_succ_to_tour(succ)
54 end
55 end
56 end
57 succ = tsp_tour_to_succ(tour)
58 a = succ[a]
59 end
60 return tour, cost
61 end
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12.4 KD-Tree Insertion and Inspection

Code 12.4: kd_tree_add_scan.jl Codes to define the general structure of the nodes
of a KD-tree, to add an element to a KD-tree and to inspect the whole tree. The
inspection procedure just prints out the elements

1 ######### KD tree node data structure
2 mutable struct Node
3 key::Vector{Int}
4 father::Union{Node, Nothing}
5 info::Vector{Int}
6 left::Union{Node, Nothing}
7 right::Union{Node, Nothing}
8

9 function Node(key, father, info)
10 new(copy(key), father, copy(info), nothing, nothing)
11 end
12 end
13

14 const K = 3 # Define the dimension of the KD tree
15

16 ####################### Add a new node in a KD tree ###########################
17 function kd_tree_add(root::Union{Node, Nothing}, # Root of a (sub-) tree
18 key, # Key for splitting nodes
19 info, # Information to store in the node
20 depth) # Depth of the root
21 if isnothing(root)
22 return Node(key, nothing, info)
23 elseif root.key[mod1(depth, K)] < key[mod1(depth, K)]
24 if isnothing(root.right)
25 root.right = Node(key, root, info)
26 else
27 root.right = kd_tree_add(root.right, key, info, depth + 1)
28 end
29 else
30 if isnothing(root.left)
31 root.left = Node(key, root, info)
32 else
33 root.left = kd_tree_add(root.left, key, info, depth + 1)
34 end
35 end
36 return root
37 end
38

39

40 ############# Scan a KD tree and print key and info for each node #############
41 function kd_tree_scan(root::Union{Node, Nothing})
42 if !isnothing(root)
43 if !isnothing(root.left)
44 kd_tree_scan(root.left)
45 end
46 println("Key: ", root.key, " Info: ", root.info)
47 if !isnothing(root.right)
48 kd_tree_scan(root.right)
49 end
50 end
51 end
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12.5 KD-Tree Delete

Code 12.5: kd_tree_delete.jl Code for removing a node in a KD-tree
1 ########## Find the node with min or max value in a given dimension ###########
2 function kd_tree_find_opt(root::Union{Node, Nothing}, # Root of a KD (sub-)tree
3 dim, # Dimension in which optimum is looked for
4 depth, # Depth of the root
5 minimum, # Look for minimum (True) or maximum (False)
6 value, # Best value already known
7 opt) # Node with optimum value
8 depth_opt = -1
9 if (minimum && (value > root.key[dim])) ||

10 ((!minimum) && (value < root.key[dim]))
11 opt = root
12 value = root.key[dim]
13 depth_opt = depth
14 end
15 if !isnothing(root.left)
16 opt, value, depth_opt = kd_tree_find_opt(root.left, dim, depth + 1,
17 minimum, value, opt)
18 end
19 if !isnothing(root.right)
20 opt, value, depth_opt = kd_tree_find_opt(root.right, dim, depth + 1,
21 minimum, value, opt)
22 end
23 return opt, value, depth_opt
24 end
25

26 ################### Delete the root of a KD (sub-) tree #######################
27 function kd_tree_delete(root::Union{Node, Nothing}, # Node to delete
28 depth) # Depth of the node
29 if !isnothing(root.left)
30 replacing, val_repl, depth_repl = kd_tree_find_opt(root.left,
31 mod1(depth, K), depth + 1, false, -Inf, nothing)
32 elseif !isnothing(root.right)
33 replacing, val_repl, depth_repl = kd_tree_find_opt(root.right,
34 mod1(depth, K), depth + 1, true, Inf, nothing)
35 else
36 if !isnothing(root.father)
37 if root.father.left == root
38 root.father.left = nothing
39 else
40 root.father.right = nothing
41 end
42 end
43 return nothing
44 end
45

46 root.key = copy(replacing.key)
47 root.info = copy(replacing.info)
48 kd_tree_delete(replacing, depth_repl)
49 return root
50 end
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12.6 KD-Tree Update Pareto Set

Code 12.6: kd_tree_update_pareto.jl Code for updating a Pareto set represented
by a KD-tree

1 ########## Tell if node is in the box bounded by minimum and maximum ##########
2 function kd_tree_in(node,
3 minimum, maximum) # Lower and upper corner of the box
4 i, result = 1, true
5 while i <= K && result
6 result = minimum[i] <= node.key[i] <= maximum[i]
7 i += 1
8 end
9 return result

10 end
11

12 ### Find a node (if any) with its depth in the box bounded by mini and maxi ###
13 function kd_tree_find(root, # Root of the tree in which the node is looked for
14 mini, maxi, # Lower and upper corner of the box
15 depth) # Depth of the root
16 if isnothing(root) return nothing, -1 end
17 if kd_tree_in(root, mini, maxi) return root, depth end
18

19 if maxi[mod1(depth, K)] >= root.key[mod1(depth, K)]
20 result, depth_found = kd_tree_find(root.right, mini, maxi, depth + 1)
21 if !isnothing(result) return result, depth_found end
22 end
23 if mini[mod1(depth, K)] <= root.key[mod1(depth, K)]
24 result, depth_found = kd_tree_find(root.left, mini, maxi, depth + 1)
25 if !isnothing(result) return result, depth_found end
26 end
27 return nothing, -1
28 end
29

30 include("kd_tree_delete.jl") # Code 12.5
31

32 ########## Remove points of Pareto front dominated by costs (if any) ##########
33 function update_3opt_pareto(pareto, # Current Pareto front to update
34 costs, # New point to be eventually added
35 successors, distances) # Problem solution and data
36 minimum = [-Inf for _ in 1:K]
37 maximum = [Inf for _ in 1:K]
38 dominant, depth = kd_tree_find(pareto, minimum, costs, 1)
39 if isnothing(dominant)
40 while true # No point of pareto dominates costs
41 dominated, depth = kd_tree_find(pareto, costs, maximum, 1)
42 if isnothing(dominated) # All dominated points removed
43 break
44 end
45 if dominated == pareto
46 pareto = kd_tree_delete(dominated, depth)
47 else
48 kd_tree_delete(dominated, depth)
49 end
50 end
51 pareto = kd_tree_add(pareto, costs, successors, 1)
52 pareto = tsp_3opt_pareto(pareto, costs, successors, distances)
53 end
54 return pareto
55 end
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12.7 TSP 2-Opt and 3-Opt Test Program

This code first generates a symmetric matrix with random distances and starts with
a random solution. The latter is improved with a local search applying the first-
move improving policy with the 2-opt neighbourhood. This method is relatively
rapid for instances with up to a few thousand cities. Then, all sub-paths of 100
successive cities in this solution are improved with a 3-opt neighbourhood. This
method runs in almost linear time, but only produces good solutions if the starting
solution is adequate. The solution is then improved with a full 3-opt neighbourhood.
Its complexity is considerably higher; the computational time becomes significant
beyond a few hundred cities. Ultimately, the solution is improved with the 2-opt
neighbourhood, but applying the best move policy at each iteration.

Code 12.7: test_tsp_2_and_3opt.jl Code for testing different variants of 2-opt and
3-opt neighbourhood search

1 """
2 Program to test various local improvement methods
3 Example of execution:
4 Number of cities:
5 500
6 Random solution: 24565
7 Cost of solution found with 2-opt first 953
8 Solution improved with 3-opt limited (100 cities) 870
9 Solution improved with complete 3-opt 672

10 Solution improved with 2-opt best 669
11 """
12

13 include("random_generators.jl") # Code 12.1
14 include("tsp_utilities.jl") # Code 12.2
15 include("tsp_2opt_first.jl") # Code 5.4
16 include("tsp_2opt_best.jl") # Code 5.1
17 include("tsp_3opt_limited.jl") # Code 6.1
18 include("tsp_3opt_first.jl") # Code 5.2
19

20

21 function main()
22 println("Number of cities:")
23 n = parse(Int, readline())
24

25 distance = rand_sym_matrix(n, 1, 99)
26 solution = rand_permutation(n)
27 tour_length = tsp_length(distance, solution)
28 println("Random solution: $tour_length")
29

30 solution, tour_length = tsp_2opt_first(distance, solution, tour_length)
31 println("Cost of solution found with 2-opt first $tour_length")
32

