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1. Introduction
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Introduction

Embarrassing questions from students

@ What is the best metaheuristic?

@ Which metaheuristic should | use for this problem?

@ Which neighbourhood should | use for this problem?

@ How many iterations are needed?

@ What population size/tabu list/elite set size should | use?
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Introduction

Best Metaheuristic?

@ What is a metaheuristic?
e Simple, alternate definition:
o Set of building blocks for designing a heuristic algorithm
e Suggested ways of assembling these blocks
@ Which is the best heuristic for this problem?
o Answer: None
o No Free Lunch Theorems state that no heuristic can be universally better
e We can only design good heuristics for a given subset of problem
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Introduction

Which neighbourhood should | use for this problem?

Depends on problem modelling; example: Genetic sequence to discover: AGATAGT
Detected 3-nucleotids AGA, GAT, ATA, TAG, AGT

@ de Bruijn Graphs with nodes = detected 3-nucleotids
Hamiltonian path
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Introduction

Which neighbourhood should | use for this problem?

Depends on problem modelling; example: Genetic sequence to discover: AGATAGT
Detected 3-nucleotids AGA, GAT, ATA, TAG, AGT

@ de Bruijn Graphs with nodes = detected 3-nucleotids
Hamiltonian path

@ de Bruijn Graphs with 3-nucleotid detected = edge

Eulerian path
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Introduction

Parameter Tuning

@ How many iterations are needed?
e Depends on you patience

@ What population size/tabu list/elite set size should | use?
e Use a software for automatic parameter Tuning
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Introduction

Parameter Tuning

@ How many iterations are needed?
e Depends on you patience
@ What population size/tabu list/elite set size should | use?

e Use a software for automatic parameter Tuning
e Perhaps the student didn’t understand how the metaheuristic works, which to him seems
more like cloud sculpting, and they chose it based on its sexy name...
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Introduction

Parameter Tuning

@ How many iterations are needed?
e Depends on you patience
@ What population size/tabu list/elite set size should | use?

e Use a software for automatic parameter Tuning
e Perhaps the student didn’t understand how the metaheuristic works, which to him seems
more like cloud sculpting, and they chose it based on its sexy name...

@ "l want to implement a Wild Wombat Tango (WWT) procedure”
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Introduction

Parameter Tuning

@ How many iterations are needed?
e Depends on you patience
@ What population size/tabu list/elite set size should | use?

o Use a software for automatic parameter Tuning
e Perhaps the student didn’t understand how the metaheuristic works, which to him seems
more like cloud sculpting, and they chose it based on its sexy name...

@ "l want to implement a Wild Wombat Tango (WWT) procedure”

o Important to demonstrate how to design an effective heuristic from scratch in a simple
manner
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Introduction

Parameter Tuning

@ How many iterations are needed?
e Depends on you patience
@ What population size/tabu list/elite set size should | use?

o Use a software for automatic parameter Tuning
e Perhaps the student didn’t understand how the metaheuristic works, which to him seems
more like cloud sculpting, and they chose it based on its sexy name...
@ "l want to implement a Wild Wombat Tango (WWT) procedure"

o Important to demonstrate how to design an effective heuristic from scratch in a simple
manner
e Provide basic procedural codes
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Introduction

Reference Books for this Presentation

@ E. D. Taillard Design of Heuristic Algorithms for Hard Optimization
with Python Codes for the Travelling Salesman Problem
Springer, 2023
@ E. D. Taillard Design of Heuristic Algorithms for Hard Optimization
with C Codes for the Travelling Salesman Problem
@ Beamer Latex source files, including all figures, tables, algorithms, ILP model of the
book
@ Open Access CC-BY
@ To lighten the slides, the references are grouped at the end
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http://mistic.heig-vd.ch/taillard/heuristic_design/heuristic_design_taillard.pdf
http://mistic.heig-vd.ch/taillard/codes.dir/heuristic_design_taillard_python_codes.tar.gz
http://mistic.heig-vd.ch/taillard/heuristic_design/heuristic_design_taillard_C.pdf
http://mistic.heig-vd.ch/taillard/codes.dir/heuristic_design_taillard_C_codes.zip
http://mistic.heig-vd.ch/taillard/presentations.dir/heuristic_design_taillard_slides_sources.zip

Introduction Alternate Definition of Metaheuristics

Alternate Definition of Metaheuristics

Set of building blocks for designing a heuristic algorithm

@ Problem Modelling (not specific to metaheuristics!)

