Teaching Metaheuristics

Éric Taillard

eric(point)taillard(arobase)heig-vd.ch
MIC 2024, Lorient (F)

June 4. 2024

Table of Content

© Éric Taillard 2023 (Univ. Appl. Sci. W.-Switzerland)

1	Introduction
2	Constructive methods

2	Constructive methods

3	Local Search	 	 1
	Local Goardin	 	

	Local Starcii
4	Randomized Methods2

4	Randomized Methods	.2
5	Metaheuristic Learning Techniques	. 3

Decomposition Methods45

Conclusions53

1. Introduction

Embarrassing questions from students

- What is the best metaheuristic?
- Which metaheuristic should I use for this problem?
- Which neighbourhood should I use for this problem?
- How many iterations are needed?
- What population size/tabu list/elite set size should I use?

Best Metaheuristic?

- What is a metaheuristic?
 - Simple, alternate definition:
 - Set of building blocks for designing a heuristic algorithm
 - Suggested ways of assembling these blocks
- Which is the best heuristic for this problem?
 - Answer: None
 - No Free Lunch Theorems state that no heuristic can be universally better
 - We can only design good heuristics for a given subset of problem

Which neighbourhood should I use for this problem?

Depends on problem modelling; example: **Genetic sequence to discover: AGATAGT** Detected 3-nucleotids AGA, GAT, ATA, TAG, AGT

ullet de Bruijn Graphs with nodes \equiv detected 3-nucleotids

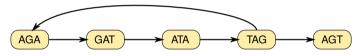
Hamiltonian path

AGA GAT ATA TAG AGT

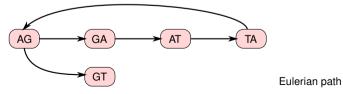
Which neighbourhood should I use for this problem?

Depends on problem modelling; example: **Genetic sequence to discover: AGATAGT** Detected 3-nucleotids AGA, GAT, ATA, TAG, AGT

de Bruijn Graphs with nodes ≡ detected 3-nucleotids
 Hamiltonian path



de Bruijn Graphs with 3-nucleotid detected ≡ edge



- How many iterations are needed?
 - Depends on you patience
- What population size/tabu list/elite set size should I use?
 - Use a software for automatic parameter Tuning

- How many iterations are needed?
 - Depends on you patience
- What population size/tabu list/elite set size should I use?
 - Use a software for automatic parameter Tuning
 - Perhaps the student didn't understand how the metaheuristic works, which to him seems more like cloud sculpting, and they chose it based on its sexy name...

- How many iterations are needed?
 - Depends on you patience
- What population size/tabu list/elite set size should I use?
 - Use a software for automatic parameter Tuning
 - Perhaps the student didn't understand how the metaheuristic works, which to him seems more like cloud sculpting, and they chose it based on its sexy name...
 - "I want to implement a Wild Wombat Tango (WWT) procedure"

- How many iterations are needed?
 - Depends on you patience
- What population size/tabu list/elite set size should I use?
 - Use a software for automatic parameter Tuning
 - Perhaps the student didn't understand how the metaheuristic works, which to him seems more like cloud sculpting, and they chose it based on its sexy name...
 - "I want to implement a Wild Wombat Tango (WWT) procedure"
 - Important to demonstrate how to design an effective heuristic from scratch in a simple manner

- How many iterations are needed?
 - Depends on you patience
- What population size/tabu list/elite set size should I use?
 - Use a software for automatic parameter Tuning
 - Perhaps the student didn't understand how the metaheuristic works, which to him seems more like cloud sculpting, and they chose it based on its sexy name...
 - "I want to implement a Wild Wombat Tango (WWT) procedure"
 - Important to demonstrate how to design an effective heuristic from scratch in a simple manner
 - Provide basic procedural codes

Reference Books for this Presentation

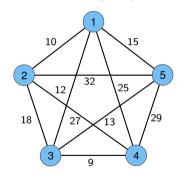
- É. D. Taillard Design of Heuristic Algorithms for Hard Optimization with Python Codes for the Travelling Salesman Problem Springer, 2023
- É. D. Taillard Design of Heuristic Algorithms for Hard Optimization with C Codes for the Travelling Salesman Problem
- Beamer Latex source files, including all figures, tables, algorithms, ILP model of the book
- Open Access CC-BY
- To lighten the slides, the references are grouped at the end

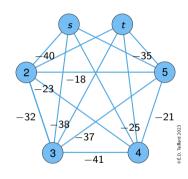
Alternate Definition of Metaheuristics

Set of building blocks for designing a heuristic algorithm

- Problem Modelling (not specific to metaheuristics!)
 - Classification, simulation
 - Mono vs multi-objective optimization
 - Problem decomposition
- Solution Building
- Solution Improvement
 - Sub-problem optimization
 - Matheuristics
 - POPMUSIC
- Learning
 - Construction Learning: Artificial Ant Colony
 - Improvement Learning: Tabu Search
 - Learning with Solutions: Genetic Algorithms, Scatter Search, Particle Swarm