33 succ = tsp_tour_to_succ(solution)
34 succ, tour_length = tsp_3opt_limited(distance, 100, succ, tour_length)
35 println("Solution improved with 3-opt limited (100 cities) $tour_length")
36

37 succ, tour_length = tsp_3opt_first(distance, succ, tour_length)
38 println("Solution improved with complete 3-opt $tour_length")
39

40 solution = tsp_succ_to_tour(succ)
41 solution, tour_length = tsp_2opt_best(distance, solution, tour_length)
42 println("Solution improved with 2-opt best $tour_length")
43 end
44

45 main()
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12.8 Multi-objective TSP Test Program

Code 12.8: test_tsp_3opt_pareto.jl A program for testing a local Pareto search for
a TSP with a randomly generated distance matrix. For a 20-city and 3-objective
instance, this program generates an approximation to the Pareto set with more than
3000 solutions. Since the implementation is highly recursive, the recursion stack
and console user limits must be appropriately resized

1 """
2 Program to test pareto local seach for the TSP with 3-opt moves
3 Example of run with K = 3 (KD-tree Key = costs; Info = tour)
4

5 Number of cities:
6 6
7 Key: [137, 253, 273] Info: [6, 4, 1, 5, 3, 2]
8 Key: [173, 287, 236] Info: [3, 5, 6, 1, 4, 2]
9 Key: [222, 288, 235] Info: [3, 4, 5, 1, 6, 2]

10 Key: [263, 249, 242] Info: [4, 6, 5, 2, 1, 3]
11 Key: [172, 265, 244] Info: [5, 6, 1, 2, 4, 3]
12 Key: [182, 224, 320] Info: [6, 3, 5, 1, 4, 2]
13 Key: [184, 244, 297] Info: [2, 6, 5, 1, 4, 3]
14 Key: [166, 340, 264] Info: [2, 4, 1, 5, 6, 3]
15 Key: [246, 367, 201] Info: [4, 5, 1, 2, 6, 3]
16 """
17

18 include("random_generators.jl") # Code 12.1
19 include("kd_tree_add_scan.jl") # Code 12.4
20 include("tsp_3opt_pareto.jl") # Code 5.5
21

22 println("Number of cities: ")
23 n = parse(Int, readline())
24

25 distance = [rand_sym_matrix(n, 1, 99) for _ in 1:K]
26 successors = [mod1(i + 1, n) for i in 1:n]
27 costs = zeros(Int, K)
28 for dim in 1:K
29 for i in 1:n
30 costs[dim] += distance[dim][i,successors[i]]
31 end
32 end
33

34 pareto = tsp_3opt_pareto(nothing, costs, successors, distance)
35

36 kd_tree_scan(pareto) # Print pareto front with tours (successors representation)
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12.9 Fast Ant TSP Test Program

Code 12.9: test_tsp_FANT.jl Program to test a method inspired by artificial ant
colonies

1 """
2 Program to test the Fast Ant procedure
3 Example of execution
4

5 Number of cities:
6 200
7 Number of FANT iterations:
8 200
9 FANT parameter:

10 30
11 FANT 1 314
12 FANT 2 310
13 FANT 75 308
14 FANT 175 306
15 Cost of solution found with FANT 306
16 """
17

18 include("random_generators.jl") # Code 12.1
19 include("tsp_FANT.jl") # Code 8.3
20

21 println("Number of cities: ")
22 n = parse(Int, readline())
23 distances = rand_sym_matrix(n, 1, 99)
24

25 println("Number of FANT iterations: ")
26 fant_iterations = parse(Int, readline())
27 println("FANT parameter (best solution reinforcement): ")
28 fant_parameter = parse(Int, readline())
29

30 tour, cost = tsp_FANT(distances, fant_parameter, fant_iterations)
31 println("Cost of solution found with FANT: ", cost)
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12.10 Taboo Search TSP Test Program

Code 12.10: test_tsp_TS.jl A taboo search test program for a TSP with a randomly
generated symmetric distance matrix

1 """
2 Program to test a Taboo Search for the TSP
3 Example of run:
4 Number of cities:
5 30
6 Number of tabu iterations:
7 200
8 Minimum tabu_duration:
9 4

10 Maximum tabu_duration:
11 20
12 Penalty:
13 0.005
14 TS 1 1190
15 TS 2 1053
16 TS 3 906
17 TS 4 796
18 ...
19 TS 29 177
20 TS 46 174
21 TS 119 173
22 Cost of solution found : 173
23 [14, 1, 7, 6, 28, 29, 2, 5, 30, 21, 3, 8, 17, ...25, 10, 22, 26, 11, 23, 20, 15]
24 """
25

26 include("random_generators.jl") # Code 12.1
27 include("tsp_utilities.jl") # Code 12.2
28 include("tsp_TS.jl") # Code 9.1
29

30 println("Number of cities: ")
31 n = parse(Int, readline())
32

33 distances = rand_sym_matrix(n, 1, 99)
34 solution = rand_permutation(n)
35 tour_length = tsp_length(distances, solution)
36

37 println("Number of tabu iterations: ")
38 iterations = parse(Int, readline())
39 println("Minimum tabu duration: ")
40 min_tabu = parse(Int, readline())
41 println("Maximum tabu duration: ")
42 max_tabu = parse(Int, readline())
43 println("Penalty: ")
44 freq_penalty = parse(Float64, readline())
45

46 solution, tour_length = tsp_TS(distances, solution, tour_length, iterations,
47 min_tabu, max_tabu, freq_penalty)
48 println("Cost of solution found: $tour_length")
49 println(solution)
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12.11 Memetic TSP Test Program

Code 12.11: test_tsp_GA.jl A memetic algorithm test program for a TSP with a
randomly generated symmetric distance matrix

1 include("random_generators.jl") # Code 12.1
2 include("tsp_GA.jl") # Code 10.5
3

4 println("Number of cities: ")
5 n = parse(Int, readline())
6 println("Size of the population: ")
7 population_size = parse(Int, readline())
8 println("Mutation rate: ")
9 mutation_rate = parse(Float64, readline())

10 println("Number of generations: ")
11 nr_generations = parse(Int, readline())
12

13 distances = rand_sym_matrix(n, 1, 99)
14 tour, cost = tsp_GA(distances, population_size, nr_generations, mutation_rate)
15 println("Cost of solution found with GA: $(cost)")
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12.12 GRASP with Path Relinking TSP Test Program

Code 12.12: test_tsp_GRASP_PR.jl A GRASP with path relinking test program.
This method uses GRASP which calls for a local search based on ejection chains,
as well as other utility functions

1 """
2 Program to test a GRASP with Path Relinking
3 Example of execution:
4 Number of cities:
5 200
6 Iterations:
7 50
8 Population size:
9 10

10 Alpha:
11 0.7
12 GRASP_PR population updated: 11 319
13 GRASP_PR population updated: 12 317
14 GRASP_PR population updated: 13 318
15 GRASP_PR population updated: 15 318
16 GRASP_PR population updated: 16 320
17 GRASP_PR population updated: 18 317
18 GRASP_PR population updated: 19 315
19 GRASP_PR population updated: 20 316
20 GRASP_PR population updated: 21 309
21 GRASP_PR population updated: 25 316
22 GRASP_PR population updated: 26 313
23 GRASP_PR population updated: 35 316
24 GRASP_PR population updated: 36 313
25 GRASP_PR population updated: 40 313
26 GRASP_PR population updated: 42 311
27 GRASP_PR population updated: 49 313
28 Cost of solution found with GRASP_PR: 309
29 """
30

31 include("random_generators.jl") # Code 12.1
32 include("tsp_GRASP_PR.jl") # Code 10.7
33

34 println("Number of cities: ")
35 n = parse(Int, readline())
36 println("Iterations: ")
37 iterations = parse(Int, readline())
38 println("Population size: ")
39 population_size = parse(Int, readline())
40 println("Alpha: ")
41 alpha = parse(Float64, readline())
42

43 distances = rand_sym_matrix(n, 1, 99)
44

45 tour, tour_length = tsp_GRASP_PR(distances, iterations, population_size, alpha)
46 println("Cost of solution found with GRASP_PR: $tour_length")
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Problems of Chapter 1

1.1 Draw 5 Segments
A common mistake, when trying to solve this type of problem, is to take a sheet
of paper and start drawing segments more or less at random. After unsuccessfully
scribbling for a few minutes, we look for a more systematic proof.