o Classification, simulation
e Mono vs multi-objective optimization
@ Problem decomposition

@ Solution Building

@ Solution Improvement

@ Sub-problem optimization
o Matheuristics
o POPMUSIC

@ Learning

o Construction Learning: Artificial Ant Colony
o Improvement Learning: Tabu Search
e Learning with Solutions: Genetic Algorithms, Scatter Search, Particle Swarm
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Introduction Metaheuristics Application Domain: Combinatorial Optimization

Iconic Problem: the TSP

Travelling Salesman Problem (TSP) o« Elementary Shortest Path

@ _O
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@ Data: n cities, distance matrix D = (dj)
@ Solution: Permutation = of the n cities
e Objective: ming Y7 dririy + dromy
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Constructive methods

2. Constructive methods

© Eric Taillard 2023 (Univ. Appl. Sci. W.-Switzerland) Teaching Metaheuristics June 4. 2024 11/59



Kruskal Algorithm for Minimum Spanning Tree

Input : A network with set E of edges
Weight w(e) Vee€ E
Result : Minimum Spanning Tree T
1 Start with an empty tree T

2 R+« E /I Edges that can be potentially added to T
3 while R # @ do

4 | Choose ¢ € R minimizing w(e’)

5 T+ Tué // Include ¢’ in the partial tree T
6 Remove from R the edges that cannot be added any more to T (degree 3, cycle)

Dijkstra’s algorithm for computing shortest paths is very similar
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Greedy Constructive Method

Input : Set E of elements constituting a solution
Incremental cost function c(s, e)
Result : Complete solution s
1 Start with a trivial partial solution s (generally &)

2 R+« E // Elements that can be potentially added to s
3 while R # @ do

4 | Choose ¢’ € R optimizing c(s, €’)

5 s« sueée /' Include ¢’ in the partial solution s
6 Remove from R the elements that cannot be added any more to s

Apply the same approach to a difficult problem as the one that works for a simple problem
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Constructive methods Greedy Constructive Method

Least Cost Insertion for the TSP

@ Start from a partial tour containing a single city

@ Element e a to add: a city

@ Incremental cost: Minimum detour to add e to the partial tour
@ Choose the city with the lowest incremental cost

oloqe o DA

[S]

Seems to work not too bad for the TSP
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Constructive methods Greedy Constructive Method

Beam Search

@ Imitate implicit enumeration

@ Avoid a myopic greedy choice by examining k forward insertions

@ Avoid exponential explosion by keeping only the p best candidate at each level
@ c(s, e) : Cost of best candidate in branch e at the last level

Partial initial solution

Element added to the initial solution
p best candidates at level 1

p best candidates at level 2

Best candidate at level k /

Beam search plays an important role in Al

©F.D. Taillard 2023
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Local Search

3. Local Search
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Bellman-Ford Algorithm for Shortest Path

Data : Directed network R = (V/, E, w) given with an arc list, a starting node s

Result : Immediate predecessor pred; of j on a shortest path from s to j with its length \;, Vj € V, or: warning message of the existence of a negative length circuit
1 foralli € V do
2 L Aj « w(s,i) (ooifarc(i,j) ¢ E)

3 pred; < s

4 ko /I Step counter
s continue « true /I At least one \ modified at last step
6 while k < |V| and continue do

7 continue <— false

8 k+— k+1

0 forall arc (i, j) € E /I Check if a better path can be identified
10 do

" it > A+ w(i,J) /I Improvement found: modify the solution
12 then

13 X N+ w(i, )

14 pred; < i

15 continue <— true

16 if k = |V] then
17 L Warning: there is a negative length circuit that can be reached from s
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Local Search

Local search

Bellman-Ford works fine for finding shortest paths
@ It's a local improvement technique, like the Simplex algorithm
@ Start with a solution obtained with a simple method
@ Improve it with local modifications

Two edges are replaced by two others whose sum of lengths is smaller
Imitate a gradient-like method for a non-differentiable function
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Local Search Local Search Frame

N o g b 0N =

© o

0

Local Search Frame: Best Improvement

Input : Solution s, neighbourhood specification N(-), fitness function f(-) to minimize.