Iconic Problem: the TSP





- Data: n cities, distance matrix $D = (d_{ij})$
- Solution: Permutation π of the n cities
- Objective: $\min_{\pi} \sum_{i=1}^{n-1} d_{\pi_i \pi_{i+1}} + d_{\pi_n \pi_1}$

2. Constructive methods

Kruskal Algorithm for Minimum Spanning Tree

Dijkstra's algorithm for computing shortest paths is very similar

Greedy Constructive Method

```
Input: Set E of elements constituting a solution Incremental cost function c(s,e)

Result: Complete solution s

1 Start with a trivial partial solution s (generally \varnothing)

2 R \leftarrow E

| Elements that can be potentially added to s

3 while R \neq \varnothing do

4 | Choose e' \in R optimizing c(s,e')

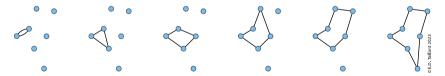
5 | s \leftarrow s \cup e'

| Remove from R the elements that cannot be added any more to s
```

Apply the same approach to a difficult problem as the one that works for a simple problem

Least Cost Insertion for the TSP

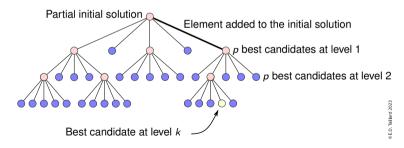
- Start from a partial tour containing a single city
- Element e à to add: a city
- Incremental cost: Minimum detour to add e to the partial tour
- Choose the city with the lowest incremental cost



Seems to work not too bad for the TSP

Beam Search

- Imitate implicit enumeration
- Avoid a myopic greedy choice by examining k forward insertions
- Avoid exponential explosion by keeping only the p best candidate at each level
- c(s, e): Cost of best candidate in branch e at the last level



Beam search plays an important role in Al

3. Local Search

Bellman-Ford Algorithm for Shortest Path

```
Data: Directed network R = (V, E, w) given with an arc list, a starting node s
   Result: Immediate predecessor pred; of j on a shortest path from s to j with its length \lambda_i, \forall j \in V, or: warning message of the existence of a negative length circuit
1 forall i \in V do
           \lambda_i \leftarrow w(s,i) \quad (\infty \text{ if arc } (i,i) \notin E)
           pred: \leftarrow s
                                                                                                                                                                   // Step counter
4 \quad k \leftarrow 0
                                                                                                                         // At least one \lambda modified at last step
  continue \leftarrow true
6 while k < |V| and continue do
           continue ← false
           k \leftarrow k + 1
                                                                                                                 // Check if a better path can be identified
           for all arc (i, j) \in E
10
                                                                                                               // Improvement found: modify the solution
                 if \lambda_i > \lambda_i + w(i,j)
12
                         \begin{array}{l} \lambda_j \leftarrow \lambda_i + w(i,j) \\ \mathit{pred}_j \leftarrow i \end{array}
```

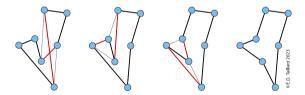
Warning: there is a negative length circuit that can be reached from s

= |V| then

Local search

Bellman-Ford works fine for finding shortest paths

- It's a local improvement technique, like the Simplex algorithm
- Start with a solution obtained with a simple method
- Improve it with local modifications



Two edges are replaced by two others whose sum of lengths is smaller lmitate a gradient-like method for a non-differentiable function

Local Search Frame: Best Improvement

Input: Solution s, neighbourhood specification $N(\cdot)$, fitness function $f(\cdot)$ to minimize. **Result:** Improved solution s 1 repeat end ← true best neighbour value $\leftarrow \infty$ forall $s' \in N(s)$ do if f(s') < best neighbour value then A better neighbour is found $best_neighbour_value \leftarrow f(s')$ best neighbour $\leftarrow s'$ if best neighbour value < f(s) then Move to the improved solution $s \leftarrow best_neighbour$ $end \leftarrow false$

6

1 until end

Pareto Local Search for Multi-Objective Optimization

Neighbourhood_evaluation

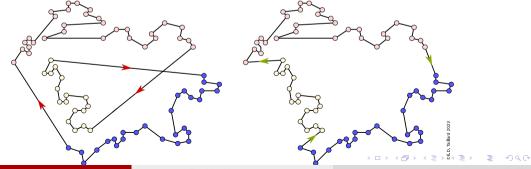
```
Input: Solution s; neighbourhood N(\cdot) objective functions \overrightarrow{f}(\cdot)
  Result: Approximation of Pareto set P completed with neighbours of s
1 forall s' \in N(s) do
2 | Update_Pareto(s', \overrightarrow{f}(s'))
3 Update Pareto
  Input: Solution s, objective values \overrightarrow{v}
  Result: Updated Pareto set P
4 if (s, \overrightarrow{v}) either dominates a solution of P or P = \emptyset then
      From P, remove all the solutions dominated by (s, \overrightarrow{v})
6 P \leftarrow P \cup (s, \overrightarrow{v})
```

Neighbourhood_evaluation(s)