For instance, without loss of generality, we can assume that segment 1 cuts seg-
ments 2, 3 and 4. So, segment 1 does not cut segment 5. This implies that segment
5 necessarily cuts segments 2, 3 and 4. To complete the crossings, if we assume
that segment 2 intersects segment 3, there is no longer any possibility for segment
4 to cut other segments. We can deduce, by enumeration of all the other possible
hypotheses, that the problem has no solution. This way of proceeding is not reason-
able if we want to show it is impossible to have 301 segments which each intersects
three others: the combinatorics is such that we will never arrive at the end of the
demonstration.

A natural graph model — a crossing ≡ a vertex; a segment ≡ an edge — does
not lead to something productive. In contrast, if a vertex corresponds to a segment
and an edge represents the relationship that two segments intersect, then the solution
of the problem becomes obvious. We are looking for a graph with five vertices of
degree 3. So, we are looking for a graph whose sum of degrees is equal to 5 ·3 = 15.
Since the sum of the degrees is even in any graph, we deduce the impossibility of
drawing 5 (or 301) segments such that each one crosses three others.

1.2 O Simplification

• O(2n)
• O(22n

)
• Ω((n+2)!)
• Ω(n log(log(n)))
• O(nlog(n))
• O(n5)

245
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1.3 Turing Machine Program
The transition function δ is given by the following table:

Symbol on the tape (Γ )
State (Q) b a c e n

q0 qN (qa,a,1) (q0,c,1) (q0,e,1) (q0,n,1)
qa qN (qa,a,1) (q0,c,1) (q0,e,1) (qan,n,1)
qan qN (qa,a,1) (q0,c,1) qY (q0,n,1)

1.4 Clique is NP-Complete
Section 1.2.3.4 proofs that finding a stable set of a given size is NP-Complete. In
the complementary graph, this problem is equivalent to looking for a clique of this
size. Therefore, any stable set instance reduces polynomially to a clique instance.

1.5 Asymmetric TSP to Symmetric TSP

i i′

j j′

M

−M

M

−M

di jd ji

i i′

j j′

−M

−M

di j

i i′

j j′

−M

−M

d jii j

di j

d ji

a) b) c) d)

Fig. 12.1: Principle of a polynomial reduction of an asymmetric travelling salesman
problem to a symmetric one. (a) Two nodes i and j of the original directed graph.
(b) Doubling of nodes and weights in an undirected graph; M is a sufficiently large
constant value. (c) A possibility of visiting vertices i and j in the undirected graph,
without having to pay the M penalty and by collecting a bonus of 2M, corresponding
to a visit in the order i→ j in the directed graph. (d) The only other reasonable
possibility, corresponding to a visit in the order j→ i

Problems of Chapter 2

2.1 Connecting Points
The problem here has not been formulated very precisely. This is a recurrent issue
between two interlocutors who do not have the same background. For example, the
manager of a company trying to explain the functionality of an application to a pro-
grammer. One forgets to mention certain constraints that seem obvious and the other
tries to transcribe the problem into a known algorithm but which is not satisfactorily
modelling the reality. In this exercise, it has not been specified if the connections
between the vertices had to be straight lines. If so, the solution consists in drawing
a minimum spanning tree and the problem is simple. If the connection between two
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vertices is not necessarily a unique straight line segment, then the problem is to seek
a Steiner tree and the problem is intractable. See Figure 12.2.

Fig. 12.2 For the numerical
application, a Steiner point
at approximate coordinates
(31,19) is necessary (so that
the three segments issuing
from this point toward the
vertices of the triangle make
angles of 120°). The Steiner
tree thus constructed has a
weight of about 114.197 while
that of the minimum spanning
tree is about 130.413

Weight : ≈ 114.197

Weight : ≈ 130.413
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2.2 Accessibility by Lorries
This is to maximize the minimum cut from A to B. The problem can be solved
by calculating a maximum weight spanning tree in the network. The unique chain
connecting A and B in this tree has the highest possible cut. For the numerical ap-
plication, the chain is A−5−1−7−4−3−8−B and the cut has a value of 48.

2.3 Network Reliability
Since the weights correspond to probabilities that must be multiplied and not added,
a standard algorithm of path length minimization can be used by taking the opposite
of the logarithm of the probabilities. See Figure 12.3.

Fig. 12.3 Connections to
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2.4 Ford & Fulkerson Algorithm Degeneracy
The number of iterations can grow up to the ratio that exists between the arc with
the largest capacity and the one that has the lowest. See Figure 12.4.

Fig. 12.4: Successive residue networks when applying the Ford & Fulkerson algo-
rithm. An arc of very low capacity can be alternately used in the normal direction
and then its flow cancelled at the next iteration

2.5 TSP Permutation Model
Problem instance data: n×n distance matrix D=(di j). Objective: find a permutation
p minimizing:

n−1

∑
i=1

dpi pi+1 +dpn p1

2.6 PAM and k-Means Implementation
The algorithmic complexity of these two procedures can hardly be expressed theo-
retically, because the loops in lines 9 and 6 are repeated an indeterminate number
of times. In practice, we observe a number of repetitions more or less proportional
to k for Algorithm 2.7. This number is much lower for Algorithm 2.8, typically less
than 20. More precisely, the number of repetitions for Algorithm 2.7 increases very
weakly with n when k is constant (we observe an increase from O(n0.2) to O(n0.3),
approximately), while this increase is approximately linear for k = n/20.

Although very often used in practice, the k-means algorithm does not produce
good solutions if given random initial centre positions. Starting from the solution
provided by Algorithm 2.7 gives much better results. However, the computational
time to obtain this solution can be prohibitive.

2.7 Optimality Criterion
The scheduling is optimal because the last machine has to wait the shortest possible
time before starting to work, and then it works continuously until the end.

2.8 Flowshop Makespan Evaluation
The earliest ending time for processing the ith object (pi) on machine j is given with
the recurrence relation:
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fi j =

{
0 If i = 0 or if j = 0
max( fi−1 j, fi j−1)+ tpi j Otherwise

The latest starting time of this operation is given with the recurrence relation:

di j =

{
fmn If i = n+1 or if j = m+1
min(di+1 j,di j+1)− tpi j Otherwise

2.9 Reducing the Knapsack Problem to the Generalized Assignment
Let I be the set of n objects of revenue ci and volume vi and V the volume of the
knapsack. We can create a generalized assignment problem with a set U consisting
of m = 2 elements. The element u = 1 corresponds to the objects that must be put
in the knapsack and the element u = 2 to those that remain outside. By solving a
generalized assignment problem with ci1 = 0, ci2 = ci, wi1 = vi, wi2 = 0, t1 =V and
t2 = 0, one minimizes the value of the objects remaining outside the knapsack while
satisfying the volume constraint for those put in the knapsack. Therefore, knowing
that the knapsack is NP-hard, this proves that the generalized assignment problem
is also NP-hard.

Problems of Chapter 3

3.1 Assigning Projects to Students
The assignment problem can be solved by finding a maximum flow with minimum
cost in a bipartite graph. See Figure 12.5.

• First step: a takes 1.
• Second step: c takes 2.
• Third step: a changes and takes 3; b takes 1.
• Last step: a changes again and takes 4; d takes 3.

3.2 Placing Production Units
Consider the distance matrix D, flow matrix F and assignment costs D×F with:

D =

1 2 3
a 4 5 5
b 7 2 2
c 5 4 6

F =

4 5 6
1 7 3 1
2 3 8 6
3 2 1 9

D×F =

4 5 6
a 53 57 79
b 59 39 37
c 59 53 83

Numerical application: a—4, b—6, c—5.
If there are flows between the new units, the problem reduces to a quadratic

assignment which is NP-hard.

3.3 Oral Examination
The problem can be modelled by colouring the edges of a bipartite graph. To ensure
we can decompose the graph into a minimum number of perfect matchings, we must
complete it so that there is the same number of modules than students. If there are
fewer modules than students, create dummy modules. Next, we add dummy edges
so that each vertex has the same degree. Thus, after finding a first matching, the
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Fig. 12.5: The successive flow increases for the optimal assignment of the four
projects

corresponding edges can be removed. We can start again with a graph possessing
the same properties.

3.4 Written Examination
The problem can be modelled by colouring the vertices of a graph. The vertices
correspond to the modules to be examined. The edges correspond to incompatibili-
ties between modules. All the vertices-modules a student must attend are completely
connected by a clique. The problem is intractable. For the numerical example, 4-day
timetables exist. For instance, {1,7},{2,5},{3,6},{4,8}.