Result : Improved solution s

repeat

end < true

best__neighbour value + oo

forall s’ € N(s) do

if f(s") < best_neighbour_value then A better neighbour is found
best_neighbour_value + f(s')

L best_neighbour < s’

if best_neighbour_value < f(s) then Move to the improved solution
s < best_neighbour
end « false

1 until end
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Pareto Local Search for Multi-Objective Optimization

Neighbourhood_evaluation

Input : Solution s; neighbourhood N(-) objective functions ?(-)

Result : Approximation of Pareto set P completed with neighbours of s
1 forall s’ € N(s) do
2 t Update_Pareto(s/, ?(s'))

3 Update_Pareto

Input : Solution s, objective values V'

Result : Updated Pareto set P
4 if (s, V) either dominates a solution of P or P = ) then
5 From P, remove all the solutions dominated by (s, V)
6 | P« PU(s, V)
Neighbourhood_evaluation(s)

7
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TSP 3-opt move

Replace 3 edges by 3 others
@ (i—si),(j —sj), (k= si) replaced by: (i — s;), (j — s«), (k — si)
@ Respect the edge orientation on the other edges (not the case for 2-opt)
@ Cons: Algorithmic complexity
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Local Search Limitation of Neighbourhood Size

Limitation of Neighbourhood Size: Candidate List, Granular Search

Idea: select a subset of potentially interesting neighbour solutions

@ Example for the Euclidean TSP
o Keep only the edges of the Delaunay triangulation

@ Generate the edges with fast POPMUSIC

SR
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Local Search Neighbourhood extension

Neighbourhood extension: Filter and Fan

Imitate Beam Search, but working with a Neighbourhood

Starting solution

Moves applied to the starting solution

p best neighbours at level 1
p best neighbours at level 2

Level k

Best solution visited: Starting solution for the next step

©F.D. Taillard 2023

Note: It might be interesting to extend a previously limited neighbourhood
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Ejection Chain for the TSP: Lin-Kernighan Neighbourhood

New reference structure

New tour

.0, Tallard 2023
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Ejection Chain: Lin-Kernighan Neighbourhood

D9

Initial solution Path Structure 1
Structure 2 Structure 3 Accepted solution
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Randomized Methods

4. Randomized Methods
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Randomized Methods Simulated Annealing

Annealing and Quenching Physical Process

o
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Cristalline state Polycristalline or amorphous state
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Simulated Annealing: Randomized Local Search

Input : Initial solution s; fitness function f to minimize; neighbourhood structure M,
parameters Tipit, Tend < Tinp@and 0 < a < 1
Result : Modified solution s
1 T« T,',,,'t
2 while 7 > T,y do
3 Randomly generate m € M
A =f(s®m)—f(s)
Randomly generate 0 < u < 1
if A <0ore®/T > ythen mis accepted

4
5
6
7 Ls(—s@m

8 | T+—a- T
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Randomized Methods Simulated Annealing

Metaheuristics Similar to SA

@ Threshold Accepting

@ Great Deluge

@ Demon Algorithm

@ Generalization: Noising Methods
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Strategies Combining Simple Blocks

@ Variable Neighbourhood Search
e Basic strategic oscillation
e Perturb the solution by applying a move picked at random in various neighbourhoods
o Apply a local improvement method (fixed neighbourhood)

@ Greedy Randomized Adaptive Search Procedure

@ Build a solution with random choices
@ Apply a local improvement method
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Greedy Randomized Adaptive Search Procedure (GRASP)

Input : Set E of elements constituting a solution; incremental cost function c(s, e); fitness function
f to minimize, parameters /.. and 0 < « < 1, improvement method /ocal_search
Result : Complete solution s*
1 "+ o0
2 for /. iterations do

3 Initialize s to a trivial partial solution

4 R+ E /I Elements that can be added to s
5 while R # @ do

6 Find cmin = mineecr c(s, €) and cpax = Mmaxecr (s, €)

7 Choose randomly, uniformly e’ € R such that ¢, < c(s, €’) < cmin + a(Cmax — Cmin)

8 s+ sue¢e /I Include ¢’ in the partial solution s
9 Remove from R the elements that cannot be added any more to s

0 s’ < local_search(s) // Find the local optimum associated with s
1 if f* > f(s’) then

12 f*« f(s)

13 L s* s
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Metaheuristic Learning Techniques

5. Metaheuristic Learning Techniques
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Metaheuristic Learning Techniques Construction Learning

Construction Learning: Artificial Ants

Simplified ldea: GRASP with Learning

@ Compute a statistics 7. for each element e constituting a potential solution (artificial
pheromone)
e Running average depending on the number of times e appears in previously generated

solutions, fitness, ...
o MAX-MIN Ant System: maintain 7, < 7e < Tmax

@ Instead of choosing any element e such that cpin < c(s, €) < Cmin + a(Cmax — Cmin)
choose e with a probability depending on 7. and c(s, e)

@ Add parameters («, ) for balancing a priori interest c(s, e) and a posteriori interest 7.