TSP 3-opt move

Replace 3 edges by 3 others

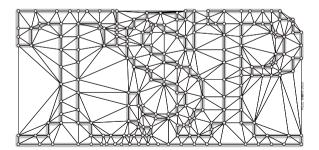
- ullet $(i o s_i), (j o s_j), (k o s_k)$ replaced by: $(i o s_j), (j o s_k), (k o s_i)$
- Respect the edge orientation on the other edges (not the case for 2-opt)
- Cons: Algorithmic complexity



Limitation of Neighbourhood Size: Candidate List, Granular Search

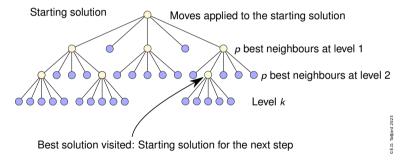
Idea: select a subset of potentially interesting neighbour solutions

- Example for the Euclidean TSP
 - Keep only the edges of the Delaunay triangulation
- Generate the edges with fast POPMUSIC



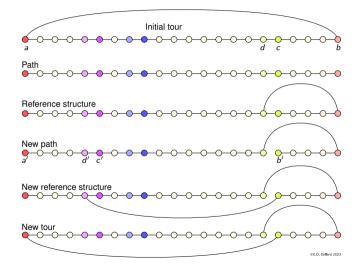
Neighbourhood extension: Filter and Fan

Imitate Beam Search, but working with a Neighbourhood

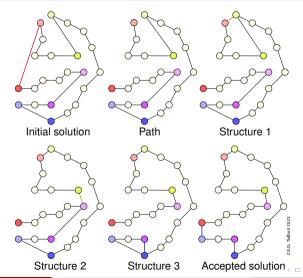


Note: It might be interesting to extend a previously limited neighbourhood

Ejection Chain for the TSP: Lin-Kernighan Neighbourhood

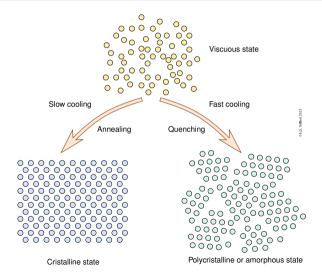


Ejection Chain: Lin-Kernighan Neighbourhood



4. Randomized Methods

Annealing and Quenching Physical Process



Simulated Annealing: Randomized Local Search

```
Input: Initial solution s; fitness function f to minimize; neighbourhood structure M,
           parameters T_{init}, T_{end} < T_{init} and 0 < \alpha < 1
  Result: Modified solution s
1 T \leftarrow T_{init}
2 while T > T_{end} do
      Randomly generate m \in M
    \Delta = f(s \oplus m) - f(s)
      Randomly generate 0 < u < 1
    if \Delta < 0 or e^{-\Delta/T} > u then m is accepted
      s \leftarrow s \oplus m
      T \leftarrow \alpha \cdot T
```

Metaheuristics Similar to SA

- Threshold Accepting
- Great Deluge
- Demon Algorithm
- Generalization: Noising Methods

Strategies Combining Simple Blocks

- Variable Neighbourhood Search
 - Basic strategic oscillation
 - Perturb the solution by applying a move picked at random in various neighbourhoods
 - Apply a local improvement method (fixed neighbourhood)
- Greedy Randomized Adaptive Search Procedure
 - Build a solution with random choices
 - Apply a local improvement method

Greedy Randomized Adaptive Search Procedure (GRASP)

Input: Set E of elements constituting a solution; incremental cost function c(s, e); fitness function f to minimize, parameters I_{max} and $0 \le \alpha \le 1$, improvement method local search **Result :** Complete solution s^* 1 $f^* \leftarrow \infty$ 2 for I_{max} iterations do Initialize s to a trivial partial solution $R \leftarrow F$ // Elements that can be added to s while $R \neq \emptyset$ do Find $c_{min} = \min_{e \in R} c(s, e)$ and $c_{max} = \max_{e \in R} c(s, e)$ Choose randomly, uniformly $e' \in R$ such that $c_{min} \leq c(s, e') \leq c_{min} + \alpha(c_{max} - c_{min})$ $s \leftarrow s \cup e'$ // Include e' in the partial solution sRemove from R the elements that cannot be added any more to s $s' \leftarrow local \ search(s)$ // Find the local optimum associated with s if $f^* > f(s')$ then $f^* \leftarrow f(s')$

5. Metaheuristic Learning Techniques

Construction Learning: Artificial Ants

Simplified Idea: GRASP with Learning

- Compute a statistics τ_e for each element e constituting a potential solution (artificial pheromone)
 - Running average depending on the number of times *e* appears in previously generated solutions, fitness, . . .
 - MAX-MIN Ant System: maintain $\tau_{min} \leqslant \tau_e \leqslant \tau_{max}$
- Instead of choosing any element e such that $c_{min} \leq c(s, e) \leq c_{min} + \alpha(c_{max} c_{min})$, choose e with a probability depending on τ_e and c(s, e)
- Add parameters (α, β) for balancing a priori interest c(s, e) and a posteriori interest τ_e
- \bullet Forgetting is very important in machine learning, in order to generalize and avoid overfitting; add parameter ρ
- ullet Other options: m solutions built in parallel, choice of solutions used to update au