3.5 QAP with More Positions Than Items
If there are fewer elements (n) to place than positions (m), we can come back to the
standard case with two m×m matrices by adding m− n dummy elements with a
zero flow between them.

If there is a fixed cost cir for assigning element i to position r, the objective must
be changed:

n

∑
i=1

n

∑
j=1

fi jdpi p j +
n

∑
i=1

cpi
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3.6 Mobile Phone Keyboard Layout
The problem can be modelled by a QAP. As we only have 27 symbols to place for 36
positions, we extend the frequency matrix to have a 36×36 matrix. Let us consider
the sub-matrices:

A =


2 3 4 5
2 3 4 5
2 3 4 5
2 3 4 5

 and B =


7 8 9 10
7 8 9 10
7 8 9 10
7 8 9 10


The “distance" matrix (corresponding to times) is given by:

D =


B A · · · A
A B · · · A
...

...
. . .

...
A A · · · B


3.7 Graph Bipartition to QAP
Let A be the adjacency matrix of the graph (with 2n vertices). Let 0 and 1 two n×n
matrices containing only 0s and 1s. The QAP instance with flow matrix given by A

and distance matrix given by
{

0 1
1 0

}
is equivalent to the graph bipartition problem.

3.8 TSP to QAP
A TSP instance with a distance matrix D can be reduced to a QAP one with the
same distance matrix and the flow matrix given by:

fi j =

{
1 If j = i+1 or if i = n and j = 1
0 Otherwise

3.9 Special Bipartition
A binary vector can model a solution s and an example of a fitness function is:

(1170−
50

∑
i=1

i · (1− si))
2 + |36,000−

50

∏
i=1

i · si|

3.10 Magic Square
We could model a solution attempt for a magic square of order n by a permutation
of the elements from 1 to n2. A fitness function could be to sum the squares of the
deviations from the target sum. But why on earth design a heuristic method for this
simple problem? Indeed, polynomial algorithms exist for the construction of magic
squares (except for n = 2).

3.11 Glass Plate Manufacturing
The no-wait flowshop sequencing problem can be modelled as an asymmetric TSP
as follows. A fictitious plate is included with zero processing time on all the ma-
chines. The minimum difference between the starting time of the plate i and that of
the plate k is given by:
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dik = max
r

(
r

∑
j=1

ti j−
r−1

∑
j=1

tk j)

The (dik) matrix corresponds to the TSP distances. The optimum tour length corre-
sponds to the minimum production time of the plates. The order of production is the
same as that of the tour, taking care to start with the fictitious plate/city.

3.12 Incorporating constraints in a QUBO model
The problem min−→x tC−→x with constraints A−→x =

−→
b can be transformed into

min−→x tC−→x +λ · (A−→x −
−→
b )t · (A−→x −

−→
b ), with λ a sufficiently large constant. Tak-

ing Q =C+λ ·(AtA−2 ·diag(At−→b )), solving the problem min−→x tQ−→x gives a solu-
tion to the original problem, but with a value of the objective increased by 2λ

−→
b t−→b .

3.13 Optimal 1-tree Choosing λ1 = 0,λ2 = 0,λ3 = 6,λ4 = −4 and λ5 = −2 pro-
vides a 1-tree of weight 74. This 1-tree corresponds to the circuit 1−2−4−3−5−1
which is therefore the optimal TSP tour for this instance.

Problems of Chapter 4

4.1 Random Permutation
The more the number of selected elements increases, the more unnecessary random
draws must be made with Algorithm 4.5. At the last iteration, n trials are made on
average while there is no alternative. Algorithm 4.6 can be implemented in Θ(n) but
the permutations are not uniformly drawn.

An efficient algorithm for generating random permutation, evenly distributed, is
given in Code 12.1. The operating principle is as follows. All the items are intro-
duced in an array p. At the ith step, the array contains random items until the index
i. Beyond this index are the items remaining to be chosen.

We can check that a given item has the same probability of being in any place
in the array p. Trivially, it has a probability of 1/n to appear in the first place. The
probability of appearing in second place is calculated by considering that it should
not be chosen for the first place (probability (n−1)/n) and that it is chosen for the
second (probability 1/(n−1)), i.e. (n−1)/n ·1/(n−1) = 1/n; etc.

4.2 Greedy Algorithms for the Knapsack
The incremental cost of adding an item to the knapsack can be defined by:

• The inverse of its revenue.
• Its volume.
• Its volume/revenue ratio.

4.3 Greedy Algorithm for the TSP on the Delaunay
If the points are collinear, the Delaunay is a chain. In this case, we cannot build a
tour. Figure 12.6 shows a nondegenerate Delaunay Triangulation with no Hamilto-
nian tour.
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Fig. 12.6 A non-Hamiltonian
Delaunay triangulation

4.4 TSP with Edge Subset
The construction of a tour can effectively be completed in linear time if each city
is only connected to its 40 nearest ones. However, these cities cannot be obtained
in linear time. In addition, all the cities the closest to the last visited may already
belong to the tour under construction.

4.5 Constructive Methods Complexity
The nearest neighbour heuristic for the TSP can be implemented in Θ(n2) (See
Code 4.3). For the beam search, there are O(n) elements to examine for each of
the p retained at a given level. Since the partial tree is examined up to level k, the
complexity is in O(nkp) for each element to be added. Since there are n elements to
add, the global complexity is in O(kpn2).

For the pilot method, there is O(n3) work to do before including an element. The
global complexity is therefore in O(n4), which is confirmed by numerical experi-
ments (see Figure 11.4).

4.6 Beam Search and Pilot Method Applications
For this problem instance, both the beam search and the pilot methods produce the
solution 1→ 2→ 5→ 3→ 4→ 1 of length 43. Figure 12.7 provides the partial
solutions successively built for the beam search.

Figure 12.8 provides the solutions built with the pilot method.

4.7 Greedy Algorithm Implementation for Scheduling
The simplest way is to calculate the increase of the production time if the next object
is included at the end (or the beginning) of a sequence. The object with the lowest
increase is selected.

A more complex method is to try to insert the next object at all possible positions
in the partial sequence. This heuristic, called NEH, is thoroughly studied in the
literature.

4.8 Greedy Methods for the VRP
A greedy method is given by Algorithm 12.1.
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Fig. 12.7: Applying the beam search procedure to a TSP instance. At each level,
both best partial solutions are retained and the tree is developed up to three levels
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Fig. 12.8: Applying the pilot method to a TSP instance. The pilot heuristic is the
nearest neighbour. The partial solutions completed by the pilot heuristic are drawn
with dotted lines

Algorithm 12.1: Clarke & Wright’s savings greedy algorithm is often cited
for building a solution for the vehicle routing problem or for the travelling
salesman problem

1 Create n tours warehouse→ i→ warehouse (warehouse ≡ city 0)
2 forall i, j = 1, . . . ,n do Compute savings
3 si j = ci0 + c0 j− ci j savings that can be achieved by merging tours i and j

4 Sort the si j by decreasing value
5 forall i, j, in the order of the si j do
6 if i is at the end of a tour and j at the beginning of another one and the sum of the

demands of both tours ⩽ vehicle capacity then Merge the tours
7 Add the arc i→ j and remove the arcs i→ 0 and 0→ j
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One can also choose any greedy heuristic for the TSP by initiating it with the
depot. As long as there is space left in the vehicle, customers are added to the tour
under construction. Then start again with a new vehicle.

4.9 Greedy Methods for the SameGame
The simplest greedy policy for SameGame is to systematically choose the largest
block. Obviously, this strategy does not allow for the creation of large blocks, which
are the most beneficial. One might then wonder if it would be preferable to choose
the smallest blocks first instead. This could indeed create large, profitable blocks to-
wards the end of the game. In reality, these two policies are comparable to a random
choice!

A more effective strategy is to assign a priority to colours. Blocks are eliminated
by choosing the first colour as a priority; if there are none, move on to the sec-
ond colour, and so on until the last colour. This way, a block that will provide the
majority of the points is created towards the end of the game.

Figure 12.9 shows the boxplot of these greedy strategies as well as a random
choice. We can see that the two simplest greedy strategies and the random construc-
tion produce solutions with very similar median quality. They mainly differ in the
dispersion of the obtained values.

The strategy that eliminates blocks with a given priority order to colours is much
better.

Problems of Chapter 5

5.1 Local Minima

The neighbourhood has the property of connectivity. x can be increased by 1 unit
with the compound move 4− 3. x can be decreased by 1 unit with the compound
move 4−3−3+4−3.