@ Forgetting is very important in machine learning, in order to generalize and avoid
overfitting; add parameter p

@ Other options: m solutions built in parallel, choice of solutions used to update 7

June 4. 2024 33/59
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MAX-MIN Ant System

Input : Set E of elements constituting a solution; incremental cost function c(s, e) > 0; fitness function f to minimize, parameters Imax, m, &, B, Tmins Tmax: P
and improvement method a(-)
Result : Solution s*
1 oo
2 forVe € E do
3 | Te + Tmax

4 for Iy, iterations do

fork=1...mdo
6 Initialize s as a trivial, partial solution
7 R« E /I Elements that can be added to s
8 while R # @ do Build a new solution
9 Randomly choose e € R with a probability proportional to & - c(s, ) // Ant colony formula
10 s+ sUe
1 From R, remove the elements that cannot be added any more to s
2 s a(s) // Find the local optimum s, associated with s
13 if f* > f(s;) then Update the best solution found
14 £ < f(sg)
15 s* s
16 for Ve € E do Pheromone trail evaporation
17 L me=@Q—p)7e
18 sp < best solution from {sy,...,sm}
19 for Ve € s, do Update trail, maintaining it between the bounds
20 L Te < max(Tpin, Min(Tmax, Te + 1/f(sp)))
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Fast Ant System (FANT)

Simplified artificial ant system:
@ Only 2 explicit parameters
@ An implicit parameter is auto-adaptative

@ No a priori interest
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Metaheuristic Learning Techniques Local Search Learning

Local Search Learning: Tabu Search

@ Local search with best move policy

@ Allow degrading moves
@ Use a memory to avoid visiting cyclically a subset of solutions
e Forbid to come back to a solution already visited (the solution is tabu)
e Forbid to perform the reverse of a move recently used
o Penalize frequently performed moves
o Force the use of moves never performed for a long time
@ Oblivion
o Remove a prohibition after a certain number of iterations

@ A lot of other strategies suggested in the original work (aspiration, candidate list,
oscillations, . ..)
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Tabu Search

1

2
3
4
5
6
7

©o o

Input : Solution s, set M of moves, fitness function f(-) to minimize, parameters /.y, d

Result : Improved solution s*
s* ¢+ s
for Inm.x iterations do
best_neighbour_value < co
forall m € M (such that m (or s @ m) is not marked as taboo) do
if (s ® m) < best_neighbour_value then
best_neighbour_value < f(s @ m)
L m* < m
f best_neighbour_value < oo then
Mark (m*)~* (or s) as taboo for the next d iterations
S« sdm*
if f(s) < f(s*) then
L s* ¢+ s

else
L Error message: d too large: no move allowed!
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Population Learning
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Generational Loop in an Evolutionary Algorithm

Population

Selection for survival S Selection for reproduction

©E.D. Taillard 2023

Fitness evaluation 1

o w1 [ Offspring ——

1

Parents

Mutation Crossover
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Metaheuristic Learning Techniques Population Learning

Population Management Principles

@ Keep a subset of elite solutions in the population

@ Introduce a diversity measure between solutions and keep solutions as scattered as
possible in the population

@ Exploitation of the population

Mix 2 solutions: genetic crossover

Mix several solutions: scatter search

Apply a local search to the new created solutions

Go from a starting solution to a target solution using a neighbourhood: path relinking
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Getting an Offspring

Depends on the problem, but technically possible!
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Metaheuristic Learning Techniques Population Learning

Getting an Offspring: Scatter Search Extension
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Exploiting a Population of Solutions: Path Relinking

Starting solution

4231567
1432567

1234567
4132567
6234517

1234765 | 1432567

4632715| Target solution

©E.D. Taillard 2023
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GRASP with Path Relinking

Input : GRASP procedure (with local search LS and parameter 0 < a < 1), parameters
Imax and
Result : Population P of solutions
1 P—go
2 while |P| < p do
3 s < GRASP(«,LS)
4 if s ¢ P then
5 | P+ PUs