33/59

MAX-MIN Ant System

```
Input: Set E of elements constituting a solution; incremental cost function c(s,e) > 0; fitness function f to minimize, parameters I_{max}, m, \alpha, \beta, \tau_{min}, \tau_{max}, \rho
            and improvement method a(\cdot)
   Result : Solution s*
1 f^* \leftarrow \infty
2 for \forall e \in E do
          \tau_e \leftarrow \tau_{max}
4 for Imax iterations do
          for k = 1 \dots m do
                 Initialize s as a trivial, partial solution
                                                                                                                           // Elements that can be added to s
                 R \leftarrow F
                 while R \neq \emptyset do Build a new solution
                                                                                                                                                    // Ant colony formula
                        Randomly choose e \in R with a probability proportional to \tau_e^{\alpha} \cdot c(s, e)^{\beta}
                        From R, remove the elements that cannot be added any more to s
                                                                                                       // Find the local optimum s_k associated with s
                 s_{L} \leftarrow a(s)
                 if f^* > f(s_k) then Update the best solution found
                        f^* \leftarrow f(s_{\nu})
          for \forall e \in E do Pheromone trail evaporation
                \tau_e \leftarrow (1-\rho) \cdot \tau_e
          s_b \leftarrow \text{best solution from } \{s_1, \dots, s_m\}
```

for $\forall e \in s_b$ do Update trail, maintaining it between the bounds

 $\tau_e \leftarrow \max(\tau_{min}, \min(\tau_{max}, \tau_e + 1/f(s_b)))$

10

11

12

13

15

16

18

19

Fast Ant System (FANT)

Simplified artificial ant system:

- Only 2 explicit parameters
- An implicit parameter is auto-adaptative
- No a priori interest

Local Search Learning: Tabu Search

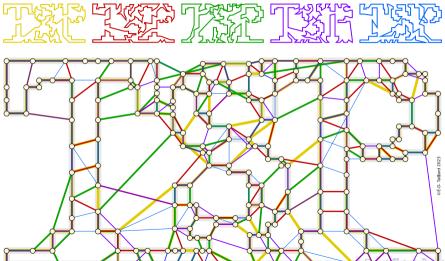
- Local search with best move policy
- Allow degrading moves
- Use a memory to avoid visiting cyclically a subset of solutions
 - Forbid to come back to a solution already visited (the solution is tabu)
 - Forbid to perform the reverse of a move recently used
 - Penalize frequently performed moves
 - Force the use of moves never performed for a long time
- Oblivion
 - Remove a prohibition after a certain number of iterations
- A lot of other strategies suggested in the original work (aspiration, candidate list, oscillations, ...)

Tabu Search

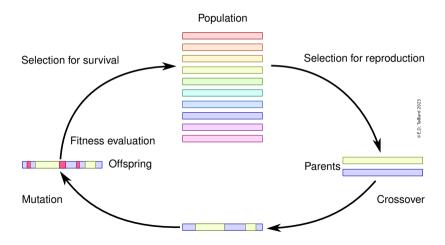
Input: Solution s, set M of moves, fitness function $f(\cdot)$ to minimize, parameters I_{max} , d Result: Improved solution s* $1 s^* \leftarrow s$ 2 for Image iterations do best neighbour value $\leftarrow \infty$ **forall** $m \in M$ (such that m (or $s \oplus m$) is not marked as taboo) **do** if $f(s \oplus m) < best$ neighbour value then best_neighbour_value $\leftarrow f(s \oplus m)$ $m^* \leftarrow m$ if best neighbour value $< \infty$ then Mark $(m^*)^{-1}$ (or s) as taboo for the next d iterations $s \leftarrow s \oplus m^*$ if $f(s) < f(s^*)$ then $s^* \leftarrow s$ else

Error message: d too large: no move allowed!

Population Learning



Generational Loop in an Evolutionary Algorithm



Population Management Principles

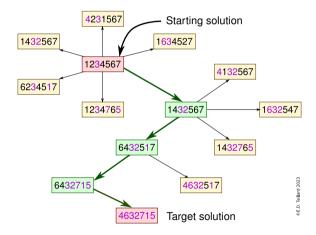
- Keep a subset of elite solutions in the population
- Introduce a diversity measure between solutions and keep solutions as scattered as possible in the population
- Exploitation of the population
 - Mix 2 solutions: genetic crossover
 - Mix several solutions: scatter search
 - Apply a local search to the new created solutions
 - Go from a starting solution to a target solution using a neighbourhood: path relinking

Getting an Offspring

Depends on the problem, but technically possible!