5.2 Minimizing an Explicit Function
With the first improvement move policy, the following sequences of values are ob-
tained:
650→ 585→ 495→ 428→ 372→ 336→ 304→ 256→ 234→ 230→ 222→
210→ 157→ 126→ 116→ 97→ 85→ 70→ 58→ 34→ 17→ 14→ 5→−4

510→ 472→ 457→ 435→ 377→ 368→ 278→ 212→ 156→ 118→ 89→
83→ 74→ 65→ 57→ 38→ 33→ 25→ 14→ 5→−4.

With the best improvement move policy, the following sequences of values are
obtained:
248→ 193→ 138→ 123→ 89→ 58→ 34→ 17→ 14→ 5→−10

92→ 58→ 35→ 32→ 17→−4

5.3 2-opt and 3-opt Neighbourhood Properties
The 2-opt move (i, j) changes the tour
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Fig. 12.9: Boxplot showing the scores of greedy methods for SameGame: Elimi-
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i→ si⇝ j→ s j⇝ i

to tour:
i→ j⇝ si→ s j⇝ i

If j is the direct successor of si, we can therefore swap two adjacent cities with
a 2-opt move. We deduce that the 2-opt neighbourhood possesses the connectivity
property since we can sort any array with a sequence of adjacent swaps.

The 3-opt move (i, j,k) changes the tour

i→ si⇝ j→ s j⇝ k→ sk⇝ i

to tour:
i→ s j⇝ k→ si⇝ j→ sk⇝ i

By successively applying the 2-opt moves (i, j), (k, i), (k,si), the 3-opt move
(i, j,k) is achieved:

i→ j⇝ si→ s j⇝ k→ sk⇝ i

k→ i⇝ sk→ j⇝ si→ s j⇝ k

k→ si⇝ j→ sk⇝ i→ s j⇝ k

With a 2-opt move, one can place any city after any other. Therefore, one can
transform any permutation into any other in n− 1 steps at most. A 3-opt move al-
lows each city to be moved individually to any place. Thus, the 2-opt and 3-opt
neighbourhoods have a diameter smaller than n.

5.4 3-opt for Symmetric TSP
There are four possibilities:

i→ s j⇝ k→ si⇝ j→ sk⇝ i

i→ s j⇝ k→ j⇝ si→ sk⇝ i

i→ j⇝ si→ k⇝ s j→ sk⇝ i

i→ k⇝ s j→ si⇝ j→ sk⇝ i

Only the first possibility respects the direction of travel of the three sub-paths.

5.5 4- and 5-opt
For 4-opt, there is only one possibility respecting the travel direction. The 4-opt
move (i, j,k,u) changes the tour

i→ si⇝ j→ s j⇝ k→ sk⇝ u→ su⇝ i

to tour:
i→ sk⇝ u→ s j⇝ k→ si⇝ j→ su⇝ i

This move is also called double-bridge. For 5-opt, there are eight different possibil-
ities respecting the direction of travel of the five sub-paths.



258 Solutions to the Exercises

5.6 Comparing 2-opt Best and First
To verify that a solution is 2-optimal, we must test n(n−1)/2−2 moves. The num-
ber of repetitions of the while loop in Code 5.4 grows very slowly with the size
of the problem (empirically between n0.1 and n0.17) because this procedure removes
almost all crossings on the first pass.

For Code 5.1, this number of repetitions is almost linear (proportional to n1.1). As
only one move is performed at each iteration, it can be predicted that, on average,
each node is involved a constant number of times in a move during the optimization
process.

This increase is virtually independent of the starting solution, but the absolute
number of repetitions is about 11 times higher when starting from a random solution
than when starting from a solution constructed with a greedy algorithm.

5.7 3-opt Candidate List
A 3-opt move is defined by a triplet (i, j,k). If j and k are limited to 40 values,
we can evaluate this limited neighbourhood in O(n). Indeed, for each i, there are at
most 40 ·39 neighbours to evaluate. To be able to evaluate this neighbourhood, it is
necessary to ensure that the city j is indeed on the path i⇝ k and not on the path
k⇝ i. It is thus necessary to have a data structure which can supply this information
in constant time. This can be the respective position of each city in the tour.

This limited neighbourhood is no longer connected.

5.8 VRP Neighbourhoods
It is not elementary to construct a feasible solution with a specified number m of
tours due to capacity limitations. It is indeed a bin packing problem which is NP-
hard (generalization of the set bipartition problem). We can introduce a dummy tour,
of unlimited capacity, corresponding to the customers not served by the m ordinary
tours. A penalty is associated with each customer on this tour (e.g., the distance
depot—customer—depot).

Here are some neighbourhoods with the connectivity property for the relaxed
problem:

• Take client i and optimally insert it into tour k (dummy or not). Neighbourhood
size: O(nm).

• Swap customers i and j belonging to different tours. Size of the neighbourhood:
O(n2).

• Exchange the beginning of a tour (up to customer i) and the beginning of another
one (up to customer j). Neighbourhood size: O(n2).

• Exchange a portion of one tour (between customers i and j) with a portion of
another (between customers r and s). Neighbourhood size O(n4) (or O(m2) if we
assume that the number of customers per tour is bounded by a constant).

5.9 Steiner Tree Neighbourhood
Model with Steiner vertices to be retained:

• Introduce a new Steiner vertex or delete a Steiner vertex.
• Introduce a new vertex and delete one simultaneously.
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This second neighbourhood is not connected. Computing the value of a neigh-
bouring solution: apply a minimum spanning tree algorithm. The complexity is
O(m+n logn), where m is the number of edges and n is the number of vertices.

Model with connected graph containing incident edges to all terminal vertices:
Introducing a new edge (and deleting one if a cycle is created) or deleting one edge
(and introducing another if the terminal vertices are no longer in the same connected
component). This also implies deleting other edges if there is a connected compo-
nent solely composed of Steiner vertices. The computation of the solution value is
performed using a graph exploration algorithm which is in O(m+n).

5.10 Ejection Chain for the VRP
The chain is initiated by the ejection of a customer i from a tour. The reference struc-
ture is a set of tours + an isolated customer. To try a new solution, one attempts to
insert i into a tour with sufficient capacity to accept it. The chain can be propagated
by inserting i into another tour k while simultaneously ejecting a customer j not yet
ejected from that tour. The modified tour k must be feasible and satisfy the capacity
constraints. For the propagation, j replaces i. The ejection chain ends if:

• There is no more possible ejection (all the vertices (or a maximum number) were
ejected).

• No tour has sufficient capacity to accept i even after deleting j.
• A tried solution is retained.

The complexity of an ejection chain can be established as follows (assuming
one goes directly from the preceding customer to the one following the one being
ejected) and inserting a customer at the best possible place in the tour. During chain
propagation, we try inserting i into the remaining m−1 tours, testing for each inser-
tion all candidates for ejection. This can be done in O(n). The maximum length of
the chain is also in O(n). Therefore, a chain can be evaluated in O(n2). Since there
are n different ways to initiate a chain, the overall complexity is in O(n3).

5.11
Local Search for the SameGame

The definition of a neighbourhood for the SameGame problem is not straightfor-
ward with a natural representation of a solution — the list of grid cells successively
selected to eliminate the corresponding block.

Indeed, the length of such a list varies from one solution to another. Moreover,
modifying one of the cells in the list can invalidate all or part of those that follow.

However, a solution to the problem can be modeled by a permutation of the tiles.
The simulation of the game using such a solution proceeds as follows:

We select each tile in the order given by the permutation. If the tile is present on
the grid (possibly in a position other than its initial one) and is adjacent to other tiles
of the same colour, the block containing the tile is eliminated. In all other cases,
nothing is done.

With such a representation of a solution, we can use standard neighbourhoods for
permutations, such as moving an element or swapping two elements. Figure 12.11
compares the performance of these two neighbourhoods, either starting with a ran-
dom permutation or with a greedy constructive solution where priority is given to
colours for block elimination.
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Fig. 12.11: Violin plot of 4 local search variants for the SameGame. Starting either
with a greedy solution eliminating blocks according to colour priority or with a
random solution. Neighbourhood based either on swapping two elements or moving
an element.

This figure shows the violin plots of these 4 variants. It is an empirical estima-
tion of the distribution of the solution values obtained. To improve the readability
of the diagram due to the very high asymmetry of the scores obtained according
to the problem instance, we performed a logarithmic transformation of the scores
(compare with Figure 12.9 provided with a linear scale). Inside these violin plots,
the corresponding boxplots are superimposed. The red discs indicate the means.