6 for /., iterations do

s < GRASP(a,LS)

8 Randomly draw s’ € P Apply a path relinking method between s and s’; identifying the
best solution s” of the path

9 | ifs” ¢ Pands” is strictly better than a solution of P then

0 L s” replaces the most different solution of P which is worse than s”
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Decomposition Methods

6. Decomposition Methods

© Eric Taillard 2023 (Univ. Appl. Sci. W.-Switzerland) Teaching Metaheuristics June 4. 2024 45/59



Improvement of a TSP Tour

Decompose the tour into sub-paths containing approximately r cities
Optimize each sub-path with a good quality method
Restart by considering overlapping sub-paths

©E.D. Taillard 2023
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POPMUSIC Frame

Input : Initial solution s composed of q disjoint parts si, . .., s4; sub-problem improvement method
Result : Improved solution s

1 U={s,...,5}
2 while U # @ do
3 Select s, € U// s,: Seed part

4 Build a sub-problem R composed of the r parts of s the closest to s,
5 Tentatively optimize R

6 if R is improved then

7 Update s

8 From U, remove the part no longer belonging to s

9 In U, insert the parts composing R

0 else R not improved
1 | Remove s, from U
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Other Frames Related to POPMUSIC

@ Destroy and Repair
o Large Neighbourhood Search (LNS)
o Adaptive LNS: Neighbouhood Selection
e Variable Neighbourhood Search

@ Magnifying Glass Method

@ Matheuristics
o ...
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Linearithmic Heuristics for the TSP
POPMUSIC for the TSP: Empirical Complexity in O(n'")

@ Select a sample of O(n®*%) cities

@ Find a good tour on the sample with Lin-Kernighan neighbourhood

@ Group all the cities into a number of clusters equals to the sample

@ Optimize the tour with 2-opt neighbourhood by considering 2 successive clusters at a time
@ Re-optimize the tour with POPMUSIC (all subsets of 50 successive cities are LK optimum)
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Linearithmic Heuristics for the TSP
POPMUSIC Empirical Complexity
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Linearithmic Heuristics for the TSP
Solution Quality for the TSP with toroidal distances

Fast POPMUSIC: Initial solution obtained recursively, 2 x n/225 sub-problem optimization
The Lin-Kernighan method used to optimize sub-path produces solutions 4% above optimum

©E.D. Taillard 2023

% above optium

104 - —_—
0 L N\
® |Initial solution
5. + Fast POPMUSIC
k= v Nearest neighbour

1-level recursion

102 103 104 10° 10° 107 108 109 1010
Number of cities
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Decomposition Methods Linearithmic Heuristics for the TSP

Union 20 POPMUSIC Solutions

Optimum solution in green

Method now included in LKH solver for filtering the potential edges retained
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Conclusions

Conclusions
Missing Chapters

@ Merging machine learning and metaheuristics

o Metaheuristic parameter tuning, hyper-heuristics

o Direct optimization: Large training times

o Limited instance size

o After training: relatively good solutions obtained rapidly
@ Quantum computing

e Good solutions of very specific sparse QUBO instances obtained faster than classical
heuristics running on classical machine
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Getting an Appropriate Initial Solution in Linearithmic Time

@ Create a tour on a sample of r cities

@ Insert the remaining cities in any order, but next to the closest city of the sample

@ If the path between 2 cities of the sample has too many cities: decompose it recursively
@ Else, optimize the path with a good method (exact, Lin-Kernighan, ...)

©E.D. Taillard 2023
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POPMUSIC for Centroid Clustering

Independent parts

@ Optimizing 2 cluster well
separated cannot improve the
solution

@ Choose a seed-cluster and the
r centres that are the closest

)

@ Optimize these r clusters
independently

@ Restart with other
seed-clusters
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POPMUSIC for the Vehicle Routing Problem

@ The customers of a tour is
a part

@ A subproblem is a VRP
with r tours
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Map Labelling as a Stable Set Problem
@ Create as many node as there are possible label positions for the object

@ Connect 2 incompatible nodes by an edge (only 1 label for each object, no
overlapping labels)
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POPMUSIC Map Labelling

@ A partis an object to label
(here: 4 possible positions
for the label of an object)

@ Two objects are at
distance 1 if their labels
overlap

@ Here: 0 is the seed object

@ A sub-problem contains 25
objects
o Labels of red ones
taken into consideration
but cannot be moved
e Green ones are ignored
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