Getting an Offspring: Scatter Search Extension

Exploiting a Population of Solutions: Path Relinking



GRASP with Path Relinking

Input : GRASP procedure (with local search LS and parameter $0 \leqslant \alpha \leqslant 1$), parameters I_{max} and μ Result : Population P of solutions

```
1 P \leftarrow \varnothing

2 while |P| < \mu do

3 \qquad s \leftarrow GRASP(\alpha, LS)

4 \qquad \text{if } s \notin P \text{ then}

5 \qquad P \leftarrow P \cup s
```

6 for I_{max} iterations do

$$s \leftarrow \textit{GRASP}(\alpha, \texttt{LS})$$

Randomly draw $s' \in P$ Apply a path relinking method between s and s'; identifying the best solution s'' of the path

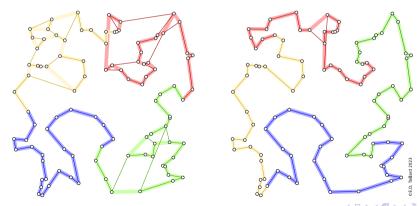
if $s'' \notin P$ and s'' is strictly better than a solution of P then

s'' replaces the most different solution of P which is worse than s''

6. Decomposition Methods

Improvement of a TSP Tour

Decompose the tour into sub-paths containing approximately r cities Optimize each sub-path with a good quality method Restart by considering overlapping sub-paths



POPMUSIC Frame

```
Input: Initial solution s composed of q disjoint parts s_1, \ldots, s_q; sub-problem improvement method
  Result: Improved solution s
1 U = \{s_1, \ldots, s_a\}
2 while U \neq \emptyset do
      Select s_{\alpha} \in U // s_{\alpha}: Seed part
3
      Build a sub-problem R composed of the r parts of s the closest to s_{\sigma}
      Tentatively optimize R
      if R is improved then
          Update s
          From U, remove the part no longer belonging to s
8
          In U, insert the parts composing R
      else R not improved
          Remove s_{\sigma} from U
```

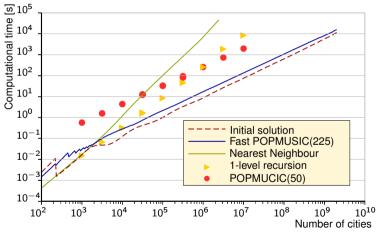
Other Frames Related to POPMUSIC

- Destroy and Repair
 - Large Neighbourhood Search (LNS)
 - Adaptive LNS: Neighbouhood Selection
 - Variable Neighbourhood Search
- Magnifying Glass Method
- Matheuristics
- ...

POPMUSIC for the TSP: Empirical Complexity in $O(n^{1.57})$

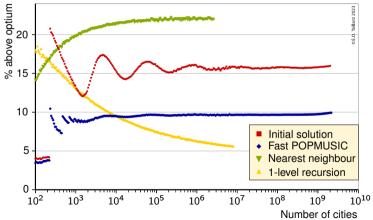
- Select a sample of $O(n^{0.56})$ cities
- Find a good tour on the sample with Lin-Kernighan neighbourhood
- Group all the cities into a number of clusters equals to the sample
- Optimize the tour with 2-opt neighbourhood by considering 2 successive clusters at a time
- Re-optimize the tour with POPMUSIC (all subsets of 50 successive cities are LK optimum)

POPMUSIC Empirical Complexity



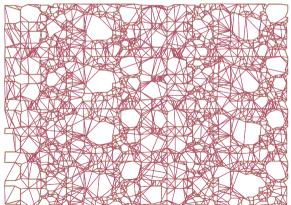
Solution Quality for the TSP with toroidal distances

Fast POPMUSIC: Initial solution obtained recursively, $2 \times n/225$ sub-problem optimization The Lin-Kernighan method used to optimize sub-path produces solutions 4% above optimum



Union 20 POPMUSIC Solutions

Optimum solution in green Method now included in LKH solver for filtering the potential edges retained



Conclusions

Missing Chapters

- Merging machine learning and metaheuristics
 - Metaheuristic parameter tuning, hyper-heuristics
 - Direct optimization: Large training times
 - Limited instance size
 - After training: relatively good solutions obtained rapidly
- Quantum computing
 - Good solutions of very specific sparse QUBO instances obtained faster than classical heuristics running on classical machine

Questions?

- - Alvim A.C.F., Taillard É.D.: POPMUSIC for the World Location Routing Problem. EURO Journal on Transportation and Logistics **2**(3), 231–254 (2013). https://doi.org/10.1007/s13676-013-0024-2
- Applegate D.L., Bixby R.E., Chvátal V., Cook W.J.: Concorde: A code for solving Traveling Salesman Problems. https://github.com/matthelb/concorde (1999). Accessed 16 June 2022
 - Battiti R., Tecchiolli G.: The Reactive Tabu Search, ORSA Journal on Computing 6, 126–140 (1994). https://doi.org/10.1287/ijoc.6.2.126
 - Cavaliere F., Accorsi L., Laganà D., Musmanno R., Vigo D.: An efficient heuristic for very large-scale vehicle routing problems with simultaneous pickup and delivery. Transportation Research Part E: Logistics and Transportation Review **186**, (2024).
 - https://www.sciencedirect.com/science/article/pii/S1366554524001418
- Černý V.: Thermodinamical Approach to the Traveling Salesman Problem: An efficient Simulation Algorithm. Journal of Optimization Theory and Applications **45**(1), 41–51 (1985). https://doi.org/10.1007/BF00940812
- Charon I., Hudry O.: The Noising Method: a New Method for Combinatorial Optimization. Operations Research Letters **14**(3), 133–137 (1993). https://doi.org/10.1016/0167-6377(93)90023-A
- Colorni A., Dorigo M., Maniezzo V.: Distributed Optimization by Ant Colonies. In: Actes de la première conférence européenne sur la vie artificielle, pp. 134–142, Paris. Elsevier, (1991)