We see that for this problem, the neighbourhood based on swaps is significantly
better than the one based on moves. The quality of the starting solution also has a
fairly strong impact.
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Problems of Chapter 6

6.1 Dichotomic Search Complexity
The dichotomic search in a sorted array proceeds by dividing the array into b = 2
parts. Only one part (a = 1) has to be processed recursively. For this problem, there
is no reconstruction and the computational effort to be made between two recursive
calls is constant ( f (n) =Θ(1)).

Referring to the second case, we find that T (n) =Θ(nlog21 · log n) =Θ(log n).

6.2 POPMUSIC for the Flowshop Sequencing Problem
In the context of the permutation flowshop scheduling, an object can represent a part
for POPMUSIC. A sub-problem consists of the r contiguous objects in the sequence.
A sub-problem is optimized with constraints on the earliest start and latest finish
times (see Figure 12.12).

Time

Machine Earliest finish time Latest start timeSub-problem

Time

Machine

Optimized sub-problem

Fig. 12.12: POPMUSIC for the flowshop scheduling problem: the sequences of ob-
jects preceding and succeeding those defining the sub-problem are not changed

6.3 Algorithmic Complexity of POPMUSIC
The most complex part of implementing a POPMUSIC method is obtaining an
appropriate initial solution. The structure of the initial solution is critical for the
method to provide good solutions. It is important to be able to produce this solution
with an algorithmic complexity as low as possible. If these conditions are fulfilled,
the most significant contribution to the complexity of the framework is the iden-
tification of the r parts that make up a sub-problem. If the computational effort to
identify a sub-problem depends on the size of the problem, the empirical complexity
of the framework is no longer linear.

6.4 Minimizing POPMUSIC Complexity for the TSP
The complexity of building a sample tour is O(nah). The complexity of building
the initial tour containing all the cities is O(nh+1). The complexity of the optimiza-
tion with POPMUSIC is O(n1+a−ah). For a ⩽ 1+

√
2, the minimum complexity is

reached for h∗ = a
a+1 ; for this value, the global complexity is O(n

2a+1
a+1 ). This is the

typical situation for a first improvement local search with 2-opt neighbourhood.
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For a⩾ 1+
√

2, the minimum complexity is reached for h∗ = 1+a
2a ; for this value,

the global complexity is O(n
1+a

2 ). This is the typical situation for a local search
based on Lin-Kernighan neighbourhood.

Figure 12.13 illustrates the complexity of each step of the method as a function
of h.
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Fig. 12.13: Diagram used for determining the lowest possible algorithmic complex-
ity as a function of h. Left, when a = 2; right, when a = 3

Problems of Chapter 7

7.1 SA duration
A simulated annealing starting with an initial temperature T0 and ending when the
temperature reaches Tf performs logTf−logT0

logα
iterations if the temperature is multi-

plied by α at each iteration.

7.2 Tuning GRASP
For this problem instance, the parameter α has almost no influence! Since the start-
ing city is randomly selected in the greedy construction, the latter produces varied
initial solutions, even if α = 0. The local search Code 12.3 used in this function
produces relatively good quality solutions, even if the starting solution is extremely
bad. With a less efficient local search, for example Code 5.4, it is better to choose α

close to 1.

7.3 VNS with a Single Neighbourhood
When a single neighbourhood M1 is available, a convenient way to implement a
variable neighbourhood search is to consider that a random move in Mk corresponds
to k random moves in M1.
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7.4 Record to Record
The variable neighbourhood search implementation can be improved by performing
two random swaps at each iteration rather than an increasing number of moves if
the solution has not been improved. Code 12.13 implements such a method.

Code 12.13: tsp_record_to_record.jl Implementation of a record-to-record
method. The solution is perturbed by performing 2 random swaps in the best so-
lution achieved. The method for repairing a perturbed solution is an ejection chain.
The method proposed by Dueck [15] includes an additional parameter: a tolerance
value of a possible degradation of the solution obtained after the local search. The
code provided here would therefore correspond to zero tolerance

1 # Record to record iterative local search for the TSP
2 function tsp_record_to_record(d, # Distance matrix, must be symmetrical
3 best_tour, # TSP tour
4 best_length,
5 iterations) # Number of iterations
6 n = length(best_tour)
7 for iteration in 1:iterations
8 tour = copy(best_tour) # No tolerance: always revert to best tour
9

10 for _ in 1:2 # Perturbate solution
11 u = unif(1, n)
12 v = unif(1, n)
13 tour[u], tour[v] = tour[v], tour[u]
14 end
15 tour_length = tsp_length(d, tour)
16

17 tour, tour_length = tsp_LK(d, tour, tour_length)
18

19 if tour_length < best_length # Store improved best tour
20 best_tour = copy(tour)
21 best_length = tour_length
22 println("Record to record $iteration, $tour_length")
23 end
24 end
25 return best_tour, best_length
26 end

Problems of Chapter 8

8.1 Artificial Ants for Steiner Tree
The trails can be stored in an array indexed by the elements of a solution. If we
choose a model where an element is a Steiner node, the a priori interest could be the
cost of the minimum weight spanning tree over the terminal nodes plus the Steiner
nodes selected by the ant. However, this modelling poses a problem: how to decide
when the ant should stop incorporating Steiner nodes before returning its solution?

If we select a model where an element e of a solution represents an edge of the
tree, the a priori interest is simply the weight of the edge e, if the latter can be added
without creating a cycle. The a posteriori interest is proportional to τe. An ant builds
a solution edge by edge, taking care not to produce a cycle. It can stop as soon as
all the terminal nodes are present in the tree. This second model seems to be better
adapted to an ant algorithm.
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8.2 Tuning the FANT Parameter
For small problem instances, it is challenging to adjust the parameter of the FANT
method. Indeed, the local search produces solutions whose quality is almost inde-
pendent from that of the initial solutions. For numbers of iterations above 100, a
parameter τb at least equal to 200 seems to produce solutions of moderately better
quality.

8.3 Vocabulary Building for Graph Colouring
The solution fragments to be stored in the dictionary can consist of maximum stable
sets of the graph. Indeed, all vertices of a stable set can be coloured with the same
colour. A solution can be obtained by selecting a minimum number of stable sets
covering all the vertices of the graph. If such a subset of stables can be found, it can
be matched with a feasible colouring: a vertex occurring in several of the selected
stables will receive an arbitrary colour corresponding to one of the stables of which
it is a part. In practice, to attempt to obtain a colouring with a fixed number of
colours, one constructs an tentative solution with slightly fewer stable sets than this
number. The uncovered vertices define a subgraph which is coloured independently.
If this subgraph is not too large, an exact method can be used. The vertices receiving
the same colour in this subgraph define a stable set not necessarily maximal in the
complete graph. This set can be completed in a maximal stable set and join the
solution fragments in the dictionary.

Problems of Chapter 9

9.1 Taboo Search for an Explicit Function
Starting from the solution (−7,−6), the sequence of visited values with a taboo
duration d = 3 is: 92→ 58→ 35→ 32→ 17→−4→−3→−10→ 0→−4→
3→ 29→ 38→ 57→ 74→ 98→ 129→ 109→ 105→ 97→ 70→ 46→ 25→
−4→ 0→−10.

With a taboo duration d = 1, starting from the solution (−7,7), we have: 248→
193→ 138→ 123→ 89→ 58→ 34→ 17→ 14→ 5→−10→−3→−4→ 6→
7→ 15→ 14→ 6→−4→−3→−10→ 0→−4→ 3→ 8→ 0

9.2 Taboo Search for the VRP
Here are some possibilities for defining taboo conditions for the VRP:

• Forbid for d1 iterations to delete an arc that has just been added and for d2 itera-
tions to add an arc that has just been deleted.

• Forbid during d iterations to move a customer in a tour that it has left.
• Forbid during d iterations to modify a tour again.

9.3 Taboo Search for the QAP
The solutions successively visited are:
(1,2,3,4,5)→ (2,1,3,4,5)→ (3,1,2,4,5)→ (3,2,1,4,5)→ (2,3,1,4,5)
→ (4,3,1,2,5) → (4,3,5,2,1) → (4,2,5,3,1) → (2,4,5,3,1) → (2,4,5,1,3) →
(3,4,5,1,2).

Table 12.1 provides, for the first 10 iterations:
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• the cost of the solution before performing a move;
• the cost differential of each move, with the value of the chosen move in bold and

in colour if it is forbidden.

Iteration 1 2 3 4 5 6 7 8 9 10
Cost 66 58 58 60 60 62 52 52 60 50
Move Value, Selected, Taboo
(1,2) -8 8 8 0 0 8 8 8 -8 12
(1,3) -6 0 0 6 6 4 14 14 4 16
(1,4) 16 14 14 2 2 -2 22 22 0 22
(1,5) 12 12 12 8 8 8 8 8 12 0
(2,3) 0 2 2 -2 -2 10 8 8 10 10
(2,4) 2 12 12 10 10 0 0 0 14 12
(2,5) 16 24 24 12 12 12 24 24 12 24
(3,4) 0 20 20 20 20 20 20 20 20 20
(3,5) 4 4 4 14 14 -10 10 10 10 20
(4,5) 2 2 2 2 2 0 10 10 -10 10

Table 12.1: Move evaluation for the application of a taboo search to a small
quadratic assignment instance

Problems of Chapter 10

10.1 Genetic Algorithm for a One-Dimensional Function
A standard binary representation of a solution is not appropriate. Indeed, two so-
lutions with very close values can have very different representations. For example
(10000000) is completely different from (01111111), even if its value differs by
only one unit. For this type of problem, it is better to choose a Gray coding, where
the code of x is given by x⊕ x

2 (⊕ denoting the bitwise exclusive OR).

10.2 Inversion Sequence
The inversion sequence (4,2,3,0,1,0) corresponds to the permutation (4,6,2,5,1,3).
(0,0,3,1,2,0) is not an inversion sequence. Element 5 cannot have two elements
greater than itself in a permutation of 6 elements. A sequence si(i = 1, . . . ,n) is an
inversion sequence if, and only if 0 ⩽ si ⩽ n− i. The standard crossover operators
can be used directly with inversion sequences, as they preserve the property stated
above. The drawback is that the corresponding offspring permutations cannot be
constructed in linear time.

In the context of scatter search, k solutions s1, . . . ,sk can be mixed by rounding
the elements of ∑ f (si)si

∑ f (si)
(with f (·) to maximize).

10.3 Rank Based Selection
The probability of rank_based_selection(m) to return v is 2·(m−v+1)

m·(m+1) .
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10.4 Tuning a Genetic Algorithm
Two parameter settings seem to be appropriate: with a zero mutation rate, a rel-
atively large population (100 solutions) should be adopted. With a single random
mutation after crossover, a population of a dozen solutions is adequate.

10.5 Scatter Search for the Knapsack Problem
Table 12.2 provides the list of solutions produced at the first generation of a scatter
search applied to a knapsack instance.

Generated solution Value Volume Repaired Solution Value Volume Rank Distances
(0 0 1 1 0 0 0 0 0 0 ) 21 30 (0 1 1 1 0 0 0 0 1 1 ) 42 89 3 Elite
(0 1 1 1 1 0 0 0 1 0 ) 44 100 (0 1 1 1 1 0 0 0 1 0 ) 44 100 1 Elite
(0 1 1 1 0 0 0 0 1 1 ) 42 89 (0 1 1 1 0 0 0 0 1 1 ) 42 89 Deleted
(0 1 1 1 0 0 0 0 1 1 ) 42 89 (0 1 1 1 0 0 0 0 1 1 ) 42 89 Deleted
(0 1 1 1 1 0 0 0 1 0 ) 44 100 (0 1 1 1 1 0 0 0 1 0 ) 44 100 Deleted
(1 0 1 1 1 0 0 0 0 0 ) 42 92 (1 0 1 1 1 0 0 0 0 0 ) 42 92 5 3 3 5, Retained
(1 0 1 1 1 0 0 0 0 0 ) 42 92 (1 0 1 1 1 0 0 0 0 0 ) 42 92 Deleted
(0 1 1 1 1 0 0 0 1 0 ) 44 100 (0 1 1 1 1 0 0 0 1 0 ) 44 100 Deleted
(0 1 1 1 1 0 0 0 1 0 ) 44 100 (0 1 1 1 1 0 0 0 1 0 ) 44 100 Deleted
(1 0 0 1 0 0 1 0 0 1 ) 38 96 (1 0 0 1 0 0 1 0 0 1 ) 38 96 6 7 3 5, Retained
(0 1 1 1 1 0 0 0 1 0 ) 44 100 (0 1 1 1 1 0 0 0 1 0 ) 44 100 Deleted
(1 0 1 1 0 0 0 0 0 1 ) 40 81 (1 0 1 1 0 0 0 0 1 1 ) 43 95 2 Elite
(0 1 1 1 0 0 0 0 0 1 ) 39 75 (0 1 1 1 0 0 0 0 1 1 ) 42 89 Deleted
(0 1 1 1 0 0 0 0 1 1 ) 42 89 (0 1 1 1 0 0 0 0 1 1 ) 42 89 Deleted
(0 1 1 1 0 0 0 0 1 1 ) 42 89 (0 1 1 1 0 0 0 0 1 1 ) 42 89 Deleted
(0 1 0 1 0 0 0 0 0 1 ) 30 59 (0 1 1 1 0 0 0 0 1 1 ) 42 89 Deleted
(1 0 1 1 1 0 0 0 0 0 ) 42 92 (1 0 1 1 1 0 0 0 0 0 ) 42 92 Deleted
(0 1 1 1 1 0 0 0 0 0 ) 41 86 (0 1 1 1 1 0 0 0 1 0 ) 44 100 Deleted
(1 0 0 1 0 0 0 0 0 1 ) 31 65 (1 0 1 1 0 0 0 0 1 1 ) 43 95 Deleted
(0 1 0 1 0 0 0 0 0 1 ) 30 59 (0 1 1 1 0 0 0 0 1 1 ) 42 89 Deleted
(0 1 1 1 1 0 0 0 1 0 ) 44 100 (0 1 1 1 1 0 0 0 1 0 ) 44 100 Deleted
(0 1 1 1 1 0 0 0 1 0 ) 44 100 (0 1 1 1 1 0 0 0 1 0 ) 44 100 Deleted
(1 0 1 1 0 0 0 0 0 1 ) 40 81 (1 0 1 1 0 0 0 0 1 1 ) 43 95 Deleted
(0 1 1 1 0 0 0 0 1 1 ) 42 89 (0 1 1 1 0 0 0 0 1 1 ) 42 89 Deleted
(0 0 1 1 1 0 0 0 0 0 ) 31 59 (0 0 1 1 1 0 0 0 1 1 ) 42 91 4 2 2 2
(0 1 1 1 0 0 0 0 0 1 ) 39 75 (0 1 1 1 0 0 0 0 1 1 ) 42 89 Deleted

Table 12.2: Set of solutions generated in the first iteration of scatter search. The best
three become the new elite set, identical ones are deleted. The best two that are the
most different from an elite solution are retained

Problems of Chapter 11

11.1 Data Structure Options for Multiobjective Optimization
The number of comparisons grows much faster with a linked list than with a KD-
tree. This growth seems polynomial with the number of cities in the problem in-
stance. The size of the Pareto set also grows polynomially. The degree of these
polynomials grows very strongly with K, the number of objectives. Table 12.3 gives
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an estimate of these degrees for instances with random distance matrices, uncorre-
lated between objectives. Because of the recursive algorithm for deleting an element
in a KD tree, about twice as many element removal queries must be made as with a
list.