Cook S.A.: The Complexity of Theorem-Proving Procedures. In: Proceedings of the third annual ACM symposium on Theory of computing 151-158. ACM (1971). https://doi.org/10.1145/800157.805047

Croes G.A.: A Method for Solving Traveling Salesman Problems. Operations Research 6, 791–812 (1958). https://doi.org/10.1287/opre.6.6.791

Deneubourg J., Goss S., Pasteels J., Fresneau D., Lachaud J.; Self-Organization Mechanisms in Ant Societies (II): Learning in Foraging and Division of Labor. In: Pasteels J., et al. (eds.) From Individual to Collective Behavior in Social Insects, Experientia supplementum 54, 177–196, Birkhäuser, Basel (1987)

Dorigo M., Gambardella L.M.: Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem, IEEE Transactions on Evolutionary Computation 1(1), 53-66 (1997).

https://doi.org/10.1109/4235.585892

Dueck G.: New Optimization Heuristics: The Great Deluge Algorithm and the Record-to-Record Travel. Journal of Computational Physics 104(1), 86-92 (1993). https://doi.org/10.1006/jcph.1993.1010

Dueck G., Scheuer T.: Threshold accepting: A General Purpose Optimization Algorithm Appearing Superior to Simulated Annealing, Journal of Computational Physics 90(1), 161–175(1990). https://doi.org/10.1016/0021-9991(90)90201-B

- Duin C., Voß S.: The Pilot Method: A Strategy for Heuristic Repetition with Application to the Steiner Problem in Graphs. Networks **34**, 181-191 (1999). https://doi.org/10.1002/(SICI)1097-0037(199910)34:3%3C181::AID-NET2%3E3.0.C0;2-Y
- Feo T.A., Resende M.G.C.: Greedy Randomized Adaptive Search Procedure. Journal of Global Optimization **6**, 109–133 (1995). https://doi.org/10.1007/BF01096763
- Furcy D., Koenig S.: Limited Discrepancy Beam Search. Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 125–131 (2005)
- Garey M.R., Johnson D.S.: Computers and Intractability A Guide to the Theory of NP-Completeness. W. H. Freeman & Co. (1979)
- Gilli M., Këllezi E., Hysi H.: A Data-Driven Optimization Heuristic for Downside Risk Minimization. Journal of Risk 8(3), 1–19 (2006)
- Glover F.: Heuristics for Integer Programming Using Surrogate Constraints. Decision Sciences 8(1), 156–166 (1977). https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
- Glover F.: Future Paths for Integer Programming and Links to Artificial Intelligence. Computers and Operations Research 13(5), 533–549 (1986). https://doi.org/10.1016/0305-0548(86)90048-1
- Glover F.: Tabu Search part I. ORSA Journal on Computing 1(3), 190–206 (1989). https://doi.org/10.1287/ijoc.1.3.190

June 4, 2024

Short Bibliography

- Glover F.: Tabu Search part II. ORSA Journal on Computing **2**(1), 4–32 (1990). https://doi.org/10.1287/ijoc.2.1.4
- Glover F.: Ejection Chains, Reference Structures and Alternating Path Methods for Traveling Salesman Problems. Discrete Applied Mathematics **65**, 223–253 (1996). https://doi.org/10.1016/0166-218X(94)00037-E
 - Glover F.: Tabu Search and Adaptive Memory Programming Advances, Applications and Challenges. In: Barr R.S., Helgason R.V., Kennington J.L. (eds.) Interfaces in Computer Science and Operations Research: Advances in Metaheuristics, Optimization, and Stochastic Modeling Technologies. pp. 1–75. Springer, Boston (1997). https://doi.org/10.1007/978-1-4615-4102-8_1
- Glover F.: A Template for Scatter Search and Path Relinking. In: Hao J.K., Lutton E., Ronald E., Schoenauer M., Snyers D. (eds.) Artificial Evolution, Lecture Notes in Computer Science **1363**, 13–54 (1998). https://doi.org/10.1007/BFb0026589
- Glover F., Laguna M.: Tabu Search. Kluwer, Dordrecht (1997)
 - Greistorfer P., Staněk R., Maniezzo V.: The Magnifying Glass Heuristic for the Generalized Quadratic Assignment Problem. Metaheuristic International Conference (MIC'19) proceedings, Cartagena, Columbia (2019)

Short Bibliography

- Helsgaun K.: An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic. European Journal of Operational Research **126**(1), 106–130 (2000). https://doi.org/10.1016/S0377-2217(99)00284-2
- Helsgaun K.: Using POPMUSIC for Candidate Set Generation in the Lin-Kernighan-Helsgaun TSP Solver. Department of Computer Science, Roskilde University, Denmark (2018)
- Holland J.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Harbor (1975)
- Jarník V.: O jistém problému minimálním. (Z dopisu panu O. Borůvkovi [On a certain problem of minimization (from a letter to O. Borůvka)], in Czech. Práce moravské přírodovědecké společnosti **6**(4), 57–63 (1930). http://dml.cz/dmlcz/500726
 - Jarník V.: O minimálních grafech, obsahujících n daných bodů [On minimal graphs containing n given points], in Czech. Časopis pro Pěstování Matematiky a Fysiky **63**(8) 223–235 (1934). https://doi.org/10.21136/CPMF.1934.122548
 - Jovanovic R., Tuba M., Voß S.: Fixed Set Search Applied to the Traveling Salesman Problem. In: Blum C., Gambini Santos H., Pinacho-Davidson P., Godoy del Campo J. (eds.) Hybrid Metaheuristics. Lecture Notes in Computer Science, vol. 11299, pp. 63–77 Springer, Cham (2019).
 - https://doi.org/10.1007/978-3-030-05983-5_5

- - Kaufman L., Rousseeuw P.J.: Clustering by means of Medoids, In: DodgeY, (ed.) Statistical Data Analysis Based on the L₁-Norm and Related Methods, pp. 405–416 North-Holland, Amsterdam (1987)
- - Kennedy J., Eberhart R.C.: Particle Swarm Optimization, IEEE International Conference on Neural Networks, vol. IV, pp. 1942–1948 Piscataway, NJ, IEEE Service Center, Perth (1995). https://doi.org/10.1109/ICNN.1995.488968
 - Kirkpatrick S., Gelatt C.D., Vecchi M.P.: Optimization by Simulated Annealing, Science 220 (4598). 671-680 (1983). https://doi.org/10.1126/science.220.4598.671
 - Laguna M., Martí R.: GRASP and Path Relinking for 2-layer Straight Line Crossing Minimization. INFORMS Journal on Computing 11(1), 44-52 (1999), https://doi.org/10.1287/ijoc.11.1.44
- Lin S., Kernighan B. W.: An Effective Heuristic Algorithm for the Traveling-Salesman Problem. Operations Research 21(2), 498-516 (1973). https://www.jstor.org/stable/169020
- Lones M.: Mitigating Metaphors: A Comprehensible Guide to Recent Nature-Inspired Algorithms. SN Computer Science 1(49), (2020), https://doi.org/10.1007/s42979-019-0050-8
- Lowerre B.: The Harpy Speech Recognition System. Ph. D. Thesis, Carnegie Mellon University (1976)

López-Ibáñez M., Dubois-Lacoste J., Pérez Cáceres L., Birattari M., Stützle T.: The Irace Package: Iterated Racing for Automatic Algorithm Configuration. Operations Research Perspectives **3**, 43–58 (2016). https://doi.org/10.1016/j.orp.2016.09.002

Martello S., Toth P.: Knapsack Problems — Algorithms and Computer Implementations. Wiley, Chichester (1990)

Hansen P., Mladenović N.: An Introduction to Variable Neighborhood Search. In: Voß S., Martello S., Osman I.H., Roucairol C. (eds.) Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 422–458, Kluwer, Dordrecht (1999).

Moscato P: Memetic Algorithms: A Short Introduction. In: CorneD., Glover F., Dorigo M. (eds.) New Ideas in Optimisation, pp. 219–235, McGraw-Hill, London (1999)

Or I.: Traveling Salesman-Type Combinatorial Problems and their Relation to the Logistics of Regional Blood Banking. Ph. D. Thesis, Northwestern University (1976)

Osterman C., Rego C.: A k-level Data Structure for Large-scale Traveling Salesman Problems. Annals of Operations Research **244**(2), 1–19 (2016). https://doi.org/10.1007/s10479-016-2159-7

Paquete L., Chiarandini M., Stützle T.: Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study. In: Gandibleux, X., Sevaux, M., Sörensen, K., T'kindt, V. (eds.)

Short Bibliography

- Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 177–200 Springer (2004). https://doi.org/10.1007/978-3-642-17144-4_7
- Rechenberg I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart (1973). https://doi.org/10.1002/fedr.19750860506
- Reinelt G.: TSPLIB A T.S.P. Library. (1990). http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95. Accessed 16 June 2022
- Resende M.G.C., Riberio C.C.: Optimization by GRASP: Greedy Randomized Adaptive Search Procedures. Springer, New-York, (2016). https://doi.org/10.1007/978-1-4939-6530-4
- Shaw P.: Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems.

 4. International Conference of Principles and Practice of Constraint Programming, pp. 417–431.

 Springer-Verlag (1998). https://doi.org/10.1007/3-540-49481-2_30
- Sniedovich M., Voß S.: The Corridor Method: a Dynamic Programming Inspired Metaheuristic. Control and Cybernetics **35**(3), 551–578 (2006). http://eudml.org/doc/209435
- Sörensen K., Seveaux M.: MA|PM: Memetic Algorithms with Population Management. Computers & Operations Research 33, 1214–1225 (2006). https://doi.org/10.1016/j.cor.2004.09.011
- Stützle T., Hoos H.H.: MAX MIN Ant System. Future Generation Computer Systems **16**(8), 889–914 (2000). https://doi.org/10.1016/S0167-739X(00)00043-1

- Taillard É.D.: Parallel Iterative Search Methods for Vehicle Routing Problems. Networks **23**(8), 661–673 (1993). https://doi.org/10.1002/net.3230230804
- Taillard É.D.: La programmation à mémoire adaptative et les algorithmes pseudo-gloutons: nouvelles perspectives pour les méta-heuristiques. HDR Thesis, Université de Versailles-Saint-Quentin-en-Yvelines (1998)
- Taillard É.D.: Heuristic Methods for Large Centroid Clustering Problems. J. Heuristics 9(1), 51–73 (2003). https://doi.org/10.1023/A:1021841728075
- Taillard É.D.: Tutorial: Few guidelines for analyzing methods. Metaheuristic International Conference (MIC'05) proceedings, Wien, Austria (2005)
- Taillard É.D.: A Linearithmic Heuristic for the Travelling Salesman Problem. European Journal of Operational Research 297(2), 442–450 (2022). https://doi.org/10.1016/j.ejor.2021.05.034
- Taillard É.D.: Design of Heuristic Algorithms for Hard Optimization with Python Codes for the Travelling Salesman Problem. Springer, Cham, Switzerland (2023). http://dx.doi.org/10.1007/978-3-031-13714-3
- Taillard É.D., Waelti P., Zuber J.: Few Statistical Tests for Proportions Comparison. European Journal of Operational Research **185**(3), 1336–1350 (2008). https://doi.org/10.1016/j.ejor.2006.03.070

Tassef B., Albash T., Morrel Z., Vuffray M., Lokhov A. Y., Misra S., Coffrin C.: On the Emerging Potential of Quantum Annealing Hardware for Combinatorial Optimization. Journal of Heuristics, (2024, to appear).

Toth P., Vigo D.: The Granular Tabu Search and Its Application to the Vehicle-Routing Problem. INFORMS J. on Computing **15**(4), 333–346 (2003). https://doi.org/10.1287/ijoc.15.4.333.24890

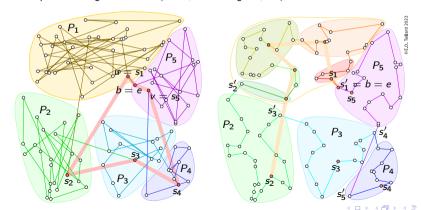
Voigt(ed.) Der Handlungsreisende wie er sein soll und was er zu thun hat, um Aufträge zu erhalten und eines glücklichen Erfolgs in seinen Geschäften gewiß zu sein; Mit einem Titelkupf. Voigt, Ilmenau (1832)

Wolpert D.H., Macready W.G.: No Free Lunch Theorems for Optimization. IEEE Transaction on Evolutionary computation 1(1), 67–82 (1997). https://doi.org/10.1109/4235.585893

Xavier A.E., Xavier V.L.: Flying Elephants: a General Method for Solving non-differentiable Problems. Journal of Heuristics **22**(4), 649–664 (2016). https://doi.org/10.1007/s10732-014-9268-8

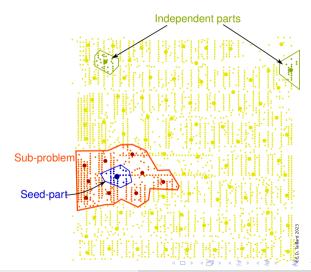
Getting an Appropriate Initial Solution in Linearithmic Time

- Create a tour on a sample of r cities
- Insert the remaining cities in any order, but next to the closest city of the sample
- If the path between 2 cities of the sample has too many cities: decompose it recursively
- Else, optimize the path with a good method (exact, Lin-Kernighan, ...)



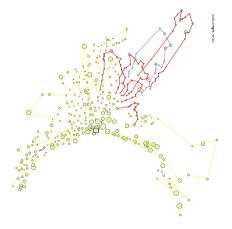
POPMUSIC for Centroid Clustering

- Optimizing 2 cluster well separated cannot improve the solution
- Choose a seed-cluster and the r centres that are the closest
- Optimize these *r* clusters independently
- Restart with other seed-clusters



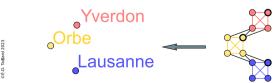
POPMUSIC for the Vehicle Routing Problem

- The customers of a tour is a part
- A subproblem is a VRP with r tours



Map Labelling as a Stable Set Problem

- Create as many node as there are possible label positions for the object
- Connect 2 incompatible nodes by an edge (only 1 label for each object, no overlapping labels)



POPMUSIC Map Labelling

- A part is an object to label (here: 4 possible positions for the label of an object)
- Two objects are at distance 1 if their labels overlap
- Here: 0 is the seed object
- A sub-problem contains 25 objects
 - Labels of red ones taken into consideration but cannot be moved
 - Green ones are ignored