Pareto size Comparisons

K n = 30 grows KD-tree list

2 82 O(n1.5) O(n6.5) O(n7.5)

3 6970 O(n3.7) O(n8.2) O(n9.4)

4 548671 O(n6.1) O(n10.6) O(n12.6)

Table 12.3: Empirical number of elements found by the Pareto local search, and
number of elements compared when using a KD-tree or a linked list. n is the number
of TSP cities. For K = 4 and n= 30, the number of comparisons is larger than 3 ·1011

with a KD-tree. With a linked list, it would have taken several weeks or months of
calculation for the program to finish

11.2 Comparison of a true Simulated Annealing and a kind of SA with Sys-
tematic Neighbourhood Evaluation
The noising method code that systematically evaluates the neighbourhood allows
many more iterations for the same computation time. At low temperatures, conver-
gence is faster, as shown in Figure 12.14. Both methods stop after just under 10
million iterations.
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Fig. 12.14: Comparison of a basic simulated annealing and a simulated annealing
with systematic neighbourhood evaluation (kind of noising method). Median solu-
tion value as a function of the number of iterations
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Algorithm
A*, 85
Bellman-Ford, 34
best improvement, 99
branch & bound, 84
branch & cut, 85
Busacker & Gowen, 45
Busacker-Gowen, 45
Clarke & Wright, 254
clustering around medoids, 52
definition, 21
demon, 152
Dijkstra, 33
DSATUR, 92
ejection chain, 113
evolutionary, 187
FANT, 166
first improvement, 98
Ford & Fulkerson, 43
graph colouring, 92
GRASP, 157
GRASP-PR, 207
gread deluge, 151
greedy, 88
improvement method, 97
k-means, 53
Kruskal, 30
large neighbourhood search, 131
late acceptance hill climbing, 155
local search, 97
MAX-MIN ant system, 164
maximum flow, 43
maximum flow with minimum cost, 45
noising, 152
PAM, 52
Pareto local search, 117
pilot method, 93
POPMUSIC, 133
Prim, 31

pseudo-polynomial, 26
scalarization, 115
scatter search, 201
simulated annealing, 147
swarm particles, 210
taboo search, 175
threshold accepting, 149
TSP Lin & Kernighan, 113
variable neighbourhood search, 156

Arc, 8
Artificial Ants, 161
Assignment, 45

generalized, 46
linear, 46
quadratic, 47

Bachmann-Landau notation, 14
Beam Search, 92
Bias random key GA, 203
Boolean clause, 5
Brute force, 13

Candidate list, 108
Chromatic index, 11
Classification, 50
Clause, 24
Clique, 11
Clustering, 50

dissimilarity measure, 51
k-means, 53
k-medoids, 52
PAM, 52
separation measure, 51

Code
Dijkstra, 33
elitist replacement, 198
FANT, 169
GRASP, 158
implicit enumeration, 87
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KD-tree delete, 236
KD-tree insert, 235
memetic algorithm, 199
mutation operator, 195
OX crossover, 194
Pareto local search, 117
Pareto set update, 237
path relinking, 206
pheromone trail exploitation, 167
pheromone trail update, 168
pilot method, 94
POPMUSIC, 137
random numbers, 232
selection for reproduction, 189
simulated annealing, 149
TSP 2-opt and 3-opt test, 238
TSP 2-opt best improvement, 100
TSP 2-opt data structure, 104
TSP 2-opt first improvement, 106
TSP 3-opt first improvement, 103
TSP FANT test, 240
TSP GRASP-PR test, 243
TSP Lin & Kernighan, 234
TSP lower bound, 86
TSP memetic test, 242
TSP multi-objective, 239
TSP nearest neighbour, 90
TSP record-to-record, 263
TSP TS test, 241
TSP utilities, 233
Variable Neighbourhood Search, 157

Colouring, 3
Combinatorial optimization, 3
Complexity, 21

theory, 12
algorithmic, 13
class, 18

L, 27
NC, 27
NP, 21
NP-Complete, 23
NP-hard, 27
P, 21
P-SPACE, 27
strongly NP-complete, 25

Computational time, 21, 225
Constraint

relaxation, 82
surrogate, 82

Crossover
2-point, 192
OX, 193
single-point, 192
uniform, 190

Cut, 12
Cycle, 9

simple, 9

Data slicing, 218
Digraph, 8
Diversification, 156, 180

Edge
colouring, 11
directed, 8
multiple, 8
undirected, 8

Ejection chain, 112
Elitist replacement, 196
Encoding

random key, 188
scheme, 18

Enumeration, 81
Eulerian, 11
Evolutionary algorithms, 185
Evolutionary strategy, 196

Fast ant system, 165
Filter-and-fan, 111
Fitness, 61
Flow, 12, 42
Forest, 10
Function

fitness, 59
objective, 59

Gannt chart, 40
Generational replacement, 196
Genetic algorithms, 188
Global optimum, 100
Granular search, 110
Graph

bipartite, 11
complete, 11
connected, 10
Eulerian, 11
Hamiltonian, 11
multigraph, 8
oriented, 8
proximity, 126
regular, 9
simple, 8
undirected, 8

Graph:weighted, 12
Greedy Randomized Adaptive Search, 157

Hamiltonian, 11

Indegree, 9
Independent set, 11
Intensification, 156, 180

Lagrangian relaxation, 61
Language, 19
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Large Neighbourhood Search, 130
Leaf, 10
Learning

construction, 161
local search, 173
population, 185

Line graph, 10
Literal, 24
Local optimum, 100
Local search, 97

best improvement, 99
first improvement, 98
multi-objective, 114
Pareto, 115

Loop, 8

Matching, 12
Matheuristic, 130
Matrix

adjacency, 9
incidence, 9

MAX-MIN ant system, 164
Memory

long-term, 180
short term, 175

Method
beam search, 92
branch & bound, 82
BRKGA, 203
constructive, 81

low complexity, 126
corridor, 140
decomposition, 123
demon, 152
electromagnetic, 210
evolutionary algorithms, 185
FANT, 165
filter and fan, 111
fix-and-optimize, 130
fixed set search, 209
flying elefants, 107
GA, 188
GRASP, 157
GRASP with path relinking, 206
great deluge, 150
greedy, 88
late acceptance, 155
magnifying glass, 130
memetic algorithms, 198
MIN-MAX ant system, 164
nosing, 152
particle swarm, 209
path relinking, 204
Pilot, 92
POPMUSIC, 133
recursive, 124

scatter search, 200
simulated annealing, 145
taboo search, 173
threshold accepting, 149
VNS, 156
vocabulary building, 169

Move, 97
Multi-objective optimization, 65

Nearest neighbour, 89
Neighbourhood, 97

connectivity, 106
diameter, 106
extension, 110
limitation, 108
ruggedness, 107
size, 107
TSP 2-exchange, 98
TSP 2-opt, 97, 108

data structure, 104
TSP 3-opt, 102
TSP double bridge, 257
TSP Lin & Kernighan, 112
TSP Or-opt, 103

Network, 12
Node, 8
Notation

big O, 15
little o, 16
Ω , 15
Θ , 15

Objective
hierarchical, 63
sub-goal, 67

Operator
complete selection, 189
crossover, 190
mutation, 194
natural selection, 189
proportional selection, 189
rank-based selection, 188
selection for reproduction, 188
selection for survival, 196

Order of a function, 15
Outdegree, 9

Parameter tuning, 220
Pareto local search, 115
Pareto set, 66
Particle swarm, 209
Partition, 26

around medoids, 52
Path

elementary, 9
general, 9
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shortest, 32
elementary, 36
PL formulation, 35

simple, 9
Plateau, 100
Polynomial, 21

reduction, 22
POPMUSIC, 133

TSP, 136
Population management, 185
Problem

assignment, 45
decision, 5, 18
easy, 12
generalized assignment, 46
generic, 18
graph colouring, 54
intractable, 13
k-means, 53
k-medoids, 52
knapsack, 47
linear assignment, 46
map labelling, 72
modelling, 215
number, 25
optimization, 5
p-median, 52
quadratic assignment, 47
satisfiability, 5, 24
scheduling

flowshop, 40
jobshop, 41

size, 123
stable set, 24, 49
travelling salesman, 36
vehicle routing, 38

Programming
integer linear, 6
linear, 5

canonical form, 6
mathematical, 5
quadratic unconstraint binary, 7

QUBO, 7

Reference structure, 112

Scalarizing, 66
Scatter search, 200
Scheduling, 39
Simulated annealing, 145

Solution
efficient, 66
quality, 226
supported, 66

Stable set, 11
Stationary replacement, 196
Statistical test

bootstrap, 227
success rate, 222

Strategic oscillations, 156, 180
Subgraph, 10

Taboo
aspiration criterion, 179
duration, 177
hash table, 174
list, 174
moves, 175
reactive, 177
search, 173

Theorem
divide-and-conquer, 125
no free lunch, 215

Trail, 9
Travelling salesman, 36

2-opt, 98
3-opt, 102
greedy heuristics, 88
ILP, 37
Lin & Kernighan, 112
linearitmic heuristic, 129
POPMUSIC, 136

Tree, 10
1-tree, 63
KD, 119
minimum spanning, 29
Steiner, 31

Treshold accepting, 149
Turing machine

deterministic, 19
non-deterministic, 21

Variable neighbourhood search, 156
Vector quantization, 50
Vertex, 8

adjacent, 8
colouring, 11
degree, 9
Steiner, 31

Walk, 9
